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Abstract—This paper investigates the use of clonal selection
principles based on our immune system for optimization applications in
electromagnetics. This concept is based on our immune system’s ability
to respond to an antigen and produce a pool of anti-body secreting
cells. In addition to the common implementations of this algorithm
where the affinity maturation and cloning principles of clonal selection
principles are used, we utilize memory and the cross-over concepts that
are common to other bio-inspired methods. The performance of the
algorithm is investigated for well known mathematical test functions
and its potential is demonstrated in the context of the design of a radar
absorbing material and a planar phased array antenna with specific
radiation and null characteristics.

1. INTRODUCTION

Classical optimization techniques typically require an initial estimate
reasonably close to the final result in order to avoid stagnation at a local
optimum point. They also tend to be computationally intensive as they
require analytical calculations such as derivatives. Nature provides
heuristic optimization methods that rely on the techniques devised by
different species over thousands of years for survival and can be utilized
in engineering applications. Some of these optimizations are utilized
for survival by different species. These approaches tend to be agent
based as they can simultaneously sample the optimization space for a
certain number of randomly inspired possibilities, with each iteration
adding more intelligence to the heuristic search steps involved. Some
examples of nature inspired optimization techniques are the genetic
algorithm (GA) [1], particle swarm optimization (PSO) [2], ant colony
optimization (ACO) [3], and the artificial immune system (AIS) [4],
which is the main focus of this paper.

Corresponding author: O. Kilic (kilic@cua.edu).



2 Kilic and Nguyen

The GA is based on the evolution theory and survival of the fittest.
In each iteration a new generation; i.e., solution set, is produced that
is supposed to be better than the previous generation. In the case of
PSO, the bee behavior in their search for the best location in a field
is emulated. Bees make their decisions on where to go next as they
search for the best location based on the collective intelligence of the
swarm (global best point attained so far) and their personal experiences
(personal best position achieved so far). The ACO is inspired by the
ability of ants in finding the shortest path between their nest and food
despite being blind animals. This is achieved by laying a chemical
called pheromone on the path traveled. All these algorithms have
been applied to electromagnetics problems before, especially GA [5]
and PSO [6]. The application of ACO to electromagnetics problems
has been relatively scarce. Their applications to the synthesis of linear
arrays have been investigated by [7]. The performance of ACO and
PSO were compared for linear array antenna optimization in [8], and
a parallelized version has been implemented on FPGA platform in [9].

There are numerous papers investigating the performance of
AIS [10, 11]. However, like ACO, the application of AIS to
electromagnetics has also not been mainstream. In [12], a real coded
clonal selection algorithm is proposed eliminating the need to convert
the optimization space to the binary domain. The modified algorithm
is then applied to a minimizing the stray field in superconducting
magnetic energy devices. The clonal selection principles have also been
applied to linear array synthesis problems in [13, 14]. These papers
have implemented the AIS algorithm utilizing cloning and affinity
maturation principles of clonal selection principles.

This paper investigates the performance of a modified AIS
algorithm where the clonal selection principles are enhanced by
memory and the cross-over concepts, where best solutions from past
iterations are recalled (similar to PSO) and good solutions are crossed
(similar to GA) to create a new antibody. The algorithm is tested
with three test functions (e.g., Griewank, Rastrigin and Rosenbock)
to demonstrate the robustness of the algorithm. The modifications to
the algorithm are shown to enable a reliable convergence rate with
few antibodies. The potential of the modified AIS algorithm for
electromagnetics applications is demonstrated in the context of two
applications: multilayer radar absorbing material design, and planar
array antenna synthesis for reduced interference for multibeam satellite
communications. In addition, a detailed analysis on how the definition
of the cost function affects the convergence of the algorithm is provided.
This cost versus convergence rate analysis is critical in understanding
how heuristic search algorithms operate, and how their potential can
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be realized with a good understanding of the application at hand.
The rest of the paper is organized as follows: A detailed

description of the AIS algorithm is presented in Section 2. The
performance of the algorithm is demonstrated for three test functions
in 3. Electromagnetics applications of the algorithm is discussed in
Section 4. Finally, concluding remarks are given in Section 5.

2. AIS ALGORITHM AND CLONAL SELECTION
PRINCIPLES

AIS algorithm simulates human body’s defense system against
viruses [15]. Our adaptive immune system produces antibodies (Ab)
whose aim is to bind to any foreign molecule, antigen (Ag), that
can be recognized by immune system. In order to apply this to
engineering problems we adopt the clonal selection principles, which
involve (i) producing antibodies that recognize antigens, (ii) generating
new random genetic modifications to antibodies via mutation. The
best suitable antibody for the antigen is realized through cloning and
mutation of the produced antibodies. For engineering applications of
this biological process, Abs are used to represent a possible solution
to the optimization problem. The optimization space is presented in
binary form in order to emulate the gene behavior. Table 1 below
summarizes the corresponding terminology in engineering applications
to the biological terms involved.

Table 1. AIS terminology in engineering applications

AIS Terminology Engineering Terminology

Antibody Possible solution

Affinity (high) Cost function (low)

Genes Binary string representing a complete solution

Mutation Random flipping of bits

Cloning Duplication of binary strings

Crossover Random mixing of parameters from a set of solutions

Since the biological process is based on gene representations, the
optimization problem needs to be represented as a binary string for
the AIS algorithm. The total length of the binary string for each
antibody is the product of the number of parameters to be optimized
and the number of bits, Nb used to represent them. Like in other
heuristic search algorithms, the AIS algorithm starts with a random
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sampling of the optimization space by assigning random values to all
Abs. The available number of Abs, Na, is an input parameter of the
AIS algorithm. Next, the cost value, i.e., how close these values are
to the desired solution, is computed for all Abs. The definition for
the cost function is critical in the convergence rate of heuristic search
methods, and will be discussed in more detail in Section 4.2. If one
of the Abs satisfies the convergence criteria, i.e., the cost is within
acceptable limits as set by the user, the algorithm terminates. If not,
the iterative process continues.

2.1. Conventional AIS Algorithm

After the cost value is identified for each antibody, and if a desirable
solution has not been realized, the process for the generation of a
new population begins. This time instead of being purely random,
intelligence is introduced to the search based on the information
gathered so far by the Abs. First, the population is sorted in ascending
order with respect to the cost, moving more desirable solutions to
the top. Each Ab, Abi, is cloned at a rate, Nci, that is inversely
proportional to its cost value. The duplication is applied to the
first n% of the antibodies, where n is a user defined parameter
of the algorithm. In the conventional clonal selection algorithm,
the original Ab and its clones form a sub-population. Cloning is
followed by the mutation process, where each clone in a sub-population
(not the original) undergoes a mutation process. The best of each
subpopulation replaces the original Ab for the next generation, and
the Abs that were not cloned are replaced by randomly selected new
Abs. This results in NC + Na calls to the function calculation per
iteration, where NC =

∑n×Na
i=1 Nci is the total number of clones and i

is an index ranging from 1 to n×Na, with i = 1 corresponding to the
best Ab.

2.2. Modified AIS Algorithm

The first step of the modified AIS algorithm is identical to the
traditional approach where a random set of Abs are created within
the optimization space. This step is demonstrated on the upper left
corner in Fig. 1 for a two dimensional sinc function. For this particular
example, where we search for the peak of the sinc function, the desired
value is zero.

As in the traditional implementation of the AIS algorithm, the Abs
are sorted and the top n% are cloned at a rate of Nci = round(βc×Na

i ),
where βc is a user defined sensitivity parameter that adjusts the cloning
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rate. At this stage, the number of Abs is identical to the conventional
implementation; NC =

∑n×Na
i=1 Nci. The modified version does not

use sub-populations, but applies mutation to the entire cloned set
by randomly flipping some of the bits in each clone. The number
of bits to be flipped is directly proportional to the cost value of each
antibody, and is calculated by round( i×Nb×βm

Na
), where βm is a user

defined sensitivity parameter that adjusts the mutation rate. The
concept of cloning and mutation is demonstrated in Fig. 2. At the
last stage of this process, the cloned and mutated Abs are sorted one
more time, resulting in a solution set as depicted at the far right side
in Fig. 2.

c1

c2

c2

c1

Randomly 

distribute all 

antibodies

Calculate 

cost, Ci

Clone & 

mutate
Cross over

Replace

population

Check for 

convergence

Yes

No

Sort

Cmin ... Cmax

Stop

Cmax

C = 0

Sort

Cmin ... Cmax

AIS Input Parameters:

Na:   # antibodies

Nb:   # bits/variable

Nmax: max # iterations

Sensitivity Parameters:

c m c x bestβ β ρ
' ''' ' ρ ρ

Figure 1. AIS block diagram.

Na antibodies

(sorted)

CLONE

top n%

SORT

Select top 

NCX = cNC

for 

crossover

Nc1

NC

MUTATE

ρ

Figure 2. AIS antibody production.



6 Kilic and Nguyen

N  bits/parameterb

Ab1

Ab2

Ab1

Ab2

AbNxT
o

p
 r

  
N

  
A

b
s

x
C

Par. 1 Par. 2 Par. N

Par. 1 Par. 2 Par. N

Cloned and Mutated

     Antibody Set

       (Current)

    Antibody Set

         N  Abs

(After Cross Over)
x

Figure 3. AIS crossover process.

Another modification is the use of cross-over, which is a process
where a new set of antibodies is produced from the current set by
randomly selecting the bit strings. This is carried out on a parameter
basis; i.e., bit strings per parameter are selected randomly from the
current set to create the new set of Abs as depicted in Fig. 2. The
cross-over is limited to the top ρc×NC Abs, where ρc is a user defined
sensitivity parameter. The crossover process is carried out from this
set to create a new set of NX antibodies. The number of the new set of
antibodies, NX , is determined by the user via the parameter ρx such
that NX = ρx ×NC . This process is depicted in Fig. 3. At this stage
the new Ab set (NX) created as a result of the crossover is combined
with the original cloned and mutated set of Abs (NC) resulting in an
Ab population of NX + NC .

As a final step, the best Abs from the original set of antibodies
(Na) is added to this set, and the complete set is sorted based on
the cost value. We have opted to use only the best solution from the
original set in our implementation, resulting in a final set of NX+NC+1
Abs. The next iteration begins with the top ρbest × Na of these
Abs, where ρbest is another user defined sensitivity parameter. To
complete the set to Na antibodies as in the first step, the remaining
Na−(ρbest×Na) are created randomly to allow the algorithm to sample
the optimization space randomly at each iteration.

3. AIS PERFORMANCE — MATHEMATICAL TEST
FUNCTIONS

The introduction of cross-over and memory, as well as applying
mutation to the entire cloned set and choosing the best from this
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Figure 4. Rate of change in the number of function calls as a function
of number of Abs and crossover size.

larger set, enables a more aggressive search of the optimization space
per iteration. This is done at the expense of increased number of
function calls to compute the cost. While the original AIS code would
make Na + NC calls to the cost function, the modification due to the
crossover increases the calls per iteration to Na + NC + NX . It is
at the discretion of the user to limit the crossover population. For a
given number of Abs, the number of calls per iteration depend on the
cloning rate (i.e., βc) and the size of the crossover population, NX ,
which depends on the parameters n and ρx. Fig. 4 shows how the
number of function calls per iteration changes as a function of Na and
ρx, where βc = 0.75, and n = 100%. The number of calls that would
be made by the conventional approach is shown in black.

We provide a sensitivity analysis of the AIS algorithm to the user
defined parameters, namely, Na, βc, βm, ρx, ρc and ρbest. Three
functions (Griewank, Rastrigin and Rosenbrock) are considered for
testing the AIS algorithm. The common features of all these functions
is that they are multi-dimensional and their known minimum value,
zero occurs at x = 0. We will be searching for the zero value with the
AIS algorithm. Each of these functions has a specific characteristics
that makes it suitable for testing the robustness of an optimization
algorithm. For instance, the Rosenbrock function has a very wide range
of values corresponding to a small range of input values; i.e., 1 ≤ x ≤ 10
corresponds to 0 ≤ f(x) ≤ 105. The Rastrigin function is highly
oscillatory and varies between 0 ≤ f(x) ≤ 100 when −5 ≤ x ≤ 5.
In the case of Griewank function, we observe an oscillatory nature
as well, however the range of the function values remain small; i.e.,
0 ≤ f(x) ≤ 2 when −3 ≤ x ≤ 30. The functions are described as
follows:

Rosenbrock function
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f(x) =
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(
100

(
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i
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)
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(
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)

(2)

Griewank function

f(x) =
1

4000

N∑

i=1

x2
i −

N∏

i=1

cos
(

xi√
i

)
+ 1 (3)

These functions are plotted in Fig. 5 for N = 2 for ease of
visualization. We will use N = 5 to test the algorithm in each
case. In search of their minimum value, we will be using the following
convergence criteria: fRosenbrock(~x) ≤ 10−4, fRastrigin(~x) ≤ √

0.02, and
fGriewank(~x) ≤ 10−3.

A summary of the performance of the AIS algorithm for these
three functions is presented in Table 2 for the special case when
Na = 15, n = 100%, βc = 0.5, βm = 0.5, ρc = 0.75, ρx = 0.4,
and ρbest = 0.9. The algorithm was run 100 times for each function
to provide the statistics. It should be noted that the conventional AIS
performs consistently worse than the modified version when applied
to these functions. For instance, the conventional method failed to
converge in any of the 500 simulations for the Griewank function when
run with identical parameters.

Table 2. AIS performance for the test functions

Rosenbrock Rastrigin Griewank

% Conv 99 100 89

# Max Iter 500 205 500

# Min Iter 18 6 9

# Avg Iter 98 23 102

Best Cost 0 2.3 10−5 1.0 10−7

Worst Cost 0.88 0.14 0.09

Avg. # Func. Calls 5481 1288 5700
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(a) Rosenbrock (b) Rastigrin
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Figure 5. Test functions, plotted for N = 2.
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Figure 6. Sensitivity analysis for rosenbrock function.

3.1. Sensitivity Analysis for the Number of Abs and
Crossover Size

We demonstrate the effect of the number of Abs and the cross-over
population size on the convergence rate of the algorithm in this section.
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Fig. 6 shows this analysis as a function of Na while ρx is varied between
[0.4–1.0], and the other parameters are set as βc = 0.5, βm = 0.5,
n = 100%, ρc = 0.75 and ρbest = 0.9. We only demonstrate the
performance of Rosenbrock as the other functions follow a similar
trend; i.e., as Na increases the convergence rate increases and it takes
the algorithm fewer iterations to converge. All test cases seem to
respond well to ρx values lower than 1, meaning keeping the crossover
of the few best Abs is sufficient. The main difference among the three
cases is that on average Rastrigin function required the least number
of function calls to converge, while Griewank required the most.

4. AIS PERFORMANCE — ELECTROMAGNETICS
APPLICATIONS

The AIS algorithm is applied to two different electromagnetics
problems: (i) the design of a radar absorbing material (RAM), (ii) null
steering of a planar array for multiple beam satellite communications
applications. In the RAM design the antibodies search for the
right material type and thickness, whereas in the planar array case
they represent the amplitudes of a phased array antenna. Since
electromagnetics applications can be numerically intensive, we would
like to show that the efficiency we have observed with the test functions
prove AIS to be a viable tool in this field.

4.1. RAM Design

The RAM design consists of multiple layers of materials with different
constitutive parameters and arbitrary thicknesses as depicted in Fig. 7.
The reflection coefficient from a multiple layer of slabs can be computed
recursively as follows: [16, 17].

Γi =
ρi + Γi−1e

−2jδi−1

1 + ρiΓi−1e−2jδi−1
for i = 2, 3, . . . N + 1 (4)

where i is an index over the interfaces between slabs, and slab i lies
between interfaces i and i+1. The total reflection from ith interface is
denoted by Γi and ρi is the corresponding Fresnel reflection coefficient.
The phase delay along the normal direction in each slab is denoted by
δi = kzidi.

For the design criteria of the RAM, normal incidence is assumed
and the reflection coefficient is limited to a maximum value of −30 dB
over the frequency range of [0.1–1.0] GHz. The RAM structure is
limited up to five layers. The constitutive parameters in each slab
is selected among the 16 different materials as provided in [16]. The
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unknowns of the optimization problem are the material type and the
thickness of each slab. Since we are limited to 16 different material
types, four bits were allocated to the selection of material, and 10 bits
for the slab thickness, resulting in 14 bits to define each slab. Since
there are five slabs, 70 bits represent a possible solution (i.e., Ab). The
total number of Abs in the simulation was chosen as Na = 40, and the
maximum iteration number was set at 200. The sensitivity parameters
were set at ρx = ρbest = 1.0, ρc = 0.75 and βc = βm = 0.5. The
optimized reflection coefficient as a function of frequency is plotted in
Fig. 8. It is observed that the design criteria of −30 dB is achieved
across the band. The material thicknesses were 1.9863, 1.9883, 1.4878,
0.8485, and 0.7742 mm and material types (following the list in [16])
were #4, #4, #7, #16, #11, for i = 1, 2, . . . , 5, respectively.
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4.2. Cost Value Calculation and Its Effects on Performance

The performance of heuristic search algorithms rely heavily upon how
the cost function is determined. The convergence rate is not only
affected by the process of generating intelligent solutions based on the
sampling of the optimization space, but how the calculated values at
each position relate to a “cost” value. The cost is the key in the
creation of the next generation of the solution set, yet its calculation
is typically arbitrary in random search methods. It is up to the user
to devise an effective function for the application at hand.

We investigated three different cost functions for the RAM design,
as depicted in Fig. 9. The first case has an increasing slope as the
deviation from the desired solution increases. The second case provides
a high slope in the vicinity of the desired solution. Finally, the third
case has a linear slope as we deviate from the desired value. We observe
that for the given application and sensitivity parameters used, Case 2
performs better in terms of the convergence rate. For this particular
case, the algorithm does a good job bringing all Abs close to the desired
range rapidly. The steeper slope of Case 2 in the vicinity of the desired
solution enables a faster convergence compared to the other cases. It
should be noted that the convergence criteria was strict and no values
higher than −30 dB were deemed acceptable no matter how close.

The modified AIS algorithm we present in this paper performs
better in the RAM design as well. The conventional approach
converged 77% of the time for Case 2 when run with identical
parameters. The average number of iterations for the 100 simulations
was 222, with the best value of reflection coefficient achieved being
−33.38. In order to achieve the identical number of function calls per
iteration to the modified approach, Na was set at a higher value (51)
for the conventional case.

Table 3. Cost function effects on AIS performance — RAM design

100 Simulations Case 1 Case 2 Case 3

Convergence Rate (%) 74 98 88

Best # iter 9 8 7

Worst # iter 500 500 500

Average # iter 228 117 145

Min. total thickness(mm) 6.07 5.43 5.73

Max. total thickness (mm) 9.43 8.75 8.90

Best reflection (dB) −34.01 −34.39 −34.18
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4.3. Planar Array Design for Multibeam Satellite
Communications

Satellite communication systems have limited bandwidth for the
large areas they typically serve. Therefore, they reuse the available
bandwidth in regions that are separated sufficiently apart from each
other. This is known as frequency reuse and the beams that utilize
the same bandwidth are referred to as co-channel beams [18]. Fig. 10
shows the multiple beams generated by a satellite antenna on earth.
The right side of the figure demonstrates an example of frequency reuse
factor of 7; i.e., the same channel is repeated after every 7 beams. Co-
channel beams, denoted by identical colors, interfere with each other
despite their separation due to their shear number in the large coverage
area. To demonstrate the co-channel interference concept, the beam
coverage on earth (white circles) is overlaid on the contour plot of a
planar array antenna that creates the center beam on earth at the left
bottom corner of the figure.

In an hexagonal geometry as shown in Fig. 10, co-channel beams
reside on circles, also known as tiers. These tiers are identified by
the large black circles in the figure. The location of the co-channel
beams on each tier is identified by the black dots at their centers. One
can observe six co-channel beams in each tier for the first three tiers.
The strength of radiation from the center beam on to these co-channel
beams can be seen from the antenna radiation pattern shown in the
background. The overall interference can be reduced by synthesizing
the array antenna so that radiation into these co-channel beams is
reduced, [19]. Our objective in this example is to reduce the side lobe
levels (≤ −30 dB) within the co-channel beams in the first tier by an
amplitude control. The phase distribution is assumed uniform.

We consider a 26 × 26 planar array with elements separated at
half wavelength on a square grid. The satellite is located at 9400 km
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Tiers of Interferers

Beam coverage on earth

Figure 10. Co-channel beam interference in multibeam satellite
communications.

Figure 11. Optimized coverage for 26× 26 element array.

altitude and operates at 1.9 GHz. The centers of the six co-channel
beams at the first tier are located at 5.02 degrees off the center beam.
We use the AIS algorithm to reduce the radiation from the center beam
into the center of the first tier co-channel beams. The parameters of
the algorithm are set as follows: Na = 80, n = 100%, βc = 1.0;
βm = 0.5, ρc = .75, ρx = .75, and ρbest = 0.85. Four bits are used to
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represent amplitude values ranging between [0–1.0] for each element.
This results in 2704 bits per Ab. The optimized pattern on earth is
plotted in Fig. 11 demonstrating that the radiation from the center
beam into center of the six co-channel beams have been reduced to
−30 dB or below. The algorithm on average takes 80 iterations to
converge.

5. CONCLUSION

The use of clonal selection principles of AIS algorithm was investigated
for electromagnetics applications in the context of a multilayered
RAM design, and null positioning of a planar array antenna. The
conventional AIS algorithm has been modified to include effects such
as cross-over and memory as inspired by other nature based heuristic
search algorithms such as the genetic algorithm and particle swarm
optimization. As a result more sensitivity parameters than has been
reported in earlier work has been introduced. The robustness of the
algorithm was tested using the Rosenbrock, Rastrigin and Griewank
functions. A sensitivity analysis was carried out for the different
parameters of the algorithm. It has been demonstrated that the
convergence rate of the algorithm is not only dependent on these
sensitivity parameters, but also the definition of the definition of the
cost function. The algorithm was successfully used in the design of
a multilayered RAM over a broad range of frequencies. As a second
application, a satellite array antenna pattern was optimized to reduce
interference in co-channel beams of a multiple beam coverage on earth.
The algorithm is very robust and presents itself as a suitable tool for
challenging electromagnetics problems.

REFERENCES

1. Holland, J. H., “Genetic algorithms,” Scientific American, 66–72,
Jul. 1992.

2. Kennedy, J. and R. C. Eberhart, “Particle swarm optimization,”
Proc. IEEE Conf. Neural Networks IV, 1995.

3. Dorigo, M., V. Maniezzo, and A. Colorni, “The ant system:
Optimization by a colony of cooperating agents,” IEEE Trans.
Systems, Man, and Cybernetics, Part B, Vol. 26, No. 1, 1–13,
1996.

4. Mori, K., M. Tsukiyama, and T. Fukuda, “Immune algorithm
with searching diversity and its application to resource allocation
problem,” TIEE Japan, Vol. 113-C, No. 10, 872–878, 1993.



16 Kilic and Nguyen

5. Haupt, R., “An introduction to genetic algorithms for electro-
magnetics,” IEEE Antennas and Propagation Magazine, Vol. 37,
No. 2, 7–15, Apr. 1995.

6. Robinson, J. and Y. Rahmat-Samii, “Particle swarm optimization
in electromagnetics,” IEEE Trans. Antennas and Prop., Vol. 52,
No. 2, 397–407, 2004.

7. Karaboga, N., K. Guney, and A. Akdagli, “Null steering of
linear antenna arrays with use of modified touring ant colony
optimization algorithm,” Int. Journal of RF and Microwave
Computer-Aided Engineering, Vol. 12, No. 4, 375–383, 2002.

8. Kilic, O., “Comparison of nature based optimization methods
for multi-beam satellite antennas,” Proc. Applied Computational
Electromagnetics Conf., 2008.

9. Kilic, O., “FPGA accelerated phased array design using the ant
colony optimization,” Applied Comp. Electromag. Soc. Journal, 7,
Feb. 2010.

10. De Castro, L. N. and F. J. Von Zuben, “Learning and optimization
using the clonal selection principle,” IEEE Trans. Evolutionary
Computation, Vol. 6, 239–251, 2002.

11. Chun, J., H. Jung, and S. Hahn, “A study on comparison of
optimization performances between immune algorithm and other
heuristic algorithms,” IEEE Trans. on Magnetics, Vol. 34, No. 5,
2972–2975, 1998.

12. Campelo, F., F. G. Guimaraes, H. Igarashi, and J. A. Ramirez, “A
clonal selection algorithm for optimization in electromagnetics,”
IEEE Trans. Magnetics, Vol. 41, 1736–1739, 2005.

13. Akdagli, A., K. Guney, and B. Babayigit, “Clonal selection
algorithm for design of reconfigurable antenna array with
discrete phase shifters,” Journal of Electromagnetic Waves and
Applications, Vol. 21, No. 2, 215–227, 2007.

14. Babayigit, B., A. Akdagli, and K. Guney, “A clonal selection
algorithm for null synthesizing of antenna arrays by amplitude
control,” Journal of Electromagnetic Waves and Applications,
Vol. 20, No. 8, 1007–1020, 2006.

15. Ada, G. L. and G. Nossal, “The clonal selection theory,” Scientific
American, Vol. 257, 50–57, 1987.

16. Michielssen, E., J.-M. Sajer, S. Ranjithan, and R. Mittra,
“Design of lightweight, broad-band microwave absorbers using
genetic algorithms,” IEEE Trans. on Microwave Theory and
Tech., Vol. 41, No. 6/7, 1024–1031, 1993.

17. Chambers, B. and A. Tennant, “Optimised design of Jaumann



Progress In Electromagnetics Research B, Vol. 20, 2010 17

radar absorbing materials using a genetic algorithm,” IEE
Proceedings Radar, Sonar and Navigation, Vol. 143, No 1, 23–30,
1996.

18. Macdonald, V. H., “The cellular concept,” The Bell System
Technical Journal, Vol. 58, No. 1, 15–41, Jan. 1979.

19. Kilic, O. and A. I. Zaghloul, “Antenna aperture size reduction
using sub-beam concept in multiple-spot-beam cellular satellite
systems,” Radio Science, Vol. 44, RS3001, May 2009.


