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Abstract—In this paper, we present a tri-band filter design using
tri-mode T-shaped branches connected by λ/4 transmission lines.
By analyzing the input admittance of a T-shape branch with
commensurate electrical lengths, three resonant modes with two
transmission zeros between are found and design formulas are derived.
The filter can be regarded as a combination of three bandpass filters
with only one set of coupling elements. To realize different bandwidths
for each, the admittance slope of each resonating mode is set as
required. A genetic algorithm is used in solving related equations to
obtain the impedance of each line in a T-shape branch, followed by a
final optimization. A three-pole tri-band filter having passbands of 0.6–
0.9, 1.35–1.65 and 2.1–2.4 GHz, is designed, fabricated and measured
with low passband insertion losses of < 0.7 dB and high rejection of >
60 dB between the passband regions. As a generalization, necessary to
achieve a tri-band filter with arbitrary passbands, a non-commensurate
version of the T-shape branch is introduced. An example filter design
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is given with the passbands asymmetrically located at 0.7–1, 1.65–
1.95, and 2.2–2.3 GHz. This technique is able to achieve good design
flexibility with respect to bandwidth ratios. This is validated by
studying the maximum impedance variations of a T-shape branch when
the bandwidth ratios vary.

1. INTRODUCTION

Wireless communication has experienced rapid development in the
last two decades, with several communication standards emerging,
such as global system for mobile communication (GSM), personal
communication system (PCS), and wideband code division multiple
access (WCDMA), etc. These require modern RF front ends to support
multi-standard operations. Also, RF coverage systems always need
to combine several communication channels while rejecting unwanted
signals. In [1], Lin presents a typical tri-band transceiver for general
packet radio service (GPRS) applications. To satisfy the need of
multi-band systems dual-band and tri-band filter have attracted much
interest, and several techniques have been proposed. A coupling-matrix
design procedure for tri-band filters in which cross-coupling that can
achieve transmission zeros is used to split a wide passband into two
or three separate passbands, is presented in [2]. However, in this
method the passbands can not be widely spaced due to the bandwidth
limitation of traditional coupled resonator filters.

A tri-band filter based on dual behavior resonators is reported [3]
in which several bandstop structures are placed in parallel to construct
the passbands. The reported performance is relatively poor, having
higher insertion losses compared with the filters introduced here, as
well as spurious responses.

In [4], a mixed bandpass-bandstop cicuit is used for dual-band
filter realization, but is perhaps not suitable for realizing tri-band
filters. In [5], a substrate integrated waveguide tri-band filter is
described using the so-called “inverter coupled resonator sections”.
In [6, 7], split ring dual-mode and tri-mode resonators are used to
design dual-band and tri-band filters. DGS resonating mode is used to
introduce a second passband in [8, 9]. Lumped tri-band and quad-band
filter networks are realized with coplanar elements in [10]. Stub loaded
tri-mode resonators are used for tri-band filter design in [11].

Multi-mode stepped impedance resonators (SIRs) have now
become popular in dual-band and tri-band filter design [12–20]. In [13–
16], dual-mode SIRs and single mode resonators are combined to
construct tri-band filters, or even quad-band filters, while, in [17–
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20], tri-mode, tri-section SIRs are used for tri-band filter realization.
However the internal coupling and external coupling schematics are
relatively complex, and difficult to design with coupling coefficients
satisfying all the passband requirements. (Often one needs two or
more sets of coupling elements for filter implementation). SIR tri-band
filters always have narrow passbands unless very thin lines and narrow
coupling spaces are used, and these are difficult to manufacture.

A T-shaped composite resonator was proposed in [21] for realizing
dual-band filters. On the other hand, in this paper, we introduce a
“Tri-mode T-shape branch” consisting of a connecting line terminating
in short- and open-circuited stubs connected in parallel. A tri-
band filter can be designed by replacing the short-circuited stubs of
traditional stub filters with this branch circuit. It has the advantage
of enabling wide bandwidths to be realized. Also because the three
passbands are transformed from the same distributed prototype low-
pass filter, it is not necessary to design two or three sets of coupling
elements to satisfy three sets of coupling coefficients simultaneously,
but only to design the admittance slopes of all resonating modes to
achieve the required bandwidths. Although the connecting lines can
not realize wideband J inverters, we obtain good performance by
optimizing the parameters of each T-shape branch. This tri-mode
structure also introduces two transmission zeros between the three
passbands to achieve high isolation.

This paper is organized as follows. In Section 2, the resonating
modes and transmission zeros of the commensurate T-shape branch
are analyzed and design formulas are derived, with a design procedure
for realizing tri-band filters. Section 3 gives an example design, with a
comparison between the simulation and measured results. In Section 4,
non-commensurate T-shape branches are used to obtain arbitrary
center frequencies and bandwidths, and a genetic algorithm is utilized
to solve this relatively complex problem. Again, a design example
together with simulation and measured results is given. Conclusions
are presented in Section 5.

2. THEORY AND DESIGN OF THE TRI-BAND FILTER

2.1. The Commensurate T-shape Branch and Its Resonating
Modes

Figure 1 gives the topology of the required “T-shape branch”. It
consists of an input transmission line with characteristic impedance
Z1 followed by short and an open-circuited stubs having characteristic
impedances of Zs and Zo respectively. For simplicity, initially the case
where all lines are commensurate is treated, and we set the electrical
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lengths to be θ. We obtain:

Yin1 =
j tan(θ)

Zo
− j cot(θ)

ZS
(1)

and

Zin =
1

Yin
=Z1 · 1/Yin1+jZ1tan(θ)

Z1 + j tan(θ)/Yin1
=Z1 ·

1 + Z1
Zs
− Z1

Zo
tan2 (θ)

j
((

Z1
Zo

+1
)
tan(θ)− Z1

Zs
cot(θ)

)

(2)
Considering the denominator of Equation (2), we find two poles

for the input impedance, corresponding to the resonant frequencies, by
setting: (

Z1

Zo
+ 1

)
tan (θ)− Z1

Zs
cot(θ) = 0 (3)

leading to:

θr1 = arctan

(√
Z1Zo

Zs(Z1 + Zo)

)
(4a)

θr2 = π − arctan

(√
Z1Zo

Zs(Z1 + Zo)

)
(4b)

The two corresponding resonant frequencies are:

frn =
cθrn

2πL
√

εeff
n = 1, 2 (5)

Figure 1. Circuit topology
of the tri-mode T-shape branch
(commensurate case).

Figure 2. Plot of input reactance
of the commensurate T-shape
branch when the electrical length
θ (radian) varies.
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here L is the physical length of the commensurate lines, εeff is the
effective dielectric constant of the transmission lines, and c is the
velocity of light. For simplicity, we assume that the value of εeff does
not vary for different impedance levels.

The third resonance occurs at θ = π/2, from which Equation (2)
can be written as:

Zin =
jZ2

1
tan (θ)

Z1 + Zo
(6)

and the resonant frequency is:

fr3 =
c

4L
√

εeff
(7)

Also two transmission zeros will occur when we set the numerator
of (2) to zero:

1 +
Z1

Zs
− Z1

Zo
tan2 (θ) = 0 (8)

We get

θz1 = arctan




√
(Z1 + Zs)Zo

ZsZ1


 (9a)

θz2 = π − arctan




√
(Z1 + Zs)Zo

ZsZ1


 (9b)

The two transmission zeros are located at:

fzn =
cθzn

2πL
√

εeff
n = 1, 2 (10)

By comparing the values, we find:

θr1 < θz1 < π/2 <θz2 < θr2 (11)

Thus we know:

fr1 < fz1 < fr3 < fz2 < fr2 (12)

From (12), we know that the two transmission zeros are located
between the three resonating frequencies, and high isolation between
passbands will be achieved.

The distribution of the these frequencies is shown in the plot of
Fig. 2, showing Zin as a function of θ varying from 0 to π.

These resonant frequencies will be used to produce passbands. At
fr1 and fr2, the T-shape branch can be made equivalent to a shunt
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parallel resonator with an admittance slope related to the passband
bandwidth. The admittance slope is given by

bn =
dBin

dω
=

dIm(Yin(ω))
dω

|f=frn =
dIm(Yin(ω))

d tan(θ)
d tan(θ)

dω
|f=frn

=
d(1/Zin(tan(θ))

d tan(θ)
sec2(θ)

π

2ω

∣∣
f=frn

=
sec2(θ)
4Z1fr3

(k1k3 − 3k2k4) + k1k4 tan2(θ) + k2k3 cot2(θ)
(k3 − k4 tan2(θ))2

|f=frn

=
L
√

εeff (1 + k5)
2πZ1c

(k1k3 − 3k2k4) + k1k4k5 + k2k3/k5

(k3 − k4k5)2
n=1, 2 (13)

where θ can be expressed as:

θ =
ωL
√

εeff

c
=

π

2
f

fr3
(14)

and:
k1 = 1 + Z1/Zo (15a)
k2 = Z1/Zs (15b)
k3 = 1 + Z1/Zs (15c)
k4 = Z1/Zo (15d)

k5 =
Z1Zo

Zs(Z1 + Zo)
(15e)

We should note that b1 is equal to b2.
At fr3, the T-shape branch is equivalent to a short-circuited stub

with the characteristic impedance
Zc = Z2

1/(Z1 + Z0) (16)

2.2. Tri-band Filter Design

Traditional bandpass filters can be derived from distributed lowpass
prototype filters such as that shown in Fig. 3(a) by using lowpass to
bandpass transformations giving the filter of Fig. 3(b) or by using
Richard’s transformation to give the stub filter of Fig. 3(c). The
bandwidths are determined by the admittance slope of each resonator.

For convenience we can set all the J inverters of a distributed
prototype lowpass filter to be at the same impedance level, so that

J01 = JN−1,N = Y0 (17)

J12 = J23 = . . . = JN−1,N =
{

Y0 N is even
Y0
√

g0gn+1 N is odd (18)

Ca1 = CaN = Y0g0g1 (19)
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(a)

(c)

(b)

Figure 3. Lowpass to bandpass transformation. (a) Distributed
lowpass prototype filter; (b) Coupled resonator bandpass filter achieved
by a lowpass to bandpass transformation; (c) Shunt stub filter achieved
by Richard’s transformation.

Ca,k+1 =
J2

k,k+1

Ca,kgkgk+1
k = 1, 2, . . . , N − 2 (20)

Considering a bandpass filter with a center frequency of f0 and
a bandwidth of ∆f , if it is in the form of Fig. 3(b) we will have an
admittance slope for the kth resonator of

bk =
2Cak

∆ω
=

Cak

π∆f
(21)

and the resonator elements are given by

Crk =
bk

2
and Lrk =

1
Crkω

2
0

(22)

If the bandpass filter is a shunt stub filter as in Fig. 3(c) we may
use formulas listed on Page 153 of [21] to compute the characteristic
impedance of each short-circuited stub, Zck. In order to have all the J
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inverters at the same impedance level, we need to set the dimensional
parameter h to be

h =
g2

g1

(
J1,2

Y0g0

)2

(23)

The design of the tri-band filter may be regarded as the design
of three bandpass filters simultaneously. We can term the passbands
centered at frequencies fr1, fr2 and fr3 as passbands I, II, and III.
The three bandpass filters are derived from one distributive lowpass
prototype filter, and thus have the same number of poles and use
common J inverters.

The tri-mode T-shape branches may be equalized to shunt-
resonators with required admittance slopes at fr1, fr2, and λ/4 short
circuited stub with required characteristic impedance at fr3, hence
realizing the tri-band filter.

If commensurate T-shape branches are used, passbands I and II
will have the same bandwith because of equal admittance slopes at the
resonating frequencies fr1 and fr2. Also the frequency spacing between
fr1 and fr3 will equal to that between fr2 and fr3. Fig. 4 is the circuit
of a 3-pole tri-band filter using three T-shape branches.

To design the parameters of the kth T-shape branch, we need to
solve the following equations:

L
√

εeff (1 + k5)
2πZ1c

(k1k3 − 3k2k4) + k1k4k5 + k2k3/k5

(k3 − k4k5)2
=

Cak

π∆f1,2
(24)

Z2
1

Z1 + Zo
= Zck (25)

θr1 = π − θr2 =
πfr1

2fr3
= arctan

(√
Z1Zo

Zs(Z1 + Zo)

)
(26)

Figure 4. Circuit topology of a three-pole tri-band filter with three
T-shape branches.
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(24) gives the relationship between the admittance slopes of
resonators and the bandwidth for passbands I and II. (25) relates the
equivalent characteristic impedances of shunt stubs for passband III,
and (26) gives the ratios between the center frequencies.

Hence this is a multi-object problem, and because of its
complexity, a genetic algorithm routine [23] was used to conduct a
global search of the circuit parameters for each T-shape branch.

3. DESIGN EXAMPLE

To explain the design procedure a 3-pole tri-band filter design example
is presented here, commencing from a 3rd order Chebyshev prototype
filter with an in-band ripple of 0.01 dB. The three passbands are
600–900MHz, 1350–1650 MHz and 2100–2400 MHz, with the center
frequencies at 750MHz, 1500MHz and 2250 MHz.

The lumped lowpass prototype filter has element values:

g0 = 1, g1 = g3 = 0.6291, g2 = 0.9702, g4 = 1.

If we set the input and output impedance to be 50 Ω, by
using (17)–(20) we obtain the element values of the distributive lowpass
filter as:

J01 = J12 = J23 = J34 = 1/Z0 = 0.02 s;
Ca1 = Ca3 = 0.0126F, Ca2 = 0.0194F.

Using (21), we derive the admittance slopes of the three branches
at fr1, fr2 as

b1 = b3 = 0.01337 (s/GHz), b2 = 0.02054 (s/GHz).

For the 3rd passband, using the formula in [22], the characteristic
impedances of the shunt stubs are:

Zc1 = Zc3 = 16.06Ω and Zc2 = 10.8Ω

Table 1. Circuit parameters of a three-pole tri-band filter using
commensurate T-shape branches.

Pole order, k 1, 3 2
bk of Passband I, II (s/GHz) 0.01337 0.02054

Zck of passband III (Ω) 16.06 10.8
Z1 (Ω) 41.1 27.1
Zo (Ω) 65.3 40.9
Zs (Ω) 30.9 20.1
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Figure 5. Circuit simulation
result of the initial design for
a three-pole tri-band filter with
three T-shape branches.

Figure 6. Two-port circuit to
determine the transmission poles
of each band by applying weak
capacitive couplings at the two
ports.

The circuit parameters obtained by using the genetic algorithm
routine are given in Table 1.

Quarter wavelength transmission lines at fr3, the center frequency
of the three passbands, are used to implement the J inverters that
connect the three T-shape branches.

A circuit simulation using Ansoft Serenade 8.7 [24] is conducted
for validating the initial design, with the response shown in Fig. 5.

Checking the simulation result of the initial design carefully, we
find that passband I and passband III each have poor return loss
performance at the band edges close to passband II, with some shift
of the required center frequencies. This is because the connecting lines
are only narrow-band J inverters at passband III and are not equal to
quarter-wave length at passbands I and II.

Figure 6 shows a sub-network, which contains two T-shape
branches connected by a transmission line. Using weak capacitive
couplings at the external ports and conducting a two-port simulation,
two transmission poles from S21 plot are obtained, thus determining
the coupling bandwidth. We may observe the variation of S21 when
the length of the connecting line changes.

As seen in Fig. 7, a connecting line with a length unequal
to a quarter-wave length may still act as a coupling element, but
frequency shift for the two transmission poles are incurred compared
with the case that uses quarter-wave length line. In this design, the
connecting line (90◦ at 1.5 GHz) is longer than a quarter-wave length at
passband II but shorter than that at passband I, resulting in downward
frequency shift at the higher passband and upward frequency shift at
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(a) (b)

Figure 7. Compared two-port simulation results of a coupling
structure using connecting lines of different lengths: (a) Passband I;
(b) Passband II.

Figure 8. Circuit dimensions of the final design for a three-pole tri-
band filter with three T-shape branches integrated inside. W0 = 0.92;
W1 = 1.67; W2 = 2.43; W3 = 1.57; W4 = 0.4; W5 = 2.36; W6 = 1.05;
S = 28.45; L1 = 31; L2 = 19.92; L3 = 22.95; L4 = 27.03; L5 = 20.04;
L6 = 23.13; L7 = 16. (Unit: mm).

the lower passband. There will also be some slight changes giving
some degradation of return loss in addition to inaccurate bandwidths
for passbands I and II.

In practice, therefore, we need to do some optimization on widths
and lengths of the lines in T-shape branches to tune the resonating
frequencies and admittance slopes to compensate for these effects.

Figure 8 gives the final circuit of the tri-band filter. It is fabricated
on Rogers 4003C material with a dielectric constant of 3.38 and a
thickness of 0.4mm. The folded T-shape branches realize the tri-band
filter in an area no larger than a short-circuited stub filter.

The simulation results and measured results of the tri-band filter
are shown in Fig. 9.
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(a) (b)

Figure 9. Comparison between measured and simulated result, of a
tri-band filter using T-shape branches: (a) Amplituide response; (b)
Group delay.

Figure 10. Photograph of the
fabricated tri-band filter using T-
shape branches.

Figure 11. T-shape branch with
non-commensurate transmission
lines.

We observe that the lowest insertion loss for the three passbands,
from the lowest to the highest, are 0.15, 0.5, and 0.7 dB, with return
losses of better than 15 dB, 18 dB and 10 dB respectively. High isolation
of more than 60 dB is achieved between the three passbands. There
exists some frequency shift between measured and simulated passbands
due to fabrication tolerances.

The example filter is shown in Fig. 10. Because of the existence
of near-band transmission zeros between the passbands, asymmetrical
amplitude response can be observed for passbands I and II.
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4. TRI-BAND FILTERS WITH FULLY CONTROLLABLE
PASSBANDS

A tri-band filter designed with commensurate T-shape branches has
two limitations: the frequency spacing between fr1 and fr3 must equal
that between fr2 and fr3, and the 1st and 2nd passbands have the same
bandwidth due to their equal admittance slope. To achieve controllable
passbands without such limitations we need to allow the lengths of the
three transmission lines to be different in the T-shape branch to obtain
more design freedom.

We find

Yin =
j
(
tan θ1 + Z1

Zo
tan θ3 − Z1

Zs
cot θ2

)

Z1

(
1 + Z1

Zs
tan θ1 · cot θ2 − Z1

Zo
tan θ1 · tan θ3

) (27)

To achieve three passbands with center frequencies of fr1, fr2, fr3,
and bandwidths of ∆f1, ∆f2, ∆f3, the kth T-shape branch will satisfy
the following 6 equations:

Yin(frn) = 0 n = 1, 2, 3 (28)

b(frn) =
dBin

dω
|f=frn =

d(Im(Yin))
dω

|f=frn =
Cak

π ·∆fn
n=1, 2, 3 (29)

Here, we use a finite difference method to calculate b(frn) as:

b(frn)=
dBin

dω
|f=frn =

d(Im(Yin))
dω

|f=frn≈
Im(Yin(frn+δ))−Im(Yin(frn))

2πδ
(30)

where δ is a small variation of frequency.
(28) and (29) are a set of transcendental equations, which can not

be easily solved analytically. Again, a genetic algorithm is used to solve
the equation set to obtain the characteristic impedance and electrical
length of each transmission line section in Fig. 4. To speed up the
convergence in solving the multiple-objective problem, we should firstly
eliminate the redundant unknowns by expressing them as functions of
the other unknowns.

A practical and important issue in realizing a tri-band filter of this
topology is the impedance level of each transmission line, which should
be within a realizable range. If the kth T-shape branch has impedance
levels of Z1k, Zsk, Zok and electrical lengths θ1k, θsk, θok, then for the
jth T-shape branch, the related parameters can be a good solution if
they satisfy the following:

Z1k

Z1j
=

Zok

Zoj
=

Zsk

Zsj
=

Caj

Cak
(31)

θ1k = θ1j ; θsk = θsj ; θok = θoj (32)
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The maximum impedance ratio (MIR) in a T-shape branch can
be defined as:

Rmax,k =
max(Z1k, Zsk, Zok)
min(Z1k, Zsk, Zok)

(33)

and the overall maximum impedance ratio of all T-shape branches is:

Rmax,o =
max(Z1k, Zsk, Zok)
min(Z1k, Zsk, Zok)

· max(Cai|i = 1, 2, . . . , n)
min(Cai|i = 1, 2, . . . , n)

(34)

From (31) know that for given center frequencies and bandwidths
we can obtain the same MIR for all the T-shape branches, and it is
possible to tune the impedance level of the kth T-shape branch by
changing the value of Cak. For the lowest Rmax,o, we should set:

Ca1 = Ca2 = . . . = Can (35)

and then:
Rmax,o = Rmax (36)

The impedance levels of each connection line are determined by
the values of Ca1, Ca2, Ca3, . . . , Can. The MIR is a key factor in
deciding the realizability of a specified tri-band filter. We can set
the bandwidth ratios as: R1 = ∆f2/∆f1 and R2 = ∆f3/∆f1. If the
center frequencies are given, we may obtain a plot of MIR with respect
to the values of R1 and R2. Fig. 12 is a case where the three center
frequencies are located at 0.85 GHz, 1.8 GHz and 2.25GHz.

If we assume the realizable impedance range of the microstrip
line to be 13 ∼ 130Ω, the allowable MIR of a T-shape branch must
be lower than 10. It may be observed from Fig. 12 that MIR is

(a) (b)

Figure 12. Maximum impedance ratio with respect to bandwidth
ratios: (a) 0.2 ≤ R1 ≤ 1.2; (b), 1.4 ≤ R1 ≤ 2.6.
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high when R1 or R2 is low, but in a large value range of R1 and
R2 (0.4 ≤ R1 ≤ 2.6∩ 0.4 ≤ R1 ≤ 2.6) the MIR is lower than 10, which
means the tri-band filter is realizable without using extremely wide or
narrow transmission lines.

Here we give a design example. For a 3-pole tri-band filter with
passbands of 700–1000, 1650–1950, and 2200–2300MHz, we set:

J01 = J34 = 1/Z0 = 0.02

Then we find:

Ca1 = Ca3 =
J2

01g0g1

Z0
= 0.0126 F

To achieve the lowest overall MIR, we set:

Ca2 = Ca1 = 0.0126F

Thus:

J12 = J23 =

√
Ca1Ca2

g1g2
=

Ca1√
g1g2

= 0.0161 s

The genetic algorithm routine was used to derive the impedances
and electrical lengths of all T-shape branches, as shown in Table 2.
The circuit simulation result of the initial design is shown in Fig. 13,
from which we can observe frequency shifting of the passbands and
imperfect in-band return loss.

To compensate for the effects incurred by the approximation
incurred by the imperfect J inverters, an overall performance

Pole order, k 1, 2, 3

Cak (F) 0.0126

Z1k (Ω) 29.77

θ1k (degree) 91.3@1.5GHz

Zsk (Ω) 14.94

θ2k (degree) 93.94@1.5GHz

Zok (Ω) 105.11

θ3k (degree) 67.04@1.5GHz

Table 2. Circuit parameters
of a three-pole tri-band filter
using length-non-commensurate
T-shape branches.

Figure 13. Circuit simulation
result of initial design of the
tri-band filter with asymmetric
passbands.



440 Liu, Dou, and Zhao

Figure 14. Circuit dimensions of the final design for a three-pole tri-
band filter with three T-shape branches integrated inside. W0 = 0.92;
W1 = 0.64; W2 = 2.57; W3 = 0.13; W4 = 4.07; W5 = 1.77; W6 = 0.19;
W7 = 1.51; S = 29.56; L1 = 29.51; L2 = 8; L3 = 17.21; L4 = 8;
L5 = 19.14; L6 = 25.85; L7 = 8; L8 = 16.88; L9 = 13; L10 = 20.95.
(Unit: mm).

(a) (b)

Figure 15. Compared results of the tri-band filter with asymmetric
passbands: (a) Amplitude response; (b) Group delay.

Figure 16. Photograph of the tri-band filter using non-
commensurateT-shape branches.
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optimization is conducted with only the circuit parameters of the T-
shape branches being variables. Fig. 14 gives the circuit dimensions
after optimization.

Comparisons between the circuit simulation and measured results
are shown in Fig. 15, in which we observe frequency shifting incurred by
fabrication tolerances. The lowest insertion loss of the three passbands,
from lowest to highest, are 0.5 dB, 1.5 dB and 2.3 dB repectively. The
return losses are better than −12 dB.

This design exhibits asymmetric performance in passband
allocation and bandwidths. Fig. 16 shows a photograph of the filter.

Next, some detailed comparison between this work and other
techniques as presented in [3, 17] and [20] are given. As can be
seen in Table 3, T-shaped branch tri-band filters gives a greater

Table 3. Performance comparison between the proposed tri-band filter
and other techniques.

Solution This work Ref. [3] Ref. [17] Ref. [20]

Technique

Type

Tri-mode

resonator

Dual behavior

Resonator

Tri-section

SIR

Tri-section

SIR

Pole

Number
3 2 2 2

Center

Frequencies

(GHz)

0.85/1.8/2.25 1.4/2.3/3.5 1/2.4/3.6 1/2.4/3.6

Bandwidths

(MHz)
300/300/100

About

50/200/50

About

50

About

50

Ability

of setting

bandwidths

Yes
Not

discussed
No No

Impedance

Range (Ω)
16.5 ∼ 124 N/A 50 ∼ 93.3 50 ∼ 93.3

Insertion

Loss (dB)
0.5/1.5/2.3 2.5/2.5/3 2.2/1.8/1.7 2/1.9/1.7

Isolation

(dB)
70/40 50/50 40/30 40/25

Size (mm2) 120 ∗ 44
50mm in

length
60 ∗ 60 40 ∗ 40

Material

Permittivity
3.38 9.9 2.65 2.45
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range of bandwidths, and wideband bandwidths can be easily achieved
compared with tri-section SIR techniques. Also the T-shape branch
technique can achieve lower insertion loss. Because of the transmission
zeros (there exist N zeros between every two nearest bands of a N -
pole tri-band filter), the isolation between bands is much higher than
all the other techniques, taking into account the bandwidths of the
pass and stop bands. The relatively larger dimension of the example
filter is due to the lower permittivity of the PCB material, lower center
frequencies and higher number of poles. Also it is possible to achieve
more compact dimensions using meandered connecting lines. As a
shortcoming, the required impedance range of T-shape branch filters
are wider than those in [17] and [20], but are still realizable with current
PCB techniques.

5. CONCLUSIONS

A new tri-mode T-shape branch is introduced and used to design tri-
band filters. A theoretical analysis of commensurate T-shape branches
is given with a detailed design procedure, and an example filter
fabricated and measured. Good agreement between simulation and
measurement results has validated the theory. To achieve arbitrary
passbands, non-commensurate T-shape branches are proposed to give
more design freedom, and a genetic algorithm is used. Design example
with measured results have shown the realizability of arbitrary center
frequencies and bandwidths. By deriving the three passbands from
one distributive lowpass prototype filter, one needs only to tune the
admittance slope of each resonating mode to control the bandwidths.
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