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Università Mediterranea di Reggio Calabria
Dipartimento di Ingegneria Informatica, Matematica, Elettronica e
Trasporti (DIMET)
Via Graziella, I-89100 Reggio Calabria, Italy

Abstract—This paper presents a simple and innovative deterministic
approach to the synthesis of uniformly excited thinned arrays able to
fulfill constraints concerning both the sidelobe level and the value of the
radiated far field (and/or of the directivity) in a set of given directions.
Starting from a reference regular (periodic or even aperiodic) lattice
and from an optimal continuous reference source fulfilling at best
the required specifications, the proposed approach finds out both
the number and the location of the isophoric (i.e., equi-amplitude)
radiating elements to withdraw in a fast and effective fashion. In
fact, it is based on a deterministic best-fitting procedure which takes
inspiration from existing density taper techniques. Examples are
provided with reference to the synthesis of large circular arrays and
confirm the interest of the proposed procedure.

1. INTRODUCTION

In a number of applications, e.g., the synthesis of Direct Radiating
Arrays (DRA) for transmission from satellites [1–4], one is interested in
achieving a directive behavior of the overall array while using a reduced
number of elements. Moreover, in order to save efficiency of amplifiers,
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different radiating elements (or different clusters of elements) should
be fed with the same amplitude. As a consequence, a renewed interest
has recently arisen in the synthesis of sparse arrays [4] (i.e., arrays
whose uniformly excited elements are properly located onto a non-
regular grid) of clustered arrays [1] (wherein the single elements are
gathered into a number of equi-fed clusters) and, last but not least, in
the synthesis of thinned arrays [2, 5–8].

In these architectural solutions, starting from a ‘filled’ array, a
number of elements is withdrawn (or removed) in order to realize
a suitable tapering on the aperture and hence the desired far
field (and/or directivity) pattern, including given constraints on the
SideLobe Level (SLL). Such a procedure allows to get nearly the
same beamwidth of a filled array of equal size, while reducing
the cost and weight of the structure. With respect to alternative
architectural solutions, thinned arrays present the advantage of
easiness of realization, as different elements usually lie on a regular
grid, operate with equal amplitude, and are directly connected to the
amplifiers.

While a number of recent approaches exploit global optimization
procedures [3, 5–9], with the inherent computational complexity, a very
simple deterministic and non-iterative procedure is proposed herein for
the case of planar arrays having a circular shape.

The next section of the paper presents the basic idea and
corresponding deterministic procedure, while Section 3 reports a
representative set of results, including both comparisons with a
recently published synthesis approach and numerical experiments
concerning the synthesis of large thinned arrays for transmission from
geostationary satellites.

2. THE BASIC IDEA AND THE CORRESPONDING
SYNTHESIS APPROACH

In order to introduce the proposed approach, it proves convenient to
recall herein a procedure due to Doyle [10] and in Skolnik [11] for
the synthesis of linear sparse arrays. In particular, in [11], one starts
from an ideal reference continuous source i(x) (e.g., the classical Taylor
distribution [12]) over an interval (−a, a), radiating a desired pattern
F (u) which can be written as:

F (u) =
∫ a

−a
i(x)ejβuxdx (1)

wherein β is the propagation constant and u = sin(θ) (being θ the
angular variable as measured with respect to the broadside direction).
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Then, the cumulative current distribution [11] I(x), i.e.,

I(x) =
∫ x

−a
i(x′)dx′ (2)

is computed. The same quantity can be defined for the actual source,
i.e., the sparse array (which will give rise to a staircase cumulative
distribution).

One can easily show [13, 14] that the (sparse) array fitting at best
(through its cumulative distribution) the ideal cumulative distribution
is also the one minimizing the functional:

R(x1, x2, . . . , xN ) =
∫ ∞

−∞
| F (u)− FA(u) |2 1

u2
du (3)

wherein xi represents the location of the i-th radiating element of the
array, while FA(u) is the pattern radiated from the equi-amplitude
excited N -elements array at hand, which, assuming F (0) = FA(0) = 1,
can be expressed as:

FA(u) =
1
N

N∑

n=1

ejβuxn (4)

in other words, the sparse arrays best fitting the given cumulative
distribution is also the one which best fits the desired far field pattern
in a L2 weighted sense (with weight 1/u2, see [13, 14] for a more in
depth discussion of such a point). A simple way to justify this results
is to recall from the Fourier Transform Theory that an integration
in one domain corresponds to a 1/ju factor (with j =

√−1) in the
other domain. As a consequence, requiring similarity between the
two cumulative current distributions means to require similarity (in
a 1/u sense) between the transforms of the currents (i.e., between the
spectra).

The above idea can be profitably extended to the synthesis of
planar thinned arrays, by fitting the corresponding ‘actual’ to an ‘ideal’
cumulative aperture distribution. If the required ideal pattern is a
circularly symmetric pencil beam, this function will be defined as:

I(ρ) =
∫ ρ

0
i(r)rdr (5)

where i(r) is the ideal rotationally symmetric source. In fact, a proper
fitting of the cumulative distributions corresponds to an L2 weighted
fitting of the corresponding plane wave spectra [15]. This result can
be profitably exploited to devise a very simple deterministic procedure
for the synthesis of thinned arrays.
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In the overall procedure, the first step lies in the choice of a
reference grid. Although the proposed approach can be applied to
any kind of regular grid, the usual square and hexagonal grids will be
considered in the following, and, in order to preserve some symmetry
in the final layout, we assume that one node of the grid is exactly at the
center of the circular region at hand. Then, the following procedure
can be devised:

First, establish an optimal continuous non-negative reference
source best fulfilling the required directivity specifications (to this end,
the approach of [16] could be profitably exploited). Then, compute the
corresponding cumulative current distribution according to (5);

Second, set ‘on’ or ‘off’ the central element depending on whether
the continuous reference current is greater than or equal to zero; set
r′ = 0 and IA(r′) equal to A (if the central element is set ‘on’) or zero
(if the central element is set ‘off’), being A the (common) amplitude
of all the ‘on’ elements of the array;

Third, set r′ = r′+∆r and consider the actual radial cumulative
current distribution IA(r′), (i.e., the overall number of ‘on’ elements
located into the circle of radius r′, multiplied by A). Then, if IA(r′) is
lower than the ideal cumulative current distribution computed in the
first step, set ‘on’ to all the antennas contained in the annular region of
space between r′ and r′ + ∆r; otherwise, set them ‘off’ (i.e., withdraw
them);

Finally, repeat the third step until the boundary of the circular
region one has at his disposal is reached.

It is interesting to note that the above procedure can be applied
also to aperiodic grids (such as those in [1]). This solution should
provide an increased robustness with respect to grating lobes, but it
would be more difficult to be manufactured as compared with periodic
grids.

In order to compare the radiation performances of given thinned
arrays, a Thinning Factor TF is usually defined as:

TF =
nRA − nTA

nRA
(6)

where nRA and nTA are the number of elements of the reference (filled)
array and of the thinned array respectively.

Moreover, in the overall procedure, the two parameters A and ∆r
come into play. The first one is related to the degree of thinning one
wants to achieve. Note that, in order to get the right fitting of the
cumulative distributions on the border of the structure, the equality:

nTAA = I(a) (7)
must be at least approximately true (being a the radius of the circular
domain at hand). Values of A lower than the ones determined from (7)
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will allow a less effective thinning. Moreover, a lower bound for A is
anyway determined from:

nRAA ≥ I(a) (8)

As far as the choice of ∆r is concerned, note that small values of ∆r,
allowing one to manage very few elements at a time (and therefore
to get a fine control of the cumulative distribution of the actual
array), are recommended in order to get a good fitting of the ideal
cumulative distribution. On the other hand, as long as rectangular
or hexagonal grids are used, very small values of ∆r may induce
an angular periodicity of the pattern with respect to the azimuthal
variable.

Some finer understanding of what is going on can be gained
by considering the field radiated by each annular ring in case of a
vanishingly small value of ∆r. In particular, by virtue of the regularity
of the underlying grid and of its symmetry with respect to the center,
any annular ring will necessarily contain a number of elements which
are a multiple of four in case of a square grid and of six in case of
hexagonal grids. Also, these elements will be uniformly spaced in angle,
so that the corresponding far field can be computed as:

AF (θ, φ) = NI0

∞∑
m=−∞

JmN (βτ sin(θ))emN(π
2
−φ+φS) (9)

wherein N is the number of feeds in the annular ring, τ the radius
of the circle, I0 a constant (which indicates the common excitation
coefficient), φS the angular displacement of the feeds on the circle,
and JmN the Bessel Function of the first kind and order mN. Then,
by virtue of the properties of the Bessel Functions, the far field will
exhibit a circular symmetry for sufficiently small θ angles, whereas
such a symmetry will be lost for increasing values of θ. Also, as the
displacement angle is of the kind π/mk (with k an integer and m = 4
or 6), the azimuthal harmonics entering (9) will not cancel out, and
therefore the final pattern will have the same azimuthal harmonics as
in (9).

Such a circumstance, which is generally undesired, may be instead
useful in some applications, such as the one presented in the second
part of Section 3.

3. NUMERICAL EXPERIMENTS

This section aims at supporting the given theory and testing the
effectiveness and the actual interest of the proposed approach. The
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use and the kind of outcomes of the procedure are exemplified in two
different sets of numerical experiments.

In particular, the first part of the analysis is devoted to a
comparison with a recently published synthesis procedure [7], while in
the second part an actual design problem (i.e., the synthesis of thinned
arrays for transmission from geostationary satellites) is dealt with.

3.1. Comparison with a Recently Published Synthesis
Procedure

In order to compare the proposed approach with the one given in [7],
the above thinning procedure has been applied to the same reference
arrays as in [7], so that arrays lying on a square grid with an inter-
element spacing of half a wavelength and contained within circles of
diameter 25λ, 33λ, 66λ, and 100λ (being λ the wavelength in free
space) have been considered. In all cases, an isotropic element pattern
has been used, and a TF ∼= 60% (i.e., a Fill Factor FF ∼= 40%) has
been enforced by acting on the A value.

The results achieved in the different cases are synthetically
reported in Table 1 in terms of directivity, half-power beamwidth
(HPBW), and SLL normalized to the maximum directivity value.

When comparing these results to the ones in [7], it can be noticed
that similar overall performances can be achieved with a very reduced
computational burden. In fact, the performances of the proposed
approach are better than the ones in [7] in all performance parameters
in the case wherein the reference grid has a diameter of 100λ, while
the small degradation in terms of SLL one noticed in all other case
is compensated by the smaller HPBW (according to a well known
trade-off). The runtime for the overall synthesis procedure (but for
directivity evaluation) was less than 3 seconds per considered case (by
using a MATLAB R2008b code on a PC running 32-bit Windows Vista,

Table 1. Properties and performances (maximum directivity, HPBW,
and SLL) of the thinned arrays achieved by applying the proposed
procedure to four different reference grids.

Diameter Fill # of turned Maximum HPBW Directivity

(in terms of λ) Factor ON elements SLL [dB] [deg] [dBi]

25 42% 824 −23.5 3.05 33.7

33.33 41.5% 1461 −25.4 2.27 36.2

66.67 38% 5352 −30 1.15 41.6

100 40% 12580 −33.9 0.76 45.3
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equipped with a 2.53 GHz Processor and 4GB of RAM memory), which
is much lower than the computational time (9 minutes) required in [7].

A rather obvious idea amounts to extract the very best from the
different approaches, so that the present one could be used as a smart
initial point for [7] (thus avoiding the need for a multi-start strategy),
or, which is the same, [7] can be used to refine the present results.

For the sake of completeness, a sample result (for the case wherein
the diameter of the reference grid is equal to 100λ) is reported in Fig. 1
and Fig. 2, wherein the layout and corresponding directivity pattern
are respectively shown. It is interesting to note that, differently from
[7], a rather symmetrical layout is achieved.

Figure 1. Thinned array composed by 12580 elements located over a
circle of radius 50λ.
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Figure 2. U -cut through Main Beam Directivity achieved by the
thinned array shown in Fig. 1.

3.2. Synthesis of Isophoric DRA for Satellite
Communications

In order to test the outcomes of the proposed approach in an actual
design problem, we thought it worthwhile to try to synthesize a
radiation pattern fulfilling the specifications of the ESA (European
Space Agency) tender (see [1] and [17]).

Roughly speaking, these specifications require to design a
multibeam DRA for transmission from geostationary satellites having a
maximum radius of 60λ and achieving (in each of the 19 different spots
required for Europe covering) a gain of at least 43.8 dBi at the EOC
(i.e., Edge Of Coverage, which is positioned 0.325◦ from the maximum).
Separation amongst neighboring beams is ensured by either sub-band
or polarization diversity, according to a ‘four colours’ scheme, while
separation amongst iso-colour beams is achieved by means of suitable
constraints on the behaviour of sidelobes. In particular, a sufficient
condition in order to get such a separation is that of having sidelobes
20 dB lower than the EOC gain in all the directions out of the 0.795◦
cone from maximum and up to θ = 16◦ (which denotes the border
of the Earth cone as seen from geostationary satellites), and sidelobes
10 dB lower than the EOC gain in the remaining directions.
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In order to achieve these performances, a triangular equilateral
grid was selected for the reference array, wherein, because of the specific
application, a spacing (much) larger than a wavelength amongst
neighboring elements has been chosen. In particular, consistent with
the existing literature [1–3], a spacing of 3.8λ (centre-to-centre) has
been chosen in order to ensure that grating lobes will fall outside of the
Earth. Note such a circumstance allows to exploit radiating elements
which are per se directive, thus usefully contributing to the overall link
budget. In fact, according to the criterion used in [18], a pattern of
the kind cos33(θ) has been used as element factor.

Then, a convenient continuous reference source was synthesized
according to the approach in [16], and different synthesis steps were
executed. Table 2 provides a summary of the obtained results, which
suggests that the layout achieved by using a TF = 42.9% represents
an interesting overall design solution for the problem at hand. The
resulting thinned array is composed by 529 radiating elements and
shown in Fig. 3, while the corresponding cumulative distribution is
reported in Fig. 4 (red curve), and the directivity performances are
shown in Fig. 5 and Fig. 6.

The achieved layout fulfills the constraints on HPBW (0.576◦),
EOC directivity (44.5 dBi), and SLL outside the Earth disc (−10.5 dB
from EOC directivity). Moreover, it gives back a SLL = −18.4 dB form
EOC directivity inside the Earth disc (i.e., a SLL very close to the
−20 dB threshold, which would ensure satisfaction of the separation
constraints amongst neighboring iso-colour beams). On the other
hand, such a condition is just a sufficient one (it is not strictly
necessary), and a further useful circumstance comes into play. In fact,
both the widely diffused ‘four colours’ scheme and adopted equilateral
triangular cell enforce a hexagonal symmetry (of the spot locations and

Table 2. Directivity and SLL as functions of the degree of thinning
imposed in the numerical experiment.

Thinning # of turned Directivity Maximum SLL
Factor ON Elements [dBi] on Earth [dBi]
34.5% 607 49 −22.7
42.9% 529 48.3 −22.2
53.3% 433 47.5 −21.8
61.7% 355 46.7 −16.4
73.4% 247 45.1 −14.7
83.1% 157 43.2 −12.8
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Figure 3. Thinned array composed by 529 elements located over a
circle of radius 60λ.

Figure 4. Cumulative distributions: (green curve) reference ‘ideal’
function; (red curve) synthesized function (corresponding to the
thinned array shown in Fig. 3).
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Figure 5. Directivity pattern (in the spectral plane U -V ) provided by
the thinned array shown in Fig. 3. Due to the hexagonal symmetry of
the reference grid, the highest level of sidelobes (26.1 dBi) is achieved
only in six directions on the spectral plane U -V (as evidenced by the
red cuts), while a significantly (at least 3.2 dB) lower value is exhibited
in the directions located mid-way amongst them (as evidenced by the
yellow cuts). The white circle represents the Earth disc as seen from
geostationary satellites.

of the radiation pattern respectively). Then, a smart interlocking of
the antenna grid and of the iso-colour beams will allow to achieve the
required separation amongst the iso-colour beams.

In particular, it will suffice to locate the six directions presenting
the highest sidelobes of the radiation pattern in those directions mid-
way amongst the six nearest iso-colour beams (see Fig. 5, wherein the
Earth disc as seen from geostationary satellites is also evidenced, for
a better understanding). In this way, the six nearest iso-colour beams
will be located along the six directions corresponding to the lowest
sidelobes of the central spot pattern (see Fig. 5).

By doing so, the SLL amongst iso-colour beams becomes equal
to −21.6 dB (from EOC directivity), which fully satisfies the overall
requirements.
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Figure 6. V -cut through main beam of the directivity shown in Fig. 5.

4. CONCLUSIONS

An effective strategy for the optimal synthesis of pencil beams via
planar thinned arrays has been presented and assessed. Starting from
a reference aperture field and a filled array over a regular (periodic
or even aperiodic) grid, the proposed approach allows one to state
(without exploiting global optimization techniques) the elements to
withdraw in such a way to enforce constraints concerning both the
sidelobe level and the value of the directivity in a set of given directions.
Notably, the computational effectiveness of the procedure can allow a
fast trade off amongst alternative solutions using different grids or
Thinning Factors.

Several numerical experiments have shown the interest of the
strategy. In particular, comparisons have been discussed with respect
to a recently published synthesis procedure, and the capability of the
proposed technique to synthesize an interesting solution for multibeam
Direct Radiating Arrays for transmission from geostationary satellites
has also been shown.
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