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Abstract—The programmable graphics processing unit (GPU) is
employed to accelerate the unconditionally stable Crank-Nicolson
finite-difference time-domain (CN-FDTD) method for the analysis of
microwave circuits. In order to efficiently solve the linear system from
the CN-FDTD method at each time step, both the sparse matrix
vector product (SMVP) and the arithmetic operations on vectors
in the bi-conjugate gradient stabilized (Bi-CGSTAB) algorithm are
performed with multiple processors of the GPU. Therefore, the GPU
based BI-CGSTAB algorithm can significantly speed up the CN-FDTD
simulation due to parallel computing capability of modern GPUs.
Numerical results demonstrate that this method is very effective and
a speedup factor of 10 can be achieved.

1. INTRODUCTION

Fast numerical simulation has particular importance for the analysis
or design of microwave circuits used in a wireless communication
system at microwave frequency. Many numerical methods have
been proposed for this purpose. Among them, the finite-difference
time-domain (FDTD) method developed by Yee [1] is used widely.
However, this method suffers from a limitation that the maximum
time step size is constrained by the minimum spatial resolution defined
by the Courant-Friedrich-Levy (CFL) condition. To overcome this
stability limit, the unconditionally stable Crank-Nicolson FDTD (CN-
FDTD) method for two-dimensional (2-D) and three-dimensional (3-D)
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Maxwell’s Equations has been developed [2–4]. The main advantage of
this method is that the time step size is no longer restricted by stability.
Therefore this method is well suited for the analysis of microwave
circuits with fine geometric details. Recently a 3-D CN-FDTD method
for frequency-dependent media (FD-CN-FDTD) has been presented by
Rouf et al. in [5].

In the processing of the CN-FDTD, a sparse linear system is
needed to be solved at each time step. Generally, iterative solvers such
as the conjugate gradient (CG) and bi-conjugate gradient stabilized
(Bi-CGSTAB) [6, 7] algorithm are preferred to effectively solve the
corresponding linear system. But the computation time for a single
time step is larger than that of standard FDTD. Therefore, the
development of efficient solution methods is crucial for the application
of CN-FDTD in the analysis of microwave circuits. Recently the
graphics processing unit (GPU) featuring massive parallelism and high
memory bandwidth has been used extensively for the acceleration of a
lot of scientific applications [8]. In the computational electromagnetic
society, relative works have also been reported. Krakiwsky et al.
implemented the FDTD on GPU with Opengl as the application
programming interface (API) and gave an almost 10 time speedup
over the CPU [9]. Inman et al. described their FDTD implementation
on the GPU and got an acceleration ratio of 14 in 3-D simulations [10].
Zainud-Deen et al. also proposed a new GPU based implementation
of the FDFD using the Brook+ API developed by AMD [11].
Tao et al. accelerated the Graphical electromagnetic computing
(GRECO) method by moving all electromagnetic computing code to
the GPU [12]. In the context of the method of moments (MoM), Peng
and Nie proposed a GPU speedup scheme for filling impedance matrix
and the iterative solution [13]. They achieved an acceleration ratio of
about 20. These remarkable works inspired us to further investigate the
possibility of employing the GPU for accelerating the iterative solution
in the CN-FDTD simulation.

For the fast solution of a sparse, linear system from the CN-
FDTD, the Bi-CGSTAB algorithm is used because of its faster
convergence behavior while compared with the CG method. The Bi-
CGSTAB algorithm is composed of two kinds of operations: matrix-
vector product (MVP), arithmetic computation on vectors such as
the dot-product of two vectors or vector-vector addition. Due to the
inherent parallelism of these operations, the Bi-CGSTAB algorithm
can be well mapped into the GPU with the help of Compute Unified
Device Architecture (CUDA), which is a friendly API for programming
parallel applications for all NVIDIA’s GPUs [14].

The remainder of this paper is organized as follows. Section 2
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gives a brief introduction to the CN-FDTD. Then Section 3 describes
the hardware implementation of current CUDA-capable GPU and
the programming model of CUDA. The parallelization strategies for
realizing the MVP and vector operations on the GPU are also provided
in Section 3. At last, Numerical experiments and conclusions are
presented in Sections 4 and 5, respectively.

2. BASIC THEORY OF THE CN-FDTD AND THE
BI-CGSTAB ALGORITHM

2.1. Formations of the CN-FDTD

According to [4], the Crank-Nicolson scheme solves the discretized
Maxwell’s equations by a full time step size with one marching
procedure, and averages the right-hand-sides of the discretized
Maxwell’s equations at n + 1 time step and n time step. In three-
dimensional lossless medium, a set of equations with unknown coupled
electric field can be obtained by applying the CN algorithm to the
Maxwell’s equations. The update equations for electric field at n + 1
time step can be written in the following form
(
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Then, the update equations for three field components can be rewritten
in the form of matrix as follows

Ax = b (2)

where x = [Ex,Ey,Ez]T . In addition, the Mur’s first-order absorbing
boundary conditions (ABCs) [15] are used to truncate the outer
surfaces in the CN-FDTD method we implemented.

2.2. Serial Bi-CGSTAB Algorithm

The Bi-CGSTAB algorithm is selected to solve the large, sparse and
non-symmetric linear system (2) in the CN-FDTD method. An
advantage of the Bi-CGSTAB algorithm is that the computation of
transpose matrix vector multiplication is avoided at each iterative step.
Since the introduction of the Bi-CGSTAB algorithm can be found
in [6, 7], for simplicity the basic procedure is presented as follows.

The Bi-CGSTAB Algorithm
(1) For an initial guess x0, p0 = r∗0 = r0 = b−Ax0

(2) For k = 1, 2, 3, · · ·, n to convergence
(3) ak = 〈rk, r∗0〉 / 〈Apk, r

∗
0〉

(4) sk = rk − akApk

(5) ωk = 〈Ask, sk〉 / 〈Ask,Ask〉
(6) xk+1 = xk + akpk + ωksk

(7) rk+1 = sk − ωkAsk

(8) βk = 〈akrk+1, r∗0〉 / 〈ωkrk, r∗0〉
(9) pk+1 = rk+1 + βk(pk − ωkApk)
(10) Judge convergence: ‖rk+1‖ / ‖r0‖ < ε

The solution of linear systems consumes more than 95% of the
CPU time for most of CN-FDTD applications in the analysis of
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microwave circuits. It is meaningful to develop an efficient method for
iterative solution so that the simulation time of the CN-FDTD can be
greatly reduced. Obviously, The Bi-CGSTAB algorithm can be divided
as the following three basic operations: (1) saxpy, which performs the
calculation of z = alpha ∗ x + y, where x, y and z are both real
vectors of size n, and alpha is a scalar; (2) computing the dot product
of two vectors; (3) the sparse matrix vector product (SMVP). Since
all these operations offer the parallelism, which can be exploited using
parallel computing. In order to speed up the CN-FDTD simulation,
the parallelization of these operations on the GPU is implemented by
utilizing their parallelism in next section.

3. GPU ACCELERATING THE CN-FDTD:
PROGRAMMING MODEL AND PARALLELIZATION
STRATEGY

3.1. CUDA Programming Model and GPU Architecture

Before mapping a computing task into the GPU, it is necessary to well
understand the hardware architecture and programming environment
of the GPU, which are closely related to the parallelization strategies
and computational resources available to a programmer. In our current
implementation, the CUDA API provided by NVIDIA is used to
program the GPU.

CUDA is an extension of C and an associated API for issuing
and managing computations on the GPU as a data-parallel computing
device without the need of mapping them to a graphics API (such
as the Opengl or DirectX) [8, 14]. On the other hand, it is also a
hardware implementation of NVIDIA’s GPU. According to [14], the
computing module of a CUDA-capable GPU is a set of multiprocessors,
each of them consisting of 8 processors, and each processor of
the multiprocessor supports parallel executing model of the single-
instruction multiple-data (SIMD). Furthermore, each multiprocessor
has a set of 32-bit registers, as well as read-only caches, and a shared
memory which can be used to share data between the threads within
a thread block. The device memory is located out of chip and plays
the role of storing massive data.

One highlight characteristic of CUDA technique is the multithread
mechanism which can effectively hide the latency of accessing to the
device memory by sustaining thousands of threads at the same time for
general computing task. Generally, a highly parallel task characterized
by the SIMD feature is divided into a collection of sub-tasks and each
sub-task can be handled by one thread. Therefore, thousands or even
millions of threads may be produced for a parallel task. These threads
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are organized as a grid of thread blocks and each block consists of a
batch of threads. As shown in Fig. 1, a simple example of the CUDA
thread model is given. The grid of thread blocks is then executed
on the GPU by assigning blocks for execution on the multiprocessors,
i.e., each multiprocessor processes batches of blocks one batch after
the other. As the number of threads in a block is often larger than
that of processors in a multiprocessor, a time-sliced strategy is applied
to schedule threads for parallel execution to make every processor
busy. The good introduction of the thread model and hardware
implementation of the CUDA technique can be found in [14].

3.2. Parallelization Strategy for the Saxpy

In order to clarify the parallelization strategy for the Saxpy, an example
of the Saxpy is shown in Fig. 2, where x, y and z are both real vectors
of size 8, and alpha is equal to 1.0. By assigning one thread to compute
one element of vector z, the calculation of Saxpy can be parallelized
with the CUDA technique. Thus this parallelization strategy can
directly be applied to step (4), (6), (7), (9) in the iteration of the
Bi-CGSTAB algorithm.
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3.3. Parallelization Strategy for Computing the Dot
Product of Two Vectors

The operation of two vectors’ dot product reduces all the elements
of two vectors to a single element. This fact leads to a complex
strategy for parallelizing the operation of two vectors’ dot product.
To explain the parallel strategy clearly, we consider the calculation
of the dot(x,y), where x and y are both real vectors of size 8. The
process of the dot(x,y) is divided into two steps in our implementation.
The first step is to multiply the vector x by the vector y and store the
results in an auxiliary vector z of size 8. Note that this step does
the element by element multiplication with the proper elements of two
vectors. Obviously, the parallelization strategy used for the saxpy is
also suitable for the process of the first step. The second step is to sum
the auxiliary vector z for the final result and a multi-pass summation
algorithm is employed in this step. As shown in Fig. 3, the first pass has
4 threads, each of which reads two elements of vector z and writes their
sum to a single element. In the second pass, the number of working
threads reduces in half and each thread does the same process as the
first pass. Then the following pass repeats again until a single thread
is survived. Finally the result of the dot(x,y) is obtained through
the single thread. Similarly, the operation of two vectors’ dot product
within the Bi-CGSTAB algorithm can be accomplished by the GPU in
parallel.
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Figure 3. Thread model for calculating the dot-product of vector x
and y.
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3.4. Parallelization Strategy for the Sparse Matrix Vector
Product

It is well known that the most common representation for sparse
matrices is the compressed sparse row (CSR) format [16]. This CSR
format is suitable for our GPU implementation of the SMVP. As shown
in Fig. 4, the CSR representation of a simple sparse matrix A is given.
A 1-dimensional (1-D) array named SparseA contains all the non-zero
elements of the sparse matrix, the 1-D array IA indicates the position
in the SparseA where each row starts, and JA stores the column index
for each non-zero element. Similarly the sparse matrix arising from the
CN-FDTD is also represented by these arrays. Considering the serial
implementation of the Ax = y, where x and y are both column vectors
of size 4, the ith element of vector y (yi) is obtained by computing a dot
product of the ith row of A and vector x, and the element of vector y is
calculated in turn. As shown in Fig. 5, since each element of vector y is
computed independently, we can simply assign one thread to compute
one element of vector y. By using this parallelization strategy, the task
of the SMVP in the CN-FDTD can be executed by multiple threads
in parallel.

The parallel Bi-CGSTAB algorithm on the GPU can be
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implemented with above parallelization strategies. Hence the time for
the iterative solution of the matrix equation can be reduced in the CN-
FDTD. At the beginning of solving the linear system corresponding
to a time step, the right hand vector b has to be transferred into
the device memory of the GPU. When the convergence condition for
a time step is achieved, the solution vector is copied into the main
memory of the CPU. Therefore, our proposed GPU based Bi-CGSTAB
algorithm has a low data communication between the CPU and GPU.
For convenience, the GPU accelerated CN-FDTD method is called the
GPU-CN-FDTD.

4. NUMERICAL RESULTS AND DISCUSSIONS

In this section, a number of numerical results are presented to illustrate
the efficiency of the GPU-CN-FDTD method. All the results are
derived on an Intel Core 2 E8400 CPU running at 3.0GHz with
4GB local memory and a NVIDIA GeForce GTX280 GPU with 1 GB
video memory while using single-precision floating-point numbers. The
GPU-CN-FDTD method is realized through the use of the CUDA
technique in the Microsoft Visual Studio 2005. The conventional CN-
FDTD with the Bi-CGSTAB algorithm is executed by the E8400 CPU.

In the CN-FDTD simulation, the time step size dt is ten times
greater than that of the conventional FDTD. The iterative process is
terminated when the relative residual norm is reduced by 10−7 for the
Bi-CGSTAB algorithm. Additionally the zero vector is taken as an
initial approximate solution.

As shown in Fig. 6, a T -junction microstrip filter is simulated [17].

x

y

z

µm

1530 m

εr=9.9  230µm

230 m·
Ob1

Ob2·

µ
µ

510

Figure 6. Geometry and di-
mensions for the T -junction mi-
crostrip.

-1

-0.5

0

0.5

1

1.5

2

2.5
3

0 100 200 300

Time steps

V
o
lt
ag

es

GPU-CN-FDTD

CN-FDTD

Figure 7. Comparison of time
domain waveforms for voltages at
observation point 2.



390 Xu et al.

The grid size is chosen to be dx = 57.5µm, dy = 38.25 µm, dz =
102µm, leading to a mesh of 16 × 66 × 60. A 15 ps Gaussian pulse
is used for source excitation and the size of the time step is set as
1.014 ps. Since the current GPU supports a single-precision floating-
point standard which is a subset of IEEE 754, sufficient accuracy can
be provided for GPU computing [14]. As shown in Fig. 7, the time
domain voltage waveform at the observation point 2 is given. It can
be seen that the results of the GPU-CN-FDTD agree well with those
of conventional CN-FDTD method.

The second example considered here is the calculation of a
microstrip branch line coupler [18] as shown in Fig. 8. The grid size
is chosen to be dx = 0.265mm, dy = 0.4064mm, dz = 0.406mm,
resulting into a mesh of 15 × 54 × 80. The dielectric constant εr is
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Figure 8. Geometry and dimen-
sions of a microstrip branch line
coupler.
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equal to 2.2, a 25 ps Gaussian pulse is used for source excitation and the
time step size is 6.4967 ps. As shown in Figs. 9 and 10, the S11 and S21

parameters are calculated by the GPU-CN-FDTD and conventional
CN-FDTD method, respectively. It can be found that there is a good
agreement between them.

As shown in Fig. 11, an interdigital capacitor is simulated and its
dimensions are given in [19]. The interdigital capacitor is modeled by a
mesh of 16×38×220, where the grid size is chosen to be dx = 0.125mm,
dy = 0.15mm, dz = 0.15 mm. The dielectric constant εr is equal
to 2.2. The size of Gaussian pulse and time step is 30 ps, 2.6977 ps,
respectively. As shown in Figs. 12 and 13, the S11 and S21 parameters
are computed by the GPU-CN-FDTD and conventional CN-FDTD. It
can be seen that there is also a good agreement between the GPU-CN-
FDTD and CN-FDTD methods.

Table 1 illustrates the simulation time of both the GPU-CN-
FDTD method and the conventional CN-FDTD method with respect
to the above circuits. The numbers of time step required in the
simulations are 350 for the T -junction filter, 250 for the microstrip
branch line coupler, 3000 for the interdigital capacitor, respectively.
In addition, the numbers of the electric field components to be

-6

-5

-4

-3

-2

-1

0

1

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

f (GHz)

S
1

1
 (

d
B

)

GPU-CN-FDTD

CN-FDTD

Figure 12. S11 parameter
comparison for the interdigital
capacitor.

-16

-14

-12

-10

-8

-6

-4

-2

0

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

S
2

1
 (

d
B

)

GPU-CN-FDTD

CN-FDTD

f (GHz)

Figure 13. S21 parameter
comparison for the interdigital
capacitor.

Table 1. Total solution time of GPU accelerated CN-FDTD and
conventional CN-FDTD method (in second).

CPU GPU Speedup
T -junction microstrip 2076.188 193.828 10.711

Coupler 1367.766 124.469 10.988
Interdigital capacitor 32202.330 2794.344 11.524
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solved (unknowns) are 184856 for the T -junction filter, 186777 for the
microstrip branch line couple, and 387681 for the interdigital capacitor,
respectively. It can be found from Table 1 that the GPU-CN-FDTD is
about 10 times faster than the conventional CN-FDTD method. The
numerical simulations demonstrate that a GPU can significantly speed
up the conventional CN-FDTD method due to the parallel processing
ability of the GPU.

In order to show how the number of threads affects the
performance of GPU-CN-FDTD method, the SMVP on the GPU
is compared with the serial SMVP executed by the CPU since the
SMVP consumes 80% of the total time at each iterative step of GPU-
CN-FDTD method in our numerical experiments. Considering the
calculation of the Ax = y for the interdigital capacitor (the size of
vector y is 387681), the number of threads is increased from 1 to
387681. When the number of threads is smaller than 387681, each
thread will compute multiple elements of vector y. Fig. 14 shows the
impact of number of threads on the speedup factors of the SMVP. It
can be seen that the larger the number of threads is, the shorter time
is required for the SMVP. When the number of threads is equal to
387681, the maximum speedup factor is achieved. This demonstrates
that the optimal strategy for parallelizing the SMVP is to assign one
thread for computing one element of vector y. Since the SPMV on
the GPU is mainly limited by memory bandwidth [8, 14], most of the
execution time is spent to read fresh data from the memory. For minor
number of threads, the multiple processors of GPU are not fully used
and thus only a modest speedup factor is obtained. Furthermore, the
same conclusions can be obtained for parallelizing the saxpy and dot
product of two vectors on the GPU.
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5. CONCLUSION

In this paper, the GPU is employed as a co-processor of CPU
to accelerate the CN-FDTD simulation for the analysis of three-
dimensional microwave circuits. The Bi-CGSTAB solver on the GPU
is proposed to solve sparse linear systems from the CN-FDTD. With
multithread model of the CUDA technique, the sparse matrix vector
product and vector operations are parallelized and then executed by
the GPU. Numerical results demonstrate that the GPU accelerated
CN-FDTD agrees well with the conventional CN-FDTD method and
a significant reduction of the solution time can be obtained.
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