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Abstract—Electromagnetic scattering by conducting bodies of
revolution (BOR) coated with homogeneous chiral media above a
lossy half-space is formulated in terms of the Poggio-Miller-Chang-
Harrington-Wu surface integral equation combined with combined field
integral equation. A field decomposition scheme is utilized to split
a chiral media into two equivalent homogeneous media. The spatial
domain half-space Green’s functions are obtained via the discrete
complex image method. Due to the rotational symmetry property
of BOR, the method of moment for BOR (BORMoM) is applied to
the linear system solved by the multifrontal direct solver. Numerical
results are presented to demonstrate the accuracy and efficiency of the
proposed method.

1. INTRODUCTION

Electromagnetic scattering of novel chiral materials has drawn
considerable attention in recent years [1–4]. Progress in the
construction of artificial chiral media could possibly result in the
production of microwave components with new properties. Since the
chirality parameter provides an extra degree of freedom, it may be
possible to use chiral materials to coat an object to achieve more
effective control of its scattering properties [4]. There have been
a lot of efforts made to develop an efficient numerical technique
to solve the electromagnetic scattering problems associated with
chiral objects, for example the eigenfunction solutions [5–7], volume
formulation [8–10], T-matrix method [11–13], and method of moment
(MoM) solution [14, 15], finite element method (FEM) [16] as well
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as finite difference time domain (FDTD) techniques [17–19]. More
recently, surface integral equation (SIE) analysis of homogenous chiral
object has been presented in [20–22] with the MoM solution accelerated
by Multilevel fast multipole method (MLFMM) [23, 24]. The SIE is
also applied to analyze scattering from a homogeneous chiral body
solved by MoM for body of revolution (BORMoM) [15]. This work
presents an extension of SIE for the efficient analysis of electromagnetic
scattering by conducting bodies of revolution (BOR) coated with chiral
media located above a lossy half-space.

The problem of electromagnetic scattering from conducting BOR
coated with chiral media above a lossy half-space is formulated using
the Poggio-Miller-Chang-Harrington-Wu integral equation combined
with combined field integral equation (PMCHW-CFIE) [25–27]. The
discrete complex-image method (DCIM) [28, 29] is applied to obtain
the spatial domain half-space Green’s functions in closed forms. The
coupled PMCHW-CFIE is solved by BORMoM. A BOR object can
be generated by rotating a generating arc about the axis of symmetry.
We can take advantage of the rotational symmetry, and expand the
currents on the BOR in Fourier series in azimuth ϕ. For this reason
BOR simulations are often referred to as 2.5-D problems and can
be solved efficiently with reduced memory and computation over
their 3-D counterparts. Furthermore, with the aid of the Bohren
decomposition scheme, the fields in chiral media can be decomposed
into left- and right-handed Beltrami fields, which individually satisfy
the Maxwell equations responding to two respective isotropic mediums
characterized by equivalent isotropic parameters [5]. Once two uncou-
pled Beltrami fields are obtained by separately applying the surface
equivalence principle to two equivalent isotropic mediums, the fields for
chiral media can be obtained by a linear combination of the Beltrami
fields.

The goal of this paper is to achieve accurate and fast analysis of
the electromagnetic scattering by a conducting BOR coated with chiral
media located above a lossy half-space. In Section 2, the theory and
formulation for chiral coated conducting BOR above a half space is
presented. Numerical examples are given to demonstrate the accuracy
and efficiency of the proposed method in Section 3. Section 4 gives
some conclusions. Throughout this paper, all fields and currents
are considered to be time-harmonic with the time dependence of
suppressed.
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2. FORMULATION AND THEORY

2.1. PMCHW-CFIE Formulation

The configuration of an arbitrarily shaped BOR conducting body
coated with chiral media in half-space is shown in Figure 1. The chiral
media is characterized by (εc, µc, ξ), where ξ is chirality parameter.
The dielectric parameters of half-space are (εgr, µgr) and (ε0, µ0) are
the dielectric parameters of free-space. As shown in Figure 1, the
dielectric surface is S1, and the metallic surface is S2. The composite
structure is illuminated by an incident plane wave (Einc, H inc). By
invoking the equivalence principle, the problem can be cast into an
exterior and interior equivalent problem. By enforcing boundary
conditions for the tangential electric and magnetic filed components on
the BOR surface S1 and S2, one obtains coupled integral equations for
the electric and magnetic surface currents, J1, J2 and M1, respectively.
These integral equations can be put in a mixed potential form

On S1 : Eext (J1,M1) |tan + Eint
1 (J1,M1)

∣∣
tan + Eint

2 (J2) |tan

= −
(
Einc + Eref

)
|tan (1)

Hext (J1,M1) |tan + Hint
1 (J1,M1)

∣∣
tan + Hint

2 (J2) |tan

= −
(
Hinc + Href

)
|tan (2)

On S2 : Eint
1 (J1,M1)

∣∣
tan + Eint

2 (J2) |tan = 0 (3)

Hint
1 (J1,M1)

∣∣
tan + Hint

2 (J2) |tan = −J2/2 (4)

where the subscript “tan” refers to vector components tangential to
S1 and S2. Eext(J1,M1) and Hext(J1,M1)represent the electric and
magnetic fields radiated by the equivalent surface currents J1 and
M 1 in the upper half space environment, respectively. Eint

1 (J1,M1)
and Hint

1 (J1,M1) denote the electric and magnetic fields radiated by
equivalent surface currents J1 and M1 in the unbounded homogeneous
chiral medium (εc, µc, ξ), respectively. Eint

2 (J2) and Hint
2 (J2) represent

the electric fields radiated by the equivalent surface currents J2 in the
unbounded homogeneous chiral medium (εc, µc, ξ). Note that the total
incident field includes the incident field (Einc, H inc) and the reflected
field (Eref, Href) in the presence of the half-space.

The constitutive relationships for the homogeneous chiral medium
(εc, µc, ξ) can be written as:

D = εcE− jξH B = µcH + jξE (5)

It is well known that each of electromagnetic fields E and H in
a homogeneous chiral medium can be decomposed into two waves,
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Figure 1. An arbitrarily conducting BOR coated with chiral media
object located above half-space.

namely, the right-handed Beltrami fields (E+, H+) and left-handed
Beltrami fields (E−, H−) [5]:

E = E− + E+ H = H− + H+ (6)

where E± = (1/2)(E ∓ jη2H), H± = (1/2)[H ± (j/η2)E] and the
intrin-sic impedance is η2 =

√
µc/εc. The right- and left-handed

Beltrami fields E±, H± satisfies Maxwell’s equations with ε±, µ± and
the Beltrami current density J±, M±, where J± = 1/2(J∓ j/η2M),
M± = 1/2(M∓ jη2J), ε± = εc± ξ/η2 and µ± = µc± ξη2. Finally, the
wavenumbers associated with the circularly polarized plane-wave fields
are given by k± = ω

√
µ±ε± = ω

√
µcεc(1± ξr), where ξr = ξ/

√
εcµc is

the relative chirality. The interior equivalent fields are radiated by the
equivalent surface currents J1, J2 and M1. It can be represented in
terms of the mixed potential form:

Eint
1 (J1,M1) =

1
2
{[−L+ (J1)−K+ (M1)]+[−L− (J1)−K− (M1)]

−j [−L+ (M1) + η2K+(J1)]
+ j [−L− (M1) + η2K− (J1)]} (7)

Hint
1 (J1,M1) =

1
2
{[K+ (J1)−1/η2L+ (M1)]+[K− (J1)−1/η2L− (M1)]

+j/η2 [−L+ (J1)−K+ (M1)]
− j/η2 [−L− (J1)−K− (M1)]} (8)
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Eint
2 (J2) = −1

2
{−L+ (J2)−L− (J2)−jη2 [K+ (J2)−K− (J2)]} (9)

Hint
2 (J2) = −1

2
{[K+ (J2)+K− (J2)]−j/η2 [L+ (J2)−L− (J2)]} (10)

where

K±(χ) = ∇×
∫

S′

G±
(
r, r′

)
χ

(
r′

)
dS′ (11)

L±(χ) = jωµ±
∫

S′

G±
(
r, r′

)
χ

(
r′

)
dS′

− ∇
jwε±

∫

S′

G±
(
r, r′

)∇ · χ (
r′

)
dS′ (12)

With G±(r, r′) = e−jK±|r−r′|/(4π|r− r′|), r and r′ denote the
observation and sources points, respectively.

The exterior equivalent fields produced by the equivalent surface
currents J1 and M1 in the upper half-space are given in terms of the
mixed potential form, as follows:

Eext (J1,M1) = −Le
h(J1)−Ke

h (M1) (13)
Hext(J1,M1) = −Lm

h (M1)−Km
h (J1) (14)

where

Ke
h (M) = −

∫

S′

¯̄GEM (r, r′) ·M(r′)dS′ (15)

Km
h (J) = −

∫

S′

¯̄GHJ(r, r′) · J(r′)dS′ (16)

Lm
h (M) = jωε0

∫

S′

¯̄KF

(
r, r′

) ·M (
r′

)
dS′

− ∇
jwµ0

∫

S′

Kφm

(
r, r′

)∇ ·M (
r′

)
dS′ (17)

Le
h(J) = jωµ0

∫

S′

¯̄KA

(
r, r′

) · J (
r′

)
dS′

− ∇
jwε0

∫

S′

Kφe

(
r, r′

)∇ · J (
r′

)
dS′ (18)
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Details on the dyadic Green’s function ¯̄KA, ¯̄KF , ¯̄GEM , ¯̄GHJ and on
the scalar Green’s function Kφe, Kφm can be found in [30]. According
to “formulation C” in [30], the dyadic kernel functions ¯̄KA,F (r, r′) and
dyadic Green’s functions ¯̄GHJ,EM (r, r′) are written as:

¯̄KA,F = (xx + yy) Kxx
A,F + xzKxz

A,F + yzKyz
A,F + zxKzx

A,F

+zyKzy
A,F + zzKzz

A,F (19)
¯̄GEM = GEM

xx (xx + yy) + GEM
xy xy + GEM

xz xz + GEM
yx yx + GEM

yz yz

+GEM
zx zx + GEM

zy zy (20)
¯̄GHJ = GHJ

xx (xx + yy) + GHJ
xy xy + GHJ

xz xz + GHJ
yx yx + GHJ

yz yz

+GHJ
zx zx + GHJ

zy zy (21)

In general, the spatial domain Green’s functions are expressed in terms
of Sommerfeld integrals. Due to the highly oscillatory nature of the
integrand, numerical integration is very time consuming. In this paper,
a two-level Generalized Pencil of Function (GPOF) method is utilized
to realize DCIM [29]. Then, the spatial domain Green’s functions can
be obtained in closed forms from their spectral-domain counterparts
via the Sommerfeld identity.

To express (19)–(21) in a form suitable for the BOR problem, we
utilize the transformations as shown in Figure 2:

n̂ = cos v cosφx̂ + cos v sinφŷ − sin vẑ (22)

φ̂ = − sinφx̂ + cosφŷ (23)
t̂ = cosφ sin vx̂ + sinφ sin vŷ + cos vẑ (24)

where t̂ is a unit vector along the generating arc, φ̂ is a unit vector in
the azimuthal direction, n̂ is a unit normal vector along the generating

z

x

y

φ ρ

n̂

φ̂

t̂

ρ̂

v

Figure 2. The transformation of coordinate system for the BOR.
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arc and ρ̂ is a unit radial vector along the generating arc. v is angle
between the vectors t̂ and ẑ, and v is positive when t̂ points away from
the z axis.

After substituting (6)–(9), (12) and (13) into (1)–(4), a set of
coupled integral equations (PMCHW + CFIE) are obtained as follows:

1/2 {L+ (J1) + L− (J1) + K− (M1) + K+ (M1) + 2L (J1)
+jη2 [K+ (J1)−K− (J1)] + 2K (M1)− j [L+ (M1)− L− (M1)]
−L− (J2)−L+ (J2)− jη2 [K+ (J1)−K− (J1)]} |tan = Einc |tan (25)
1/2 {j/η2 [L+ (J1)− L− (J1)]−K+ (J1)−K− (J1)
+j/η2 [K+ (M1)−K− (M1)]− 2K (J1) + 2/η1L (M1)
+1/η2 [L+ (M1) + L− (M1)] + K+ (J2) + K− (J2)
−j/η2 [L+ (J2)− L− (J2)]} |tan = Hinc |tan (26)
α/2 {L+ (J1) + L− (J1) + jη2 [K+ (J1)−K− (J1)]
+K+ (M1) + K− (M1)− j [L+ (M1)− L− (M1)]
−L+ (J2)− L− (J2)− jη2 [K+ (J2)−K− (J2)]} |tan

+η1 (1− α) /2 {n̂2× [1/η2 (L+ (M1) + L− (M1))
−K+ (J1)−K− (J1) + j/ (K+ (M1)−K− (M1))
+j/η2 (L+ (J1)− L− (J1)) + K+ (J2) + K− (J2)
−j/η2 (L+ (J2)− L− (J2))]− J2/2} = 0 (27)

where η1 =
√

µ0/ε0 and α is the combination parameter ranges from
0 to 1.

2.2. BORMoM Solution of PMCHW-CFIE

We expanded the unknowns J1, J2 and M1 in (25)–(27) with the
rooftop triangular basis functions [31]. Due to the rotational symmetry
of the BOR, the incident fields, surface currents and Green’s functions
are further expanded into discrete Fourier series along the azimuthal
(φ or φ′) direction. The currents are represented using rooftop
triangular basis along the generating arc (coordinate t) and Fourier
series expansion for the periodic azimuthal variation. The usage of the
axisymmetric property of the BOR can convert an original electrically
large BOR-problem into a series problem with small size of matrix
equations, which can greatly reduce the computational cost. We call
each small problem a Fourier mode of the original one. Using the
Galerkin’s method, a matrix equation for each Fourier mode n can be
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obtained as:


[
ZJJ

11n

] [
ZJM

11n

] [
ZJJ

12n

]
[
ZMJ

11n

] [
ZMM

11n

] [
ZMJ

12n

]
[
ZJJ

21n

] [
ZJM

21n

] [
ZJJ

22n

]




[ [I1n]
[M1n]
[I2n]

]
=

[[Vn]
[Un]
0

]
(28)

Z is the impedance matrix for the nth Fourier mode. The superscripts
J and M of ZJM

12n denote the electric and magnetic currents,
respectively. The subscript 1 of ZJM

12n denotes equivalent currents along
the exterior chiral surface of coated BOR, 2 denotes equivalent currents
along the interior metal surface of coated BOR, n denotes the order of
Fourier mode. I1n, I2n and M1n are the column vectors containing the
unknown coefficients of the electric and magnetic currents J1, J2 and
M1 along the generating arc of chiral coated BOR, and V and U are the
right-hand exciting vector depending on the Fourier series coefficients
(nth mode) of the incident electric and magnetic fields tangential to
the BOR. The detailed expressions of the impedance matrix blocks
in (28) are defined as:

ZJJpq
11 =

〈
~W p

1ni

1
2

{
2Le

h

[
~Jq
1nj

]
+ L+

[
~Jq
1nj

]
+ L−

[
~Jq
1nj

]

− jη2

(
K+

[
~Jq
1nj

]
−K−

[
~Jq
1nj

])}〉
(29)

ZJMpq
11 =

〈
~W p

1ni

1
2

{
−2Ke

h

[
~M q

1nj

]
−K+

[
~M q

1nj

]
−K−

[
~M q

1nj

]

− j

η2

(
L+

[
~M q

1nj

]
− L−

[
~M q

1nj

])}〉
(30)

ZMJ pq
11 =

〈
η1

~W p
1ni

1
2

{
2Km

h

[
~Jq
1nj

]
+ K+

[
~Jq
1nj

]
+ K−

[
~Jq
1nj

]

+
j

η2

(
L+

[
~Jq
1nj

]
− L−

[
~Jq
1nj

])}〉
(31)

ZMM pq
11 =

〈
η1

~W p
1ni

1
2

{
2
η2
1

Lm
h

[
~M q

1nj

]
+

1
η2
2

(
L+

[
~M q

1nj

]
+L−

[
~M q

1nj

])

− j

η2

(
K+

[
~M q

1nj

]
−K−

[
~M q

1nj

])}〉
(32)

ZJJpq
12 =

〈
~W p

1ni

1
2

[
−L+

[
~Jq
2nj

]
− L−

[
~Jq
2nj

]

+ jη2

(
K+

[
~Jq
2nj

]
−K−

[
~Jq
2nj

])]〉
(33)
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ZMJ pq
12 =

〈
η1

~W p
1ni

1
2

[
−K+

[
~Jq
2nj

]
−K−

[
~Jq
2nj

]

− j

η2

(
L+

[
~Jq
2nj

]
− L−

[
~Jq
2nj

])]〉
(34)

ZJJpq
21 =

〈
~W p

2ni

α

2

{
L+

[
~Jq
1nj

]
+ L−

[
~Jq
1nj

]

η1n̂×
(
K+

[
~Jq
1nj

]
+ K−

[
~Jq
1nj

]

−jη2

(
K+

[
~Jq
1nj

]
−K−

[
~Jq
1nj

])}
+

1− α

2

+
j

η2
L+

[
~Jq
1nj

]
− j

η2
L−

[
~Jq
1nj

])
〉

(35)

ZJMpq
21 =

〈
~W p

2ni

α

2

{
−K+

[
~M q

1nj

]
−K−

[
~M q

1nj

]

η1n̂×
{
−

(
K+

[
~M q

1nj

]
−K−

[
~M q

1nj

])

− j

η2

(
L+

[
~M q

1nj

]
− L−

[
~M q

1nj

])}
+

1− α

2

+
j

η2
2

(
L+

[
~M q

1nj

]
+ L−

[
~M q

1nj

])}
〉

(36)

ZJJpq
22 =

〈
~W p

2ni

α

2

[
−L+

[
~Jq
2nj

]
− L−

[
~Jq
2nj

]

η1

{
−n̂×

[
K+

[
~Jq
2nj

]
+ K−

[
~Jq
2nj

]

+jη2

(
K+

[
~Jq
2nj

]
−K−

[
~Jq
2nj

])]
+

1− α

2

+
j

η2

(
L+

[
~Jq
2nj

]
− L−

[
~Jq
2nj

])]
−

~Jq
2nj

2

}
〉

(37)

[I1]n=
[[

It
1n

][
Iφ
1n

]]T
[M1]n=

[[
M t

1n

][
Mφ

1n

]]T
[I2]n=

[[
It
2n

][
Iφ
2n

]]T
(38)

[V ]n=
[[

V t
n

][
V φ

n

]]T
[V p

n ]i =
〈

⇀

W
p

ni,
⇀

E
i
〉

(39)

[U ]n =
[[

U t
n

] [
Uφ

n

]]T
[Uα

n ]i = η1

〈
⇀

W
α

ni,
⇀

H
i
〉

(40)

The superscript p and q denote t or φ direction. ~W p
1ni and ~W p

2ni
denote the exterior and interior current testing rooftop basis functions,
respectively. Thus, the linear system of equations in (28) can be
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solved to obtain the unknown electric current and magnetic current
coefficients. Finally, we can obtain the scattering characteristics of a
conducting BOR coated with chiral media above a lossy half-space.

3. NUMERICAL RESULTS

In this section, we show some numerical results for electromagnetic
characteristic of conducting BOR coated with chiral media above
a lossy half-space that illustrate the accuracy and effectiveness of
the proposed PMCHW-CFIE formulation solved by BORMoM. The
PMCHW-CFIE linear systems based on the rooftop triangular basis
functions are solved by the multifrontal direct solver [31]. All numerical
experiments are performed on a Pentium 4 with 2.9 GHz CPU and 2GB
RAM in single precision.

The first example is a conducting sphere coated with chiral media
in free space. The conducting sphere is coated by chiral media with
inner radius of 0.9λ and outer radius of λ. The dielectric parameter of
chiral media is chosen with εcr = 2.667, µcr = 1.333 and ξr = 0.5.
The frequency of incident electromagnetic wave is 300 MHz. The
incident and scattered angle are θi = 0◦, φi = 0◦ and θs = 0–180◦,
φs = 0◦, respectively. Figure 3 gives the VV- and HH-polarized
bistatic RCS for the above free-space chiral coated conducting sphere.
It can be found that the results using the proposed BORMoM method
are in good agreement with the results solved by GMRES method
combined with fast multipole method (FMM) in [22]. Table 1 lists
the comparison of number of unknowns, total computation time and
RAM requirement between BORMoM and FMM method for the above
chiral coated sphere in free space. The total computation time includes
both the construction time of impedance matrix and the solution time
of matrix equation. The chiral coated metallic sphere is discretized
with triangular basis functions along the generating arc leading to 394
unknowns while the number of unknowns is 26799 in [22]. Compared
with FMM, the BORMoM can save much RAM requirement by a
factor of 5.9. It can be found that the BORMoM can also save much
computation time by a factor of 14.7 than the FMM for this free-space
example.

Next, we investigate electromagnetic scattering from a conducting
BOR coated with chiral media above a lossy half-space. The second
example is a conducting sphere coated with chiral media with inner
radius of 0.25λ and outer radius of 0.3λ and is situated 0.4λ above
half space characterized by εrg = 5.0 − j0.2 and µgr = 1.0. The
dielectric parameter of chiral media is chosen with εcr = 3.0, µcr = 1.0,
and ξr = 0.3. The target axis is orthogonal to the flat air-ground
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interface. The frequency of incident electromagnetic wave is 300 MHz.
The incident and scattered angle are θi = 0◦, φi = 0◦, θs = 0 − 90◦,
φs = 0◦. The VV- and HH-polarized bi-static RCS for the half-space
chiral coated conducting sphere are shown in Figure 4 The results
obtained using the finite element-boundary integral method (FE-BI)
are given in the same figures for comparison. Excellent agreements
are observed between our BORMoM method and the FE-BI method.
The chiral coated metallic sphere is discretized along the generating
arc leading to 154 unknowns while the number of unknowns is 26799
in the FEBI method.

The last example is a conducting cylinder coated with chiral media
above a lossy half-space. The coated conducting cylinder is with
outer diameter of 0.6 m and inner diameter of 0.4 m, outer height of
0.5m and inner height 0.3 m. It is located 0.3m above a lossy half-
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Figure 3. VV- and HH-polarized Bistatic RCS from a conducting
sphere coated with chiral media in free space.
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space characterized by εrg = 5.0 − j0.2 and µgr = 1.0. The target
axis is orthogonal to the flat air-ground interface. The parameter
of coated chiral media (εcr, µcr, ξ) is chosen with (4.0, 1.0, 0.1) and
(4.0, 1.0, 0.5), respectively. The incident angle of Plane-wave is θi =
0◦, φi = 0◦ with frequency 300 MHz. The VV-polarized bistatic
RCS for the half-space chiral coated conducting cylinder are shown
in Figure 5. The results obtained by FE-BI method are also given for
comparison. In the computation, the chiral coated metallic cylinder
is discretized with triangular basis functions leading to 198 unknowns
while the number of unknowns is 19368 in the FEBI method. It can be
found that the BORMoM results agree well with the results in FE-BI.
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Figure 5. VV-polarized Bistatic RCS from a conducting cylinder
coated with chiral media located above a lossy half-space.
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Figure 6. HH-polarized Bistatic RCS from a half-space conducting
sphere coated with chiral media with ξr = 0.0, 0.3, 0.5, 0.7, 0.9.
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Figures 6 and 7 show the VV- and HH-polarized bistatic RCS
results for the above half-space coated conducting sphere example with
chiral media ξr = 0.3, 0.5, 0.7, 0.9 and non-chiral media ξr = 0.0. The
incident and scattered angle are θi = 0◦, φi = 0◦, θs = 0−90◦, φs = 0◦.
As can be seen from the figures, there is an amplitude reduction of
the RCS as compared to the non-chiral coated BOR. Furthermore,
the amplitude reduction of the RCS is increase when the value of ξr

increases from 0.0–0.9. It can be concluded that the chiral media has
the properties of absorbing electromagnetic wave and can be used as
a promising electromagnetic absorber material.
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Figure 7. VV-polarized Bistatic RCS from a half-space conducting
sphere coated with chiral media with ξr = 0.0, 0.3, 0.5, 0.7, 0.9.

Table 1. Comparison for the free-space conducting sphere coated with
chiral media.

Method
Number of
Unknowns

Total Computation
Time

RAM

BORMoM 394 59.7 s 152M
FMM in [22] 26799 881 s 893M

Table 2. Comparison for the half-space conducting sphere coated with
chiral media.

Method
Number of
Unknowns

Total Computation
Time

RAM

BORMoM 154 165.9 s 58M
FE-BI 4780 11964.7 s 83M
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Table 3. Comparison for the half-space coated conducting cylinder
with chiral media.

Method
Number of
Unknowns

Total Computation
Time

RAM

BORMoM 198 210.4 s 95M
FE-BI 19368 24589.5 s 421 M

In order to further investigate the efficiency of the BORMoM
method solving the coupled PMCHW-CFIE formulation for chiral
coated BOR above a lossy half-space, Tables 2 and 3 list the
comparison of number of unknowns, computation time and RAM
requirement between BORMoM and FE-BI methods for the last two
half-space examples. From Tables 2 and 3, it can be found that
the BORMoM method can decrease the number of unknowns due to
the usage of the axisymmetric property of the BOR. When compared
with FE-BI method, the BORMoM decreases RAM requirement by a
factor of 1.4 on the coated sphere example, 4.4 on the coated cylinder
example. We further observed that the BORMoM method can greatly
reduce the total computation time from Tables 2 and 3 because the
BORMoM method can convert an original BOR-problem into a series
problem with small size of matrix equations. When compared with
FE-BI method, the BORMoM save time by a factor of 116.8 on the
coated sphere example, 72.1 on the coated cylinder example.

4. CONCLUSION

In this paper, the coupled PMCHW-CFIE surface integral equation
is extended for analyzing electromagnetic characteristic of conducting
BOR coated with homogeneous chiral media above a lossy half-space.
Due to the axisymmetric property of BOR, the BORMoM method is
used to solve the linear system. The calculated results are validated
with the FE-BI and FMM solutions to demonstrate the accuracy and
efficiency of the proposed method. It can be found that the proposed
BORMoM method is more efficient and can significantly reduce the
overall computational cost.
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