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Abstract—A hybrid mode-matching/compact 2-D finite-difference
frequency-domain (MM/compact 2-D FDFD) method is proposed for
the analysis of rectangular ridged waveguide discontinuities. In order
to apply MM technique, mode spectrum of the ridged waveguide is
determined by an improved compact 2-D FDFD method with only
two transverse field components at the cutoff frequencies which lead
to two independent sets of real symmetric eigenvalue problems for
TE and TM modes. Solving these two separate eigenvalue equations,
cutoff wave numbers and discrete mode field functions can be obtained
respectively from eigenvalues and eigenvectors. Finally, the generalized
scattering matrix (GSM) of the rectangular-ridged waveguide step
discontinuity can be easily calculated through the transverse field
matching procedure. The method is demonstrated at the examples
of two waveguide structures, and results are shown to be in excellent
agreement with those by the commercial CAD software HFSS.

1. INTRODUCTION

Ridged waveguides which have advantages of broad bandwidth, low
cutoff frequency, and low wave impedance are widely used in many
microwave and millimeter-wave application [1–5]. For the accurate
analysis of ridged waveguide components, mode sequences and modal
field distributions for MM technique must be known accurately [6–8].
Therefore, adequate hybrid methods are desirable, which combine the
advantages of the flexibility of the space discretization methods with
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the efficiency of the MM method [9, 10]. A hybrid MM/finite element
(FE) technique has been proposed for the waveguide discontinuity
with complex cross sections, where modal expansions can be derived
by a 2-D FE method [11–14]. There is no doubt that the 2-D FE
method is effective and flexible. However, the algorithm is a little
complicated, especially in the process of solving the coefficients [15].
Another novel compact 2-D FDFD has been proposed to analyze
the dispersion characteristics of both lossless and lossy waveguide
structures [15–18]. Apart from its simple formulation, the advantage
of compact 2-D FDFD method is that we can obtain all the modes
and modal field distribution of a uniform guided wave structure by
solving an eigenvalue problem. However, no MM techniques combined
with compact 2-D FDFD are published for the analysis of waveguide
discontinuities. In practice, the justification for separating TE and TM
modes for MM technique is required due to the existence of degenerate
modes in application of the compact 2-D FDFD with either four or six
field components involved.

In this paper, a new hybrid MM/compact 2D-FDFD method
is presented for the analysis of rectangular ridged waveguide
discontinuities. This technique combines the computational efficiency
of modal analysis with the versatility and flexibility of the improved
compact 2-D FDFD approach. The real symmetric eigenvalue problem
of ridged waveguides has been constructed by the compact 2-D FDFD
with only two field components at the cutoff frequencies. Once the
cutoff wave numbers and discrete mode field functions are obtained,
the general scattering matrix of the step discontinuity can be easily
calculated through the transverse field-matching procedure. Finally,
the GSM of the whole waveguide structure can be found by cascading
each junction modules.
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Figure 1. Waveguide step discontinuity with incident and scattered
waves.
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2. THEORY

According to the principle of MM technique [10, 11], the transverse
electric ~Et and magnetic ~Ht in waveguide section are represented by
mode field functions in the following way:
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where Z=1/Y are the characteristic impedances equivalent to modal
wave impedances in this paper. ~e and ~h are the mode field functions

~e =
{

~z ×∇tϕ TE
−∇tϕ TM

~h = ~z × ~e (2)

with ~z being the unit vector in the z-direction, and the potential
ϕ are solution of the 2-D Helmholz equation. Choosing the modal
wave impedances as the characteristic impedances, we have the modal
orthogonality and normalization condition∫∫

S
~em · ~em = 1

∫∫

S
~em · ~en = 0

(3)

Matching the tangential Et and Ht along the transverse surface of the
general step discontinuity (Fig. 1), which is assumed to be located at
z = 0, yields the relation between the incident and scattered modal
wave amplitude coefficients as follows:

{[a] + [b]} = [W ]{[a′] + [b′]}
− [W ]T {[a]− [b]} = {[a′]− [b′]} (4)

where the matrix [W ] is expressed as

[W ] = diag
[√

Y
]
[M ]diag

[√
Z ′

]
(5)

M [i,j] is the element of the frequency-independent coupling matrix

M [i, j] =
∫∫

II
~ei · ~e′jds′ (6)
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From Equations (4)–(6), the GSM of the complete step discontinuity
can be deduced by simple matrix algebra

[S11] = −
(
[I] + [W ] · [W ]T

)−1 (
[I]− [W ] · [W ]T

)

[S21] = [W ]T · ([I]− [S11])
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(
[I] + [W ]T · [W ]

)−1
·
(
[I]− [W ]T · [W ]

)

[S12] = [W ] · ([I] + [S22])

(7)

In order to calculate the GSM of the waveguide step discontinuity
with the above procedure, cutoff wave numbers and mode field
functions of the general waveguide must be calculated firstly. In this
paper, an improved compact 2-D FDFD method with only two field
components at cutoff frequencies is presented for the modal analysis
of the ridged waveguide. Substituting the propagation constant γ = 0
into formulas [8–11] in [16], it is noticed that the field components
involved in the eigenvalue problem can be divided into two independent
groups: Ex, Ey for TE modes and Hx, Hy for TM modes:

TE modes:
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TM modes:
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where kc is the cutoff wave number. Let dx and dy denote mesh
sizes in the x and y directions. After implementing all the boundary
conditions, both the eigenvalue Equations (8)–(9) for TE modes and
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the eigenvalue Equations (10)–(11) for TM modes can be finally
concluded in the same form as

[A] {X} = k2
c {X} (12)

where {X}={Ex, Ey}T and {X}={Hx,Hy}T for TE and TM modes,
respectively. It is obvious that the coefficient matrix [A] is real,
symmetric and has positive diagonal elements. The modal wave
impedance Z can be determined by the solution frequency and
eigenvalue kc. Meanwhile, the discrete mode field function can be
obtained from the normalization of the eigenvetor. Applying the modal
normalization condition, the discrete mode field functions with uniform
grid division satisfy the following equation.
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Based on the above eigenmodal analysis of the ridged waveguide
and the analytical solution to the rectangular waveguide eigenvalue
problem, the GSM of the rectangular-ridged step discontinuity can be
finally calculated from Equations (5)–(7).
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Figure 2. Double-ridged iris in rectangular waveguide.
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3. NUMERICAL RESULTS

To verify the correction of this method, a double-ridged iris and a
single-ridged waveguide filter have been analyzed. In the following
analysis, we chose the total number of the ridged waveguide modes
of 25 and the maximum mode index in x and y directions in the
rectangular waveguide of 5 and 3. The example of the double-ridged
iris in the rectangular waveguide is shown in Fig. 2. By the improved
compact 2-D FDFD presented in this paper, the field distribution of
the domain mode of the double-ridged waveguide can be observed in
Fig. 3. A good agreement of the cutoff wave numbers of the double-
ridged waveguide between the method presented in this paper and
the commercial CAD software HFSS can be observed in Fig. 4, where
the cutoff wave numbers of TE and TM modes respectively marked
with circle points and square points by HFSS are compared with those
marked with star points by the proposed method. In Figs. 5–6 the
scattering parameters of the waveguide iris are compared with those
by HFSS, and the good results prove the correctness of the method.

Figure 3. Field distribution of
the domain mode.

Figure 4. Cutoff wave numbers
compared with HFSS.

The design example of a single-ridged waveguide filter is shown
in Fig. 7. It is shown that the field distributions of the domain mode
in the single-ridged waveguide coincide with the actual situation in
Fig. 8. The cutoff wave numbers of the single-ridged waveguide agree
well with those by the commercial CAD software HFSS in Fig. 9, where
the cutoff wave numbers of TE and TM modes respectively marked
with circle and square points by the HFSS are compared with those
marked with star points by the proposed method. Once the GSM
of the rectangular-ridged waveguide step discontinuity is calculated,
the GSM of the whole filter can be found by cascading each straight
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Figure 5. Magnitude compared
with CAD software HFSS.

Figure 6. Phase compared with
CAD software HFSS.
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Figure 7. Rectangular single-ridged waveguide filter.

Figure 8. Field distribution of
the domain mode.

Figure 9. Cutoff wave numbers
compared with HFSS.
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Figure 10. Magnitude compared
with CAD software HFSS.

Figure 11. Phase compared with
CAD software HFSS.

waveguide and step discontinuity. The scattering parameters of the
filter are compared with those by HFSS, and the good results prove
the correctness of the method in Figs. 10–11.

4. CONCLUSION

A new hybrid MM/compact 2D-FDFD method is presented for the
analysis of ridged waveguide discontinuities. An improved compact 2-D
FDFD method at cutoff frequencies is applied to the modal analysis of
the ridged waveguide. Once the cutoff wave numbers and discrete mode
field functions are obtained from the eigenvalue equations, the general
scattering matrix of the step discontinuity can be easily calculated
through the transverse field-matching procedure. Accurate results of
scattering parameters have been observed.
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