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Abstract—Multifractal dimensions Dq for real q are a more general
parameter than the fractal dimension in describing geometrical
properties. It has been shown that the four multifractal dimensions
D−1, D0, D1 and D2 are able to extract different surface information
of SAR images. In this paper, we investigate the dimension properties
of multifractal dimensions. For land use classification where the
textural information on the surface is important, it is necessary
to look into the properties of multifractal dimensions with the
geometrical properties of terrain. In order to extract the surface
information from SAR images, the optimum number of multifractal
dimensions to be used in the classification process is considered.
To address the suitability of these parameters, these parameters
are applied on a multi-band SAR image with regions of different
textural information and the results are studied. The abilities of
multifractal dimensions in extracting information for different land use
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classes are considered. In general, although multifractal dimensions
provide additional information about the land use classes, there is
no clear relation among the land use classes, image polarization and
multifractal dimensions.

1. INTRODUCTION

The SAR images of earth terrain have fractal characteristics [1] and
fractal dimension has been used as a discriminator in SAR image for
different terrain types [2–5]. However, the studies of classification
of natural earth terrain using fractal dimension are not conclusive,
thus there are more works to be done in improving the method of
fractal geometry in this field. The problem arises due to the fact that
surfaces with different texture may portray similar fractal dimensions.
Evertsz and Mandelbrot [6] suggested that multifractal dimension may
be a more appropriate parameter than fractal dimension in describing
geometrical properties of a fractal set. They have done a thorough
study on multifractal and the study showed that multifractal is a
more general parameter than the fractal dimension (or box counting
dimension) [7]. Multifractal dimension has also been used as a
parameter to segment SAR images [8] and the result is promising.
In [9], the multifractal dimensions Dq has shown to provide better
surface roughness information in land use classification for SAR image
when Dq for q = −1, 0, 1, 2 were combined in classifying image,
compared to using only a single q value. The fractal dimension D0

gives the surface roughness information; the entropy dimension D1

gives the regularity of distribution of points on the surface bounded by
its window size; whereas the correlation dimension D2 gives correlation
of points in an area [10]. If D2 has a higher value for a certain region,
it shows that the relationship amongst the points are closely related.
The dimension D−1 gives the homogeneity of an area. High value of
D−1 indicates less homogeneous region.

In this paper, the optimum number of multifractal dimensions
being used to extract surface information is considered. We showed
that surface information as described by Dq for q > 2 can be reduced
to D2 and thus it is sufficient to use correlation dimension D2 to extract
surface information since it is more computation expensive to calculate
Dq for q > 2. Furthermore, we have also shown that fractal properties
as described by Dq for q ≤ −1 are reducible to the case D−1. Hence, the
four multifractal dimensions, D−1, D0, D1 and D2 are used to extract
different surface information and by combining these information, we
are able to characterize the pixel based on more textural information
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and thus would help describe the texture image more accurately. These
multifractal dimensions were applied to classify a multi-band multi-
polarized AIRSAR image with C-, L- and P -bands of HH, HV and
VV polarizations with four land use classes. Each band and each
polarization gives different spatial information and this information
can be further enhanced by calculating their multifractal dimensions
D−1, D0, D1 and D2. We compared the effectiveness of multifractal
dimensions by applying individual multifractal dimension to classify
different land use classes of multi-band multi-polarized image. It is
shown that there is no single dimension value that is suitable for all
bands and all polarization. The combination of multifractal dimensions
portray consistency in classification for all land use classes, while
the single multifractal dimension would give different accuracies on
these land use classes when applied on images of different bands and
polarizations. It is not easy to observe a clear relation between image
polarization and multifractal dimensions with different land use classes.

2. MULTIFRACTAL DIMENSIONS

The multifractal dimensions were defined based on partition function.
Consider the mass dimension α at the point x

∼, the box Bε(x∼) is a box

of radius ε centered at x
∼, µ(Bε(x∼)) the probability measure or mass in

the box. It can be shown that µ(Bε(x∼)) is proportional to εα [10]:

µ
(
Bε

(
x
∼

))
∝ εα. (1)

The mass dimension specifies how fast the mass in the box Bε(x∼)

decreases as the radius ε approaches to zero [10], in fact,

α = lim
ε→0

log µ
(
Bε

(
x
∼

))

log ε
. (2)

As an exponent, the exponent α is called the Holder exponent at
the point x

∼. If the Holder exponent α does not depend on x
∼, the set

is a homogeneous fractal, else it is called an inhomogeneous fractal or
a multifractal. For calculation purpose, the coarse Holder exponent

α =
log µ(Bε(x∼))

log ε is used, where the value of α is obtained from the slope
of the log-log plot of the graph log µ(Bε(x∼)) versus log ε.

Define a partition function

χq (ε) =
N∑

i=1

µq
i , q ∈ R, (3)
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where µi is the measure of the box of size ε and
N∑

i=1
µi = 1, N the

number of boxes of size ε that covers the underlying set, and q is a real
valued quantity. If µi satisfies the multifractal model, the partition
function can be related to the Holder exponent by using the power
law [6]:

χq (ε) ∼ ετ(q), (4)

where τ (q) = qα (q) − f (α (q)) with f (α) being the multifractal
spectrum that describes the distribution of the coarse Holder exponent
α. Here, the roles played by χq (ε) and τ (q) are similar to the
roles played by the “partition function” and the “free energy” in
thermodynamics. From Equation (4),

τ (q) = lim
ε→0

log
N∑

i=1
µq

i

log ε
. (5)

The partition function τ(q) is sometimes written as

τ (q) = (q − 1) Dq (6)

where Dq is the multifractal dimension. Thus from Equations (5) and
(6), Dq can be written as

Dq =
τ (q)
q − 1

=
1

q − 1
lim
ε→0

log
N∑

i=1
µq

i

log ε
(7)

for q 6= 1. For q = 1, D1 is defined by taking the limit when q
approaches 1 and by using L’Hopital’s Rule:

D1 = lim
q→1

1
q−1

lim
ε→0

log
N∑

i=1
µq

i

log ε
= lim

ε→0
lim
q→1

N∑
i=1

µq
i log µi

log ε
N∑

i=1
µq

i

= lim
ε→0

N∑
i=1

µi log µi

log ε

(8)

since the term
N∑

i=1
µq

i in the denominator approaches to
N∑

i=1
µi as q → 1,

and
N∑

i=1
µi = 1. This dimension corresponds to the information

dimension or entropy dimension. It gives the average information
contained in a system. For measuring surface information, higher value
of D1 can be interpreted as a measure for surface with more uniform
distributed intensity values, whereas lower D1 gives information of a
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surface with non-uniform distribution intensity values in a particular
region. The surface roughness information can be obtained indirectly,
and D1 gives the randomness of points in a region, with the degree of
randomness decreases as D1 increases.

For q = 0, D0 = − lim
ε→0

log N
log ε and it corresponds to the conventional

fractal dimension which gives the information on surface roughness.
For cases where q ≥ 2 and q < −1, the interpretation is given

in the following subsections. For the first time, we will associate
geometrical description with Dq for q ≤ −1. We will also show that it
is sufficient to consider D−1 for describing fractal properties as fractal
properties described by Dq for q ≤ −1 are reducible to the case D−1.

2.1. Multifractal Dimension Dq, q ≥ 2

Based on the alternative approach shown in [10], we will show that
fractal properties as described by Dq for q ≥ 2 are reducible to the
case D2. For q ≥ 2, Peitgen et al. [10] considered that

Dq =
1

1− q
lim
ε→0

log
N∑

k=1

pq
k

log 1
ε

(9)

where pk = µ (Bk), the natural measure of the disk Bk (viz., the

percentage of points visiting the orbit in the box Bk). Since
N∑

k=1

pq
k ∝

Cq (ε), with Cq (ε) gives the probability that q-tuples (xi1, xi2, . . . , xiq),
i = 1, 2, . . . , m, of different points from the orbit satisfying the
Euclidean distance d (xil, xir) < ε for l, r = 1, 2, . . . , q, thus

Dq =
1

1− q
lim
ε→0

log Cq (ε)
log 1

ε

(10)

since
N∑

k=1

pq
k = kCq (ε) for some constant k, and the value of log k

log
1
ε

→ 0

as ε → 0.
Using this approach, for q = 2,

D2 = − lim
ε→0

log C2 (ε)
log 1

ε

(11)

with C2 (ε) measures the correlation between pairs of points satisfying
d (xi1, xi2) < ε. Thus D2 is called the correlation dimension. For
small fixed ε, behavior of D2 is similar to the behavior of C2 (ε). For
rougher surface, C2 (ε) has low value as the number of 2-tuples with
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the distances between points (pixels) less than ε are low, hence D2

would be low. Whereas for smoother surface (or homogeneous region),
the correlation C2 (ε) is higher and hence D2 would have higher value.

Clearly, the number of 3-tuples (xi1, xi2, xi3) satisfying d (xil, xir)
< ε, l, r = 1, 2, 3 is less than the number of 2-tuples (xi1, xi2) satisfying
d (xi1, xi2) < ε, then C3 (ε) ≤ C2 (ε) and hence D3 ≤ D2, which
coincides with the property that Dq is a non-increasing function.

Consider an image and let’s take a look at a window of size L×L.
We calculate the value of D3 for each window. If a window has
high D3 value, we conclude that the value of C3(ε) is also high as
they are related by Equation (10). High value of C3(ε) means the
relationship between any two points of 3-tuples has high probability
to have similar intensity and thus we may conclude that the window
covers homogeneous region. Conversely, low value of D3 would mean
that the region covered is less homogeneous.

The property of Dq for all q > 3 can be generated from the
above based on similar argument. Note that we have a non-increasing
function Dq as q increases [10]. This is confirmed as Dq and Cq (ε)
have similar behavior, and Cq (ε) decreases as the number of q-
tuples (xi1, xi2, . . . , xiq) satisfying d (xil, xir) < ε, l, r = 1, 2, . . . , q,
i = 1, 2, . . . , m, decreases as q increases. Also, q-tuples for q ≥ 3 can
be decomposed into more 3-tuples. Thus, higher value of D3 would
certainly lead to high values of other Dq’s for q > 3, and vice versa.
Hence, due to expensive computation, evaluation on Dq for q > 3 is
not necessary, and we choose only D−1, D0, D1 and D2 for the study
in this paper.

Though there is no direct information given by Dq on surface
roughness, but from the correlation of points (pixels of image) in the
window, the surface information can be deduced indirectly. For rough
surface, there are more neighbourhood points of different intensity
and hence the number of points with d (xil, xir) < ε decreases
and thus implies low Dq. For homogeneous surface, there are
more neighbourhood points of similar intensity and hence the points
satisfying d (xil, xir) < ε are more, thus gives high Dq.

2.2. Multifractal Dimension Dq, q ≤ −1

For Dq with finite q ≤ −1, the multifractral fractal dimension is

Dq =
1

q − 1
lim
ε→0

log
N∑

i=1
µq

i (ε)

log ε
=

1
−k − 1

lim
ε→0

log
N∑

i=1

1
µk

i (ε)

log ε

for q = −k, k > 0. (12)
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Let m(k) =
N∑

i=1

1
µk

i (ε)
, k > 0. Consider µk

i (ε) as the number of

points such that |ri − x| < kεk for all x ∈ Bi(ε) over total points
in an open ball Bi(ε) centered at ri. In other words, µk

i (ε) gives
the probability that the number of points x satisfying |ri − x| < kεk

that exist in Bi(ε), and
∑
i

µi = 1. As k increases, µk
i (ε) decreases

for fixed small ε, since the possible regions such that the inequality
being satisfied is reduced. As a result, its inverse 1

µk
i (ε)

is able to

capture regions with scattered points such that |ri − x| < kεk for all
x ∈ Bi(ε). If its value is high, the region has very few points satisfying
the inequality over the region. If the value is low, the region is filled

with more points satisfying the inequality. The term m(k) =
N∑

i=1

1
µk

i (ε)

measures the total dispersion of points in the whole region with respect
to ε-measurement, satisfying |ri − x| < kεk in all disjoint Bi(ε)’s.
Geometrically, the value m(k) describes the non-homogeneity of a
region, with bigger value represents a less homogeneous region.

Since 0 ≤ µi(ε) ≤ 1, we have 0 < µk
i (ε) ≤ µi(ε) ≤ 1 and

1 ≤ 1
µi(ε)

≤ 1
µk

i (ε)
< ∞ for k > 0. When µi(ε) → 0, then 1

µi(ε)
→ ∞.

For fixed k and ε > 0, if µk
i (ε) ∼ 1, then 1

µk
i (ε)

∼ 1, and the points are

mostly concentrated at the center of Bi(ε) as k increases.
It is obvious that the number of points satisfying the condition

|ri − x| < kεk gets lesser as k → ∞. Those points satisfying
|ri − x| < kεk when k is large obviously also satisfy |ri − x| < kεk

when k is small, for points in the same Bi(ε) for some i and some ε.
Hence it is sufficient to just consider small k, in particular when k = 1.

2.3. Multifractal Dimensions and Geometrical Surface
Information

We notice that all multifractal dimensions display localized properties.
This can be viewed from their graphs with respect to total measure in
a certain region. For each region covered by a window, the multifractal
dimensions in each window containing intensity values in various
combinations will show an arc, with the biggest arc being displayed by
the dimension values in the window containing the absolute maximum
intensity. For example, consider a region having intensity values from
1 to 5. Figure 1 shows the relation of multifractal dimension D−1 with
its total measure for ε = 1

3 , i.e., for window size 3×3. If the maximum
intensity in a local region of size 3 × 3 is 4, the graph of multifractal
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Figure 1. Local properties of multifractal dimension D−1 versus total
intensity value in a local region. ‘DN’ refers to intensity values in the
local region.

dimension D−1 is as shown by the brown color arc. For a local region
3×3 that contains absolute maximum intensity 5, the dimension values
for D−1 are displayed by the dull green color arc, which is the biggest
arc. This localized property is true for all multifractal dimensions.

For homogenous regions of either low or high intensity values only,
the dimension values lie at both ends of the arc. When the region is
non-homogenous, the values are grouped in the middle of arc, and
hence give higher dimension values.

For q = 1 which is the entropy dimension, it is a limiting case
where the dimension values of other Dq’s, q > 0, converge to D1 when
q → 1. We generated the graph for a small region of size 3 × 3 with
intensity values vary from 1 to 3, for D1, D2, D0.5 and D1.5. The graph
generated, as shown in Figure 2, has localized property coincides with
the results for computing D1 from the multifractal dimension Dq. It is
noted from the figure that as q increases to 1 and as q decreases to 1,
the dimension values approach to D1. This shows that D1 is a limiting
case.

For fractal properties description, it is sufficient to use
four multifractal dimensions which are linearly independent cases:
D−1, D0, D1, D2. Note that for q < −1, the cases are reducible to D−1

as cases that satisfy these Dq’s are all satisfying D−1. For q ≥ 2, all
higher cases can be reduced to D2. The four multifractal dimensions
D−1, D0, D1, D2 cover all the spatial information required, and if
necessary, we may replace D−1 by using a more negative q value in
order to extract surface information of small intensity values. Similarly,
D2 can be replaced by using a more positive q if required.
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Figure 2. Graph showing D1 as the limiting case for Dq’s, q > 0, for
sub-regions of size 3× 3 from a region having intensity values varying
from 1 to 3.

However, since Dq’s are related in certain degree, the surface
properties cannot be decomposed into individual Dq’s, q = −1, 0, 1, 2.
In other words, Dq’s have some geometrical properties in common. As
such, it is expected that for surface with vast different characteristics,
multifractal dimensions would be able to give more significant results
compared with the surface of similar features.

Based on the findings above, we use multifractal dimensions
to classify a multi-band multi-polarized AIRSAR image with four
land use classes. The characteristics and information extracted by
multifractal dimensions and their relation with multi-band multi-
polarized images are studied. From the classification results, we
compared the effectiveness of multifractal dimensions in classifying
multi-band multi-polarized image based on individual multifractal
dimensions as well as each band and each polarization for different
land use classes.

3. LAND USE CLASSIFICATION OF MULTI-BAND
MULTI-POLARIZED IMAGE

The multifractal dimensions are used as parameters in classifying four
land use classes for an appropriately subset region of an AIRSAR image
of Muda Merbok area, Kedah. This image is not easy to classify as
areas of different land use are mixed together. The AIRSAR image for
the study area was taken on 19 September 2000 with the geographical
coordinates of 5.6022◦N.–6.3892◦N. Lat. and 100.3867◦E.–100.5034◦E.
Long., with 2540 samples and 13094 lines. There are three bands
with three polarizations, hence 9 images are given: C-HH, C-VV,
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Figure 3. Training areas for C-HH image which were selected after
a field trip to the areas. The training areas are the same for images of
all other bands and polarizations.

C-HV, L-HH, L-VV, L-HV, P -HH, P -VV, P -HV. Its resolution is 5
meters. The P -band images are very noisy especially at the regions
nearer to urban areas (e.g., Alor Setar, Sungai Petani and Gurun) due
to radio frequency interference. These 9 images were filtered using
Lee filter for speckle reduction. The preprocessing was done on the
images of all bands and all polarizations where the operation of slant-
range to ground-range conversion was done and the pixel dimension
was adjusted to 5m × 5m. Figure 3 shows the selected region of size
1024× 1024 pixels and the training areas.

In order to apply multifractal dimensions on SAR images, a
virtual 3-dimensional surface was first constructed and then covering
method [3] was used to calculate multifractal dimensions. The four
multifractal dimensions where q = −1, 0, 1 and 2, were calculated
for all pixels in each training area and in all nine multi-band multi-
polarized images. Averages of each multifractal dimension at each
training area were then calculated. A windowing technique was
applied with odd window sizes chosen and the calculated multifractal
dimensions values were assigned to the central pixel of each window.
A vector of four components (D−1, D0, D1, D2) was assigned to each
pixel. Minimum Euclidean distance classifier was applied to do the
classification for these data and a comparison of classification results
was done. The processing was done using nine images, initially for
individual image and later using a “VOTING” process with equal
weight for all nine images. The “VOTING” process is defined as
follows. For each individual image, each pixel has been assigned a land
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use class under the classification using minimum Euclidean distance
classifier, which may be different from one image to another image
of different band and different polarization. Under this “VOTING”
process, we consider the pixel (i, j) in the nine images, and the number
of times that a land use class is assigned to this pixel is noted. For a
pixel that has been classified most times for this particular land use
class, the pixel will be “voted” to be of this land use class. Later,
the “VOTING” process was performed with the P -band images being
singled out because of its noise at the southern region of the selected
area, which may be due to the radio frequency interference as the
telecommunication activity was very active at this region. The two
sets of resulted images using voting process were compared. Accuracy
assessment was done for the two sets of results.

The classification was done using 3×3, 5×5, 7×7 and 9×9 window
sizes. We found that when the window size was smaller than 7 × 7,
there was too little information captured whereas for larger window
size, some of the information were lost due to averaging of information.
After the analysis, window size 7 × 7 was found to be optimum. As
we intended to investigate the abilities of multifractal dimensions in
classifying different land use classes, the accuracy assessment was done
on these training areas and thus the accuracy was expected to be high.
The summary is as shown in Table 1.

Table 1. Summary of accuracy assessment for classified images
where each pixel has been assigned the vector-form of four multifractal
dimension values using window size 7×7. “VOTING” is referred to the
voting process using equal weight for 9 images.

Producer’s accuracy
Water
body

Rice
Other

Plantation
Urban

Overall
accuracy

CHH 70.48 93.29 83.83 88.07 77.52
CHV 70.11 60.57 73.50 88.99 71.05
CVV 60.97 88.21 60.23 84.40 62.95
LHH 80.07 39.63 90.29 75.23 81.13
LHV 87.23 56.50 86.95 100.00 85.17
LVV 76.76 50.81 77.13 68.81 74.96
PHH 61.54 38.21 60.70 92.66 60.07
PHV 12.77 35.37 58.61 93.58 33.36
PVV 60.19 26.02 78.96 100.00 65.69

VOTING 86.70 83.94 97.29 97.25 90.77
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Table 2. Accuracy assessment for classified images using C- and L-
band images where each pixel has been assigned the vector-formed of
four multifractal dimensions values using window size 7×7. “VOTING-
6” was referred to the voting process using equal weightage applied on
six polarized images of C- and L-bands.

Producer’s accuracy
Water body Rice Other Plantation Urban Overall accuracy

VOTING-6 88.58 95.53 91.46 91.74 90.23

Overall, the classified image by voting process gives above average
results for all classes. Its overall accuracy is 90.77%, which is the
highest amongst other classification over other single polarized images.
However, for individual classes, L-HV gives the best accuracy for
“water body”, C-HH gives 93.29% of accuracy for “rice”, “VOTING”
gives accuracy of 97.29% for “other plantations”, whereas L-HV and
P -VV classifies “urban” with accuracy of 100%.

From Table 1, it is also observed that L-band image of any
polarization is most suitable to be used for classification of “water
body” and “other plantations” whereas C-HH image is best used to
classify “rice”. P -band images are generally good for classification
of “urban” areas but not suitable for classification of land use classes
“water body” and “rice”. It gives very low accuracy in the classification
of these land use classes and thus results to low overall accuracy by
using P -band. This is further confirmed in the accuracy assessment
when P -band has been singled out from the analysis by using a voting
process, as shown in Table 2. In this analysis involving only C-
and L-band images, the direct implication is that the accuracy for
both “water body” and “rice” has increased from 86.70% to 88.58%
and 83.94% to 95.53% respectively, whereas the accuracy for “other
plantations” has dropped from 97.29% to 91.46% and urban area has
dropped from 97.25% to 91.74%. On the whole, classification using
all bands and all polarized images has overall accuracy of 90.77%,
which performs slightly better than using only C- and L-band images
that has overall accuracy of 90.23%. Hence, the P -band images may
be excluded in the land use classification by using the vector-form
multifractal dimensions. The classified images into four land use classes
using vector-form multifractal dimensions are shown in Figure 4.

Investigation has also been carried out to investigate the effect
of each multifractal dimension on different band of images in the
classification. Table 3 shows a summary on the accuracy assessment
for the classified images. The accuracy values displayed are the highest
value obtained among the combinations of multifractal dimension and
polarization used.
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(a) (b)

(c) (d)

Legend: water body rice urban other plantation

Figure 4. Classified images for multi-band, multi-polarised AIRSAR
images of selected Muda Merbok area, Kedah, using window size
7 × 7. (a) Classified image using equal weightage for nine polarized
images, having highest overall accuracy and highest accuracy for “other
plantations”. (b) Classified image of C-HH having highest accuracy
for “rice”. (c) Classified image of L-HV having highest accuracy for
“water body” and “urban”. (d) Classified image of P -VV having
highest accuracy for “urban”.

Table 3. Summary of accuracy assessment for classified images using
one multifractal dimension on images of different polarizations.

Land use class Accuracy (band/dimension used)

Water body 100% (C-HV /D0)

Rice 92.07% (C-HH /D0)

Other plantations 84.46% (L-HH /D−1)

Urban 100% (L-HV /D0)

Overall accuracy 88.28% (L-HV /D0)
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From Tables 1 and 3, it is obvious that classification using vector-
form multifractal dimension under a voting process generally gives
better accuracies compared to using a single multifractal dimension
over single polarized images. For a single multifractal dimension when
combined with a specific polarized image, it classifies certain classes
well. For example, the class “water body” is best classified using
fractal dimension D0 on C-HV image and the class “other plantation”
is best classified using D−1 on L-HH image. In general, D0 classifies C-
band “water body” and “rice” better; it also classifies L-band “urban”
better whereas D−1 classifies L-band “other plantation” better. The
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Figure 5. Figure showing relations of L-band multi-polarized images
with multifractal dimensions and land use classes.
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result corresponds to the relationship between the wavelengths and
the targeted objects, where C-band is normally responded better to
upper surfaces information (e.g., water surface and rice) and L-band
for intermediate surfaces (e.g., tree trunks and buildings). From our
results, it is also shown that the usage of P -band images in the
classification of this region is very limited as it gives very poor accuracy
for most of the classes and thus can be ignored. This may be due to
the reason that the selected region is nearer to the town and has more
radiofrequency interference.

Figure 5 shows the relation of L-band with multifractal dimensions
and land use classes. From the figure, classification using vector-
form multifractal dimensions under a voting process generally gives
better accuracies amongst all other single multifractal dimension for
the classification of “rice”, “other plantations” and “urban”. It gives
moderately good accuracies for classification of “water body”, which
is about 87%. In general, it portrays consistency in classification
for all land use classes, while the single multifractal dimensions
would give different accuracies when applied using different bands and
polarizations.

Table 4. A summary for multifractal dimensions.
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4. CONCLUSION

Table 4 summarizes the surface information being extracted using four
multifractal dimensions, D−1, D0, D1 and D2.

Multifractal dimensions, when combined in a vector form, are
able to describe more surface information than a single multifractal
dimension. In this paper, we have associated geometrical properties
to negative dimension. We have shown that surface information as
described by Dq for q > 2 can be reduced to D2 and thus it is sufficient
to use correlation dimension D2 to extract surface information since it
is more computation expensive to calculate Dq for q > 2. Further
more, we have also shown that fractal properties as described by
Dq for q ≤ −1 are reducible to the case D−1. Hence, the four
multifractal dimensions, D−1, D0, D1 and D2 are able to extract
different surface information and by combining these information, we
are able to characterize the pixel based on more textural information.
However, multifractal dimensions are related in certain degree; thus
the surface properties cannot be decomposed into each D−1, D0, D1

and D2. Thus the representation by these four multifractal dimensions
has overlapped properties.

Multifractal dimensions are used as a suitable set of parameters to
extract the information from the multi-band multi-polarized AIRSAR
images for land use classification. In general, a clear relation among
land use classes, image polarization and multifractal dimensions is
not easy to observe. The classification of specific land use classes
using a specific polarization and a specific multifractal dimension may
not be optimal. There is no single dimension value that is suitable
for all bands and all polarization. In fact, it is found that except
for classification of “water body” using L-band associated with any
multifractal dimensions, other classes are better classified using the
combination of all four multifractal dimensions in a vector-form. It
is further noticed that the vector-form multifractal dimensions is not
suitable for land use classes of similar terrain information due to
its limitation in giving a perfect decomposition of surface properties.
Further studies in future in this will help improve our understanding
in utilizing suitable combination of multifractal dimensions in land use
classification.
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