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Abstract—In this paper an inverse source problem is investigated.
The measurement set-up is a reflector antenna covered by a radome.
Equivalent currents are reconstructed on a surface shaped as the
radome in order to diagnose the radome’s interaction with the radiated
field. To tackle this inverse source problem an analysis of a full-wave
integral representation, with the equivalent currents as unknowns, is
used. The extinction theorem and its associated integral equation
ensure that the reconstructed currents represent sources within the
radome. The axially symmetric experimental set-up reduces the
computational complexity of the problem. The resulting linear system
is inverted by using a singular value decomposition. We visualize how
the presence of the radome alters the components of the equivalent
currents. The method enables us to determine the phase shift of the
field due to the transmission of the radome, i.e., the IPD (insertion
phase delay). Also, disturbances due to defects, not observable in the
measured near field, are localized in the equivalent currents.

1. INTRODUCTION

The aim of this paper is to calculate and visualize the sources of a
measured electric field on a radome-shaped surface. The electric field
is originating from an antenna inside the radome and is measured in the
near-field zone outside the radome. The electrical size of the radome
is 29 wavelengths at the frequency 8.0GHz.

This kind of calculations are important in diagnosing antennas,
designing radomes, etc, since the field close to the body of interest
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is difficult to measure directly. By doing so, the interaction between
the source and the measurement probe can give incorrect results [1–3].
In the process of designing a radome, the electric field close to the
antenna is input to software calculating the field propagation through
the radome wall [4, 5]. To get reliable results, it is crucial that the
representation of the field radiated from the antenna, i.e., the input
data, is well known. To determine the performance of the radome
it is eligible to quantify, e.g., beam deflection, transmission efficiency,
pattern distortion, and the electrical thickness of the radome wall, i.e.,
the insertion phase delay (IPD). It is also of interest to see how the
mounting device and, e.g., lightning conductors and Pitot tubes, often
placed on radomes, interact with the electric field.

One of the first techniques developed to solve the inverse source
problems of this kind employs the plane wave expansion [6–8]. The
method works very well when the equivalent currents are reconstructed
on a planar surface. One recent area of application is the determination
of the specific absorption rate of mobile phones [9]. A modal expansion
of the field can be utilized if the reconstruction surface is cylindrical
or spherical [1, 10, 11]. This method has been used to calculate the
insertion phase delay (IPD) and to detect defects on a spherical
radome [12]. More general geometries, e.g., needle shaped objects
and flat disks, can be handled by expanding the field in spheroidal
wave functions [13]. A combination of the plane wave spectrum
and the modal expansion has been utilized in [14–16] where flat
antenna structures are diagnosed and safety perimeter of base stations’
antennas is investigated, respectively. Further references in the area
can be found in [17].

To be able to handle a wider class of geometries, diagnostic
techniques based on integral representations, which are solved by
a method of moment approach, are applied. The drawback is the
computational complexity. If the object on which the currents are
to be reconstructed is metallic, i.e., a perfect electric conductor
(PEC), either the electric or magnetic field integral equation (EFIE
or MFIE) can be employed [18] or combinations thereof [19, 20]. The
equivalence principle is conveniently used when analyzing flat antenna
structures [21–23]. An integral representation together with a priori
information of the object and iterative solvers is used by [24, 25] to find
the electric current on the walls of a PEC for diagnose of a pyramidal
horn antenna and a monopole placed on the chassis of a car. In [26] a
dual-surface approach is compared to the single-equation formulation.

In this paper we propose a technique using the integral
representations to relate the unknown equivalent currents to a known
measured near field. In addition to the integral representation,
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we also use an integral equation, originating from the extinction
theorem [27]. By using the extinction theorem together with the
integral representation, we secure that the sources of the reconstructed
currents only exist inside the enclosing volume [28]. The equivalent
currents can be reconstructed on a surface arbitrarily close to the
antenna. No a priori information of the material of the object just
inside the surface is utilized.

2. PREREQUISITES

In this section, we review the basic equations employed in this paper.
We start with a general geometry, and specialize to a body of revolution
in Section 2.2. More technical details are given in [29].

2.1. General Case

The surface integral representation expresses the electromagnetic field
in a homogeneous, isotropic region in terms of its values on the closed
bounding surface. We engage the integral representations to a domain
outside a closed, bounded surface Srad. Carefully employing the Silver-
Müller radiation conditions, the solution of the Maxwell equations
satisfy the following integral representation [28, 30–32]
∫∫

Srad

(
−jωµ0µ g(r1, r2)

[
n̂(r1)×H(r1)

]

+
j

ωε0ε
∇1g(r1, r2)

{
∇1S ·

[
n̂(r1)×H(r1)

]}

−∇1g(r1, r2)×
[
n̂(r1)×E(r1)

])
dS1 =

{
E(r2) r2 outside Srad

0 r2 inside Srad
(1)

where the time convention used is ejωt, and the surface divergence is
denoted ∇S · [27]. The variable of integration is denoted r1 and the
observation point r2, see Figure 1. The relative permittivity ε and the
relative permeability µ may depend on the angular frequency ω, i.e.,
the material can be dispersive, but they are constants as functions of
space (homogeneous material). The scalar free space Green function
is

g(r1, r2) =
e−jk|r2−r1|

4π|r2 − r1|
where the wave number of the material is k = ω

√
ε0µ0εµ. The

representation (1) states that if the total electromagnetic field on
Srad is known, the total electromagnetic field outside Srad can be
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Figure 1. The surface Srad of integration. The unit normal to
the surface is n̂. The variable of integration is denoted r1 and the
observation point r2.

determined [28, 33, 34]. If these integrals are evaluated at a point r2

lying in the volume enclosed by Srad these integrals cancel each other
(extinction). It is important to notice that this does not necessarily
mean that the field E is identically zero inside Srad, it only states that
the values of the integrals cancel.

The electric and magnetic equivalent surface current densities, J
and M, are introduced to simplify the notation and they are defined
as [35] {

J(r) = n̂(r)×H(r)
M(r) = −n̂(r)×E(r)

(2)

The lower (or upper) representation in (1) is transformed into an
integral equation letting r2 approach Srad. However, care must be
taken since the integrands become singular when r2 approaches the
surface [27, 28, 31, 36]. The equation consists of three components,
two describing the tangential field and one describing the normal
component of the field. Since the normal component can be determined
by the knowledge of the tangential parts, this representation has
redundancies, i.e., the normal component is eliminated [32].

To this end, (1) splits into a surface integral representation of the
electric field∫∫

Srad

{
−jωµ0µ g(r1, r2)J(r1) + j

1
ωε0ε

∇1g(r1, r2)
[∇1S · J(r1)

]

+∇1g(r1, r2)×M(r1)
}

dS1 = E(r2) r2 outside Srad (3)
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and a surface integral equation in J and M

n̂(r2)×
∫∫

Srad

{
jωµ0µ g(r1, r2)J(r1)− j

1
ωε0ε

∇1g(r1, r2)
[∇1S · J(r1)

]

−∇1g(r1, r2)×M(r1)
}

dS1 =
1
2

M(r2) r2 ∈ Srad (4)

When necessary, the integrals in the surface integral equation are
interpreted as Cauchy’s principal value [27, 37].

The integral equation is written in a weak form, i.e., it is multiplied
by a test function, Ψ, and integrated over its domain [19, 36, 38, 39]

jωµ0µ

∫∫

Srad

∫∫

Srad

Ψ(r2) · g(r1, r2)J(r1) dS1 dS2

−j
1

ωε0ε

∫∫

Srad

∫∫

Srad

[∇2S ·Ψ(r2)
]
g(r1, r2)

[∇1S · J(r1)
]

dS1 dS2

−
∫∫

Srad

∫∫

Srad

Ψ(r2) ·
[∇1g(r1, r2)×M(r1)

]
dS1 dS2

−1
2

∫∫

Srad

[
n̂(r2)×Ψ(r2)

] ·M(r2) dS2 = 0 (5)

The evaluation of the integrals in this paper is restricted to a body of
revolution, see Section 2.2, and follows the scheme in [40, 41].

2.2. Body of Revolution

From now on the equations are adapted to a body of revolution (BOR)
in vacuum, i.e., ε = 1 and µ = 1. The surface is parameterized by the
azimuth angle ϕ and the height coordinate along the surface v, i.e.,
the position vector r can be expressed as r(ϕ, v) = ρ(v) cosϕ êx +
ρ(v) sin ϕ êy + z(v) êz. The normalized basis vectors are then

ϕ̂(ϕ) =
∂r
∂ϕ

/

∣∣∣∣
∂r
∂ϕ

∣∣∣∣ = − sinϕ êx + cosϕ êy and v̂(ϕ, v) =
∂r
∂v

/

∣∣∣∣
∂r
∂v

∣∣∣∣
and {n̂, ϕ̂, v̂} forms a right-handed triple of unit vectors, see Figure 2.
The curvilinear components of the magnetic equivalent surface current
and electric field are denoted as Eϕ = −Mv and Ev = Mϕ, cf., (2),
where Mϕ = M · ϕ̂, and Mv = M · v̂. The magnetic field and the
electric equivalent current are related in a similar way.
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Figure 2. The regions of integration in (8).

Two functions, aϕ
mj and av

mj , are used as basis functions. They
are defined as

aϕ
mj = fϕ

j (v) ejmϕϕ̂

av
mj = fv

j (v) ejmϕv̂
(6)

The height of the radome, v1, is discretized into points, vj , where
j = 1, . . . , Nz. The functions f

ϕ/v
j (v) can be chosen as a constant,

linear, cubic, spline functions etc, with support in a neighborhood of
vj [19, 38]. For the results in this paper, both f

ϕ/v
j (v) are chosen

as piecewise linear functions, i.e., one-dimensional rooftops. Observe
that ϕ/v in fϕ/v denotes a superscript and not an exponential. In
the azimuthal direction, a global function, ejmϕ, i.e., a Fourier basis,
is used due to the symmetry of the body, and m is an integer index.
The magnetic current is expanded as

M =
∑

m,j

{
Mϕ

mj aϕ
mj + Mv

mj av
mj

}
(7)

The electric current J is expanded in a similar way, but with expansion
coefficients J

ϕ/v
mj . Galerkin’s method is used [38]. That is, the test

functions are according to (6) Ψϕ
ni = (aϕ

ni)
∗ and Ψv

ni = (av
ni)

∗ where
complex conjugation is denoted by a star and the indicies run through
the same integers as m and j.

The surface integral representation in (3) is applied to the
measurement set-up described in Section 3, i.e., r2 belongs to a
cylindrical surface Smeas, see Figure 2. This surface has axial symmetry
with constant radius and is parameterized by ϕ2 and v2, in the same
manner as the surface Srad is. The height is discretized into points, vq,
where q = 1, . . . , Nmeas

z . None of the integrals contains singularities
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since r1 and r2 will not coincide. From Equation (3), we get
[
v̂
ϕ̂

]
·
{
−jωµ0

∫∫

Srad

g(r1, r2)J(r1) dS1

+j
1

ωε0

∫∫

Srad

∇1g(r1, r2)
[∇1S · J(r1)

]
dS1

+
∫∫

Srad

∇1g(r1, r2)×M(r1) dS1

}
=

[
v̂ ·E(r2)
ϕ̂ ·E(r2)

]
=

[
Ev(ϕ2, v2)
Eϕ(ϕ2, v2)

]
(8)

where r2 ∈ Smeas and the tangential components are projected. The
right hand side of (8) is expanded in a Fourier series. The Fourier
series reduce the dimensions of the problem by one degree [19, 40, 42].

The representation in (8) and the integral equation in (5) are
organized as a system of matrices, i.e.,

[
Z11 Z12

Z21 Z22

] [
Jv

Jϕ

]
+

[
X11 X12

X21 X22

] [
Mv

Mϕ

]
=

[
Ev

Eϕ

]
(9)

and [ Z11 Z12

Z21 Z22

] [
Jv

Jϕ

]
+

[ X 11 X 12

X 21 X 22

] [
Mv

Mϕ

]
=

[
0
0

]
(10)

Combining the matrix systems for the integral representation (9) and
(10) gives, in short-hand notation,

[
Z X
Z X

] [
J
M

]
=

[
E
0

]

The magnitude of the entries of the matrices may differ by several
orders of magnitude. To avoid numerical errors, the system is solved
for one current at a time,

J = −Z−1XM =⇒
{
−ZZ−1X + X

}
M = E (11)

when J is eliminated. In the first line, J is expressed as a function of M
utilizing the integral equation. The matrix Z is a square matrix and
inverted numerically in MATLAB. The second equation is ill-posed.
The matrix is no longer a square matrix and to solve for M, the linear
system is inverted and regularized by the singular value decomposition
(SVD) in MATLAB [42]. Besides numerical errors also noise and
measurement errors show up. Here, the SVD helps in suppressing the
amplification of noise in the inversion [43]. The cut-off value, i.e., the
magnitude of the largest singular value that is excluded, is proportional
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to the largest singular value of the largest Fourier component of the
measured field. The proportionality constant is chosen as 0.1 and 0.3
when reconstructing the co- and the cross-component, respectively [43].

In our initial investigation we have not encountered any problems
with spurious modes [44] or by using the numerical inversion of
MATLAB or the SVD. However, a more detailed investigation of the
ill-posed equations and the choice of the cut-off value, is planned to be
addressed in a forthcoming paper.

3. NEAR-FIELD MEASUREMENTS

The experimental set-up and the measured electric field is described
in [45]. However, for convenience, the necessary information is
summarized. The measurement set-up is shown in Figure 3. A reflector
antenna, fed by a symmetrically mounted wave-guide, generates the
electromagnetic field. The diameter of the antenna is 0.32m, and
the main lobe of the antenna is vertically polarized relative to the
horizontal plane. The radome surface is axially symmetric and its
radius, in terms of the height coordinate, is modeled by

ρ(z) =





0.213m − 0.728m ≤ z ≤ −0.663m
−(bz′ + d) +

√
(bz′ + d)2 − a(z′)2 − 2cz′ − e

−0.663m < z ≤ 0.342 m

where z′ = z + 0.728 m and the constants are a = 0.122, b = 0.048,
c = −0.018m, d = 0.148m, and e = −0.108m2, respectively. The
height of the radome corresponds to 29 wavelengths for the frequency
8.0GHz. The material of the radome has a relative permittivity of
about 4.32 and its loss tangent is about 0.0144. The thickness of the
wall of the radome varies over the surface in the interval 7.6–8.2 mm.

The surface Srad in (5) and (8) is defined by the radome surface,
closed with smooth top and bottom surfaces. These added surfaces
are needed since the integral representation applies to a closed surface
and the measurements are performed under non-ideal conditions.
The turntable, on which the antenna and radome are located, see
Figure 3(a), reflects some of the radiation, which is taken care of by
the added bottom surface. The top surface takes care of the electric
field that is reflected on the inside of the radome and then radiated
through the top hole. If these factors are neglected, unwanted edge
effects occur, since the electric fields originating from the turntable
and the top of the radome are forced to originate from the radome
itself. The radome surface is divided into 8 cells per wavelength in
the height direction, and in each cell 4 points are chosen where the
integrations are evaluated.
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Figure 3. (a) Photo of the cylindrical near-field range at SAAB Bofors
Dynamics, Sweden. The antenna under test is rotated and the probe
is moved in the vertical direction. A close up of the reflector antenna
is shown in the upper right corner. (b) The dimensions of the reflector
antenna, the radome, and the cylinder where the electric near field is
measured.

The electric field is measured on a cylindrical surface by moving
the probe in the z-direction and rotating the radome and the antenna
under test, see Figure 3. This surface is located in the near-field
zone [46]. The near-field measurement probe consists of an IEC R100
waveguide, with a collar of radar absorbing material, for which no
compensation is made in the final data. The waveguide is linearly
polarized, i.e., one polarization is measured after which the waveguide
is turned 90 degrees. The accuracy of the turntable and the probe
is 0.00025 degrees and 0.12mm, respectively. For every movement
of the probe, ∆z, the turntable is rotated 360 degrees. With this
measurement set-up, the data on the top and the bottom of the
cylindrical surface cannot be collected. It would have been preferable
to measure the fields on an infinite cylinder. However, the size of
the cylinder is chosen such that the turntable below the radome
does not have a major influence on the measurements and such that
the fields above z = 800mm are negligible. In the azimuth angle,
120 points are measured in steps of 3◦. The z-dimension is divided into
129 points, every two points, vq and vq+1, are separated by 12.5mm.
The sample density fulfills the sampling theorem for cylindrical near-
field measurements given in, e.g., [2].
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Three different measurement configurations are considered;
antenna without radome, antenna together with radome, and antenna
together with defect radome. The defect radome has two copper
plates attached to its surface. These are located in the forward
direction where the main lobe hits the radome and centered at
the heights 41.5 cm and 65.5 cm above the bottom of the radome.
The side of the squared copper plates is 6 cm, corresponding to
1.6wavelengths at 8.0GHz. The absolute values of the measured
co- and cross-polarized electric fields, Ev and Eϕ, respectively, are
shown in Figures 4 and 5, where |Ev|dB = 20 log (|Ev|/|Ev|max)
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-10

0

(a) (b) (c)

Figure 4. The co-component, |Ev|dB, of the experimentally measured
near-field data at 8.0GHz, normalized with the largest value of |Ev|
when no radome is present. (a) No radome present. (b) Radome
present. (c) Defect radome present.
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Figure 5. The cross-component, |Eϕ|dB, of the experimentally
measured near-field data at 8.0GHz, normalized with the largest value
of |Ev| when no radome is present. (a) No radome present. (b) Radome
present. (c) Defect radome present.
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and |Eϕ|dB = 20 log (|Eϕ|/|Ev|max), respectively. That is, all fields
are normalized with the largest value of |Ev| when no radome is
present. In particular, Eϕ has a quite complicated pattern. The
diffraction is explained as environmental reflections and an off-centered
antenna feed. Observe that the amplitude of the azimuth component is
smaller than the amplitude of the height component, i.e., measurement
errors are more likely to show up here. The differences between the
three different antenna and radome cases arise from constructive and
destructive interference between the radiated field and the scattered
field. The absolute value of the Fourier transformed measured fields
are shown in dB-scale in Figures 6 and 7. According to these figures,
the spectrum is truncated at n = 30, above which the energy contents
is too low.
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Figure 6. The Fourier transformed measured field, |Ev|dB, at 8.0GHz.
All values are normalized with the largest value of |Ev| when no radome
is present. (a) No radome present. (b) Radome present. (c) Defect
radome present.
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Figure 7. The Fourier transformed measured field, |Eϕ|dB, at
8.0GHz. All values are normalized with the largest value of |Ev| when
no radome is present. (a) No radome present. (b) Radome present.
(c) Defect radome present.
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4. RESULTS

The measured field on the cylindrical surface at 8.0GHz, cf., Figures 4
and 5, is transformed back onto a surface corresponding to the radome
surface. Figures 8 and 9 show the recreated electric fields, |Ev|dB and
|Eϕ|dB, respectively, in the main lobe for the different configurations.
Observe that all values are normalized with the largest value of |Ev|
when the defect radome is present. The figures show that the near
field close to the antenna is complex and hard to predict. In the
case, when no radome is located around the antenna, the electric fields
are calculated on a surface shaped as the radome, see Figures 8(a)
and 9(a). The case when the radome is present, see Figures 8(b)
and 9(b), shows that the radome interacts with the antenna and hence
disturbs the radiated field. How this interaction affects the amplitude
is depicted in Figures 10(a) and (b), where (|Ev

no radome| − |Ev
radome|)

and (|Eϕ
no radome|−|Eϕ

radome|) are shown in a linear scale and normalized
with the maximum difference for each component. Both components
of the electric field are reduced in amplitude in the main lobe whereas
the field strength outside the main lobe is increased when the radome is
introduced. This is most likely due to transmission loss in the radome
wall and scattering against the inside wall.

(a) (c)(b) -30

-20

-10

0

Figure 8. The recreated |Ev|dB-component on the front side of the
radome. All values are normalized with the largest value of |Ev| when
the defect radome is present. (a) No radome present. (b) Radome
present. (c) Defect radome present. The arrows point out the locations
of the copper plates.
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Figure 9. The recreated |Eϕ|dB-component on the front side of the
radome. All values are normalized with the largest value of |Ev| when
the defect radome is present. (a) No radome present. (b) Radome
present. (c) Defect radome present. The arrows point out the locations
of the copper plates.
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Figure 10. The subtraction between the fields with and
without radome present on the front side of the radome. In
(a) (|Ev

no radome|−|Ev
radome|)/max||Ev

no radome|−|Ev
radome|| is shown and

in (b) (|Eϕ
no radome|−|Eϕ

radome|)/max||Eϕ
no radome|−|Eϕ

radome||. The scale
is linear.
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The effect of the attached copper plates are detected as shown in
Figures 8(c) and 9(c), where the lower plate appears clearly. Observe
that the copper plates cannot be localized directly in the near-field
data, compare Figures 4(c) and 5(c) to Figures 8(c) and 9(c). The
near-field data only shows that the field is disturbed, not the locations
of the disturbances. The upper plate is hard to discern in Figures 8(c)
and 9(c), since it is located in a region with small field magnitudes.
However, the influence of the upper copper plate can be detected in
the cross section graphs, see Figures 11(a) and (b). To determine the
exact position of the defects several cross section graphs have to be
examined. It is interesting to see that even though the magnitude of
the cross-polarization is small, the locations of the copper plates can
be found.
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Figure 11. Cross sections of the reconstructed field components.
(a) |Ev|dB in the main lobe. (b) |Eϕ|dB in the main lobe. (c) |Ev|dB

on the back of the radome. (d) |Eϕ|dB on the back of the radome. All
values are normalized with the maximum value of |Ev| when the defect
radome is present. The solid black line corresponds to no radome, the
dashed dot blue line has the radome present and the dashed red line
represents the defect radome. The positions of the copper plates on
the defect radome are marked by thick lines on the horizontal axis.
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The presence of the radome also creates some backscattering (flash
lobes) as seen in Figures 11(c), 11(d), 12, and 13. In Figures 11(c) and
11(d), a cross section at an angle 180◦ from the center of the main
lobe, i.e., in the middle of the back side, is viewed. Figures 12 and 13
depict both components on the back side of the radome for all three
configurations in a dB-scale. In these figures it is also observed that
the flash lobes are altered when the copper plates are present.

(a) (c)(b) -30

-20

-10

0

Figure 12. The recreated |Ev|dB-component on the back side of the
radome. All values are normalized with the maximum value of |Ev|,
on the front side, when the defect radome is present. (a) No radome
present. (b) Radome present. (c) Defect radome present.

(a) (c)(b)
-30

-20

-10

0

Figure 13. The recreated |Eϕ|dB-component on the back side of the
radome. All values are normalized with the maximum value of |Ev|,
on the front side, when the defect radome is present. (a) No radome
present. (b) Radome present. (c) Defect radome present.
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The copper plates can also be detected by subtracting the field
of the defect radome and the field of the non-defect radome. This
result is shown in dB-scale in Figure 14 for both the components
of the electric field, i.e., |Ev

radome − Ev
def radome|dB and |Eϕ

radome −
Eϕ

def radome|dB, each component normalized with the maximum
difference for each component. The reconstruction of the Eϕ-
component, cf., Figure 14(b), only shows the effects of some parts
of the copper plates. The reason is that parts of the copper plates are
located in an area where the amplitude of the Eϕ-component is small,
cf., Figures 5 and 9(a).

Figure 14(a) indicates that there is an amplitude difference
between the configurations slightly above the location of the lower
copper plate. To visualize what is happening, the difference
(|Ev

radome| − |Ev
def radome|), normalized with its maximum value, in a

linear scale, is depicted in Figure 15. The scale is truncated in order to
see the small field difference above the copper plate. Here it becomes
clear that the area, where the copper plate is attached, has a reduced
electric field, when the defect radome is present. The area above the
copper plate has instead an increased electric field, when the defect
radome is present. This is most likely due to scattering of the copper
plate.

(a) (b)
-20

-10

0

-25

-12.5

0

Figure 14. The logarithmic differences revealing the copper plates,
(a) 20 log{|Ev

radome − Ev
def radome|/max|Ev

radome − Ev
def radome|}, and

(b) 20 log{|Eϕ
radome − Eϕ

def radome|/max|Eϕ
radome − Eϕ

def radome|} on the
front side of the radome. The arrows point out the locations of the
copper plates.
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0

0.5

-0.5

amplitude

difference

Figure 15. The difference (|Ev
radome|− |Ev

def radome|)/max||Ev
radome|−|Ev

def radome|| in a linear scale on the front side of the radome. The scale
is truncated in order to see the small field amplitude above the copper
plate, marked with an arrow.

(a) (c)(b)

0

-π

π

Figure 16. The recreated phase of the Ev-component on the front side
of the radome in a linear scale. (a) No radome present. (b) Radome
present. (c) Defect radome present.

So far only the amplitudes of the reconstructed fields has been
investigated. However, even the phase can give useful information. The
phase of the Ev-component, i.e., ∠Ev, where ∠ denotes the argument,
is depicted in Figure 16 for all configurations. The vertical lines above
the main lobe in Figure 16(a) are due to phase jumps, and are caused
by the low amplitude of the fields in these areas.
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Just showing the phase as in Figure 16 does not give very much
information. What is interesting is to study the phase difference
(antenna — antenna with radome) for the two recreated components,
see Figure 17. It reveals how the phase is changed due to the influence
of the radome. It is observed that the phase shift in the main lobe is
almost constant, for both components. This confirms that the radome
is well adapted to the frequency 8.0 GHz. Since the amplitude of Eϕ

is low, cf., Figures 5 and 9, its phase contains much noise, and it is
therefore somewhat more unreliable than ∠Ev.

In Figure 18, a cross section in the middle of the main lobe of the
phase difference in Figure 17 is depicted. The cross section of ∠Eϕ is
shown for a slightly acentric angle, since the amplitude in the center
of the main lobe is very low, see Figure 9. In areas where the field is
strong, the phase shift does not fluctuate as much. Outside this areas
the amplitude is low and the phase is not well defined, i.e., dominated
by noise, and it will not give valid information. This means that when
looking at the main lobe, the only area that contains reliable values is
z ∈ [−0.5,−0.05].

The phase shift arising when the radome is introduced, i.e.,
the phase shift viewed in Figures 17 and 18, is called the IPD
(Insertion Phase Delay). It is one of the parameters that quantifies
the performance of the radome, and depending on the polarization,
two different IPD are defined [47]

T = |T |∠IPD (12)

-π

0

π

(a) (b)

Figure 17. The IPD, i.e., the phase difference between the field
when no radome is present and the field when the radome is present,
on the front side of the radome. (a) (∠Ev

no radome − ∠Ev
radome).

(b) (∠Eϕ
no radome − ∠Eϕ

radome).
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Figure 18. Cross section in the middle of the main lobe of the IPD
depicted in Figure 17. The solid blue line corresponds to (∠Ev

no radome−
∠Ev

radome) and the dashed red to (∠Eϕ
no radome−∠Eϕ

radome), respectively.
The insert shows the area with reliable data and the medians.

where T = Et/Ei is the complex transmission coefficient. The
incoming field is denoted Ei, and the transmitted Et. The phase shift
is only known modulus 2π. To validate the calculation of the IPD, an
estimation of the thickness of the radome wall is carried out. Under the
assumption of negligible reflections the IPD can be expressed as [48]

IPD =
ω

c

{
Re

√
εr(1− j tan δ) cos θt − cos θi

}
d (13)

for both polarizations, where ω is the angular frequency, c is the speed
of light in vacuum, θi is the incident angle, and θt is the transmission
angle of the field on the inside of the radome wall. Approximate
values of the relative permittivity, εr ≈ 4.32, and the loss tangent,
tan δ ≈ 0.0144, are used. The thickness of the radome wall is denoted
d. The incident angle is approximated to 40◦, cf., Figure 3(b). The
measured radome thickness, d, varies over the surface in the interval
7.6–8.2mm. The phase shift in the main lobe is taken as the medians
of the calculated IPD, see the insert in Figure 18. The medians, for
z ∈ [−0.5,−0.05], are 1.68 rad and 1.40 rad for the co- and the cross-
component, respectively. Solving for d in (13) results in a radome
thickness of 6.9–8.3 mm. The agreement is quite well considering the
approximations made.

An investigation of the phase difference (radome-defect radome),
see Figures 19 and 20, reveals that its harder to localize the actual
positions of the copper plates by using the phase instead of only the
amplitude, cf., Figures 8 and 9. Nevertheless, the upper copper plate
is visible in the 3-D visualization in Figure 19(a), and by looking at a
cross section over the main lobe of the phase difference, the position of
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-π
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(a) (b)

Figure 19. The phase difference between the field when the radome
is present and the field when the defect radome is present, on the
front side of the radome. The arrows point out the copper plates.
(a) (∠Ev

radome − ∠Ev
def radome). (b) (∠Eϕ

radome − ∠Eϕ
def radome).
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Figure 20. Cross section in the middle of the main lobe of the
phase differences depicted in Figure 19. The axis describing the
radome height is truncated and shows only the region where the
phase information is reliable, cf., Figure 18. The blue solid line
corresponds to (∠Ev

radome − ∠Ev
def radome) and the red dashed to

(∠Eϕ
radome − ∠Eϕ

no radome), respectively.

the upper copper plate is located for both components, see Figure 20.
We only show the interval, where the phase is not too contaminated by
noise, cf., Figure 18. The upper copper plate is located on the boundary
to where noise dominates. Thus, if the positions of the copper plate
were not known in advance, the phase shift might be interpreted as
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noise. The lower copper plate also introduces a phase shift, but these
effects are hard to interpret and not confined to the exact position of
the plate.

5. CONCLUSION

The aim of this paper is to reconstruct equivalent currents on a
surface bounding the sources of an electromagnetic field. A vector-
valued surface integral representation is utilized together with the
extinction theorem. The surface integral representation gives a linear
map between the equivalent surface currents and the near-field data
for general geometries. It is shown that this map can be inverted
for axially symmetric geometries with the measured near field. The
theory can be adapted to geometries lacking symmetry axes. However,
it is not a feasible approach for radome applications today due to the
computational demand to solve the integral equations. An alternative
approach would be to address this problem using fast multipoles
methods [49].

In previous papers only the dominating vertical co-component of
the measured field has been used in the reconstruction by using a
scalar integral representation, where comparison with measured far
field shows good agreement [45, 50]. In this paper it is shown that both
components of the equivalent currents can be reconstructed by using
a full-wave surface integral representation. The results for the cross-
component show that also this component provides useful insight of the
complex field close to the antenna and the field altered by the radome.
It is illustrated how the radome interacts with the electric field. In
particular, transmission losses in the radome wall and reflections on
the inside decrease the field in the main lobe, and new side and flash
lobes appear. Both components of the experimentally measured field
can also be used to locate the effect of defects, i.e., copper plates,
not directly visible in the measured near-field data. Furthermore, the
copper plates introduce scattering and alter the flash lobes.

Also, the phase of the reconstructed fields is investigated. The
IPD, i.e., the phase difference, arising when the radome is located
between the antenna and the measurement probe, is visualized. The
results give a good estimate of the thickness of the radome wall. The
effects of the copper plates are visible in the phase shift. However, the
exact location of the defects is hard to determine solely from the phase
images.

This paper shows the potentials of the approach in radome
diagnostics. Next step is to analyze if the electric equivalent current,
i.e., the magnetic field, on the radome surface gives some more
information. Moreover, investigations with different frequencies are
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expected. To localize the exact positions of the defects, a deeper
analyze of 3D-pictures, cf., Figures 8(c) and 9(c), and cross-section
graphs, cf., Figure 11, combined with the phase shift data, is planned.
To use this method in verifying radomes, i.e., calculating the IPD, more
analysis of the phase and its noise levels is planned to be addressed in
a forthcoming paper.
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