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Abstract—A cell-vertex based finite volume scheme is used to solve
the time-dependent Maxwell’s equations and predict electromagnetic
scattering from perfectly conducting bodies. The scheme is based on
the cell-vertex finite volume integration method, originally proposed
by Ni [1], for solution of the two dimensional unsteady Euler equations
of gas dynamics. The resulting solution is second-order accurate in
space and time, and requires cell based fluctuations to be appropriately
distributed to the state vector stored at cell vertices at each time
step. Results are presented for two-dimensional canonical shapes and
complex three dimensional geometries. Unlike in gas dynamics, no user
defined numerical damping is required in this novel cell-vertex based
finite volume integration scheme when applied to the time-domain
Maxwell’s equations.

1. INTRODUCTION

The Finite Volume Time Domain (FVTD) technique was introduced
by Shankar [2] to solve Maxwell’s equations in the time domain.
Time domain techniques are being increasingly employed to solve the
Maxwell’s equations due to greater flexibility in dealing with broad-
band signals and diverse material properties. FVTD techniques are
based on solving time-domain Maxwell’s equations in the integral form
and allow for a relatively flexible discretization of the solution space.
The resulting ability to deal with complex geometries, in the framework
of a finite volume discretization, is a major advantage of the FVTD
technique over traditional time domain techniques like the Finite
Difference Time Domain (FDTD) method [3] based on Cartesian grids.
This is of particular interest when dealing with complex configurations
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often encountered in simulation of electromagnetic scattering from
aerospace configurations. Electromagnetic field variables are also
co-located in space and time in the FVTD technique unlike the
staggered differencing employed for the FDTD method resulting in
an easier implementation. The conservation laws, in integral form, are
satisfied at each time step in each control volume in the discretized
space in a FVTD framework. Finite volume techniques can also
be categorized as cell-vertex or cell-centered based on the relative
location of the state vector in the discretized solution space. Cell-
vertex finite volume techniques have the state vector located at vertices
of control volumes or cells which make up the discretized solution space
while the location is at cell centers in case of cell-centered techniques.
Cell-vertex techniques allow boundary conditions to be implemented
directly on the scatterer surface. This can significantly enhance the
ability of a FVTD technique in accurately solving for electromagnetic
scattering from complex geometries. Physical conservation laws
naturally lead to cell-centered finite volume formulations making them
much more common than cell-vertex based finite volume formulations.
It is easier to visualize a cell-centered state vector representing cell-
averaged quantities which change due to fluxes entering or leaving
the control volume. In the present work, a cell-vertex based FVTD
method is used to solve for electromagnetic scattering from perfectly
conducting geometries in a structured finite-volume discretization. The
cell-vertex based finite volume method in this work was originally
proposed by Ni [1] to solve the two dimensional (2D), time-dependent,
Euler equation of gas dynamics. Ni’s cell-vertex based finite
volume formulation is a rare instance of a genuinely multidimensional
treatment of hyperbolic conservation laws using a cell-vertex based
finite volume formulation. The time-domain Maxwell’s equations may
be expressed as a set of hyperbolic conservation laws when written
in total field form which allows for an adaptation of algorithms
developed for the time-dependent Euler equations of gas dynamics
to the Computational Electromagnetics (CEM) framework [4]. Ni’s
algorithm can be considered a genuinely multidimensional form of the
‘fluctuation-signal’ approach proposed by Roe [5] for solving time-
dependent wave dominated phenomena. This is different from upwind
based cell-vertex schemes which often treat multidimensional problems
as a sequence of one-dimensional operations [5]. However, since weights
in the distribution formula used in Ni’s scheme finally result in a
second-order accurate centrally differenced Lax-Wendroff formulation,
heavy user-defined damping is essential in strongly nonlinear problems
especially shock dominated high-speed flows in gas dynamics [6]. The
linear nature of the time-dependent Maxwell equation in free space
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may be a more appropriate choice for the application of Ni’s novel cell-
vertex based finite volume scheme, originally proposed for the non-
linear Euler system. An early effort in literature to adapt Ni’s [1]
novel cell-vertex based finite volume technique to the time-domain
Maxwell’s equations was restricted to electromagnetic scattering from
2D perfectly conducting geometries with Transverse Magnetic (TM)
polarization [7]. In the present work, Ni’s cell-vertex based finite
volume technique is used to solve for electromagnetic scattering
from 2D perfectly conducting geometries with TM and Transverse
Electric (TE) polarization and then extended to three dimensional
(3D) applications. Extension to 3D is not trivial since the second-
order Lax-Wendroff scheme, in the present cell-vertex finite volume
formulation, by default, requires a dual cell to approximate the second-
order terms which is more complex in 3D. Finite volume discretizations
using an O-O topology in 3D can also require special attention to be
paid during boundary condition implementation when solved using a
cell-vertex formulation.

2. GOVERNING EQUATIONS

Maxwell’s curl equations in the differential form for wave propagation
in free space can be expressed as

∂B
∂t

+∇×E = 0 (1)

∂D
∂t

−∇×H = 0 (2)

where B is the magnetic induction, E the electric field vector, D the
electric field displacement, and H the magnetic field vector. The B and
D are related to E and H through permittivity (ε) and the permeability
(µ) with D = εE, and B = µH. The above equations can be recast in
a conservative total field form as

∂u
∂t

+
∂f(u)
∂x

+
∂g(u)

∂y
+

∂h(u)
∂z

= 0. (3)

where

u=




Bx

By

Bz

Dx

Dy

Dz




, f =




0
−Dz/ε
Dy/ε

0
Bz/µ
−By/µ




, g=




Dz/ε
0

−Dx/ε
−Bz/µ

0
Bx/µ




, h=




−Dy/ε
Dx/ε

0
By/µ
−Bx/µ

0




(4)
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subscripts indicates scalar components in the Cartesian x, y, z
directions. In two dimensions (2D), Maxwell’s equations can be split
into two sets of systems. These are the equations for Transverse
Magnetic (TM) and Transverse Electric (TE) waves. The 2-D
conservative form for free space can be expressed as

∂u
∂t

+
∂f(u)
∂x

+
∂g(u)

∂y
= 0. (5)

For TM polarization, the vectors u, f, and g in Equation (5) are

u=

(
Bx

By

Dz

)
, f =

( 0
−Dz/ε
−By/µ

)
, g=

(
Dz/ε

0
Bx/µ

)
(6)

The corresponding vectors for TE polarization in Equation (5) are,

u=

(
Dx

Dy

Bz

)
, f =

( 0
Bz/µ
Dy/ε

)
, g=

( −Bz/µ
0

−Dx/ε

)
(7)

3. NUMERICAL TECHNIQUE

Equation (3) can be rewritten in operator form
L(u) = 0 (8)

Decomposing the total field into incident (i) and scattered (s) fields,
Equation (8) is written as

L (
ui + us

)
= 0 (9)

In the scattered field formulation normally employed for FVTD
computations, the incident field is taken to be the solution of the
Maxwell’s equations in free space and the equations to be solved are [8]

L (us) = 0. (10)

3.1. Finite Volume Discretization

The system of Equation (3) in the conservative form in free space can
thus be written in a scattered field formulation as

∂us

∂t
+

∂f(us)
∂x

+
∂g(us)

∂y
+

∂h(us)
∂z

= 0. (11)

where superscript s indicates scattered field variables. Integrating the
differential form of the conservation law represented by Equation (11)
over an arbitrary control volume Ω

∂
∫
Ω usdV
∂t

+
∫

Ω
∇ · (F(us))dV = 0 (12)
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and applying the divergence theorem, the integral form of the
conservation law is obtained as

∂
∫
Ω usdV
∂t

+
∮

S
F(us) · n̂dS = 0 (13)

and used to formulate the problem in the FVTD framework. For
3D problems, the domain is discretized into hexahedral cells, and the
integral form applied to each cell. The equivalent discretization for
2D problems consists of quadrilateral cells. The state vector is defined
at cell centers in a cell-centered formulation and at cell vertices in a
cell-vertex formulation. The discretized form for the qth cell in the
more common cell-centered formulation is [9]

Ωq

dũs
q

dt
+

6∑

p=1

[(F(us) · n̂S)p]q = 0 (14)

where ũs
q indicates the volume average of us over cell q and [(F(us) ·

n̂S)p]q the average flux through face p of cell q and S is the area of the
cell face p with an outer unit normal vector n̂. For two-dimensional
problems, the domain is discretized into the quadrilateral cells and the
integral form is applied to each cell. The equivalent discretized form
in two-dimensional formulations for the qth cell is

Aq

dũs
q

dt
+

4∑

p=1

[(F(us) · n̂s)p]q = 0 (15)

where Aq is the cell area. Equations (14) and (15) represent a generic
system of hyperbolic conservation laws discretized in a finite volume
framework and can be solved using a variety of existing numerical
schemes meant for such applications. Numerical schemes usually used
to solve hyperbolic conservation laws either have the space and time
discretization coupled as in the Lax-Wendroff class of schemes or have
them treated separately in a method of lines approach [16].

3.2. Ni’s Cell Vertex Based Finite Volume Method

A novel cell-vertex based finite volume scheme originally proposed by
Ni [1] for the solution of 2D time-dependent Euler equations of gas
dynamics and subsequently extended to 3D Euler equations [10, 12],
is adapted to solve the time-dependent Maxwell’s equations in a finite
volume time domain framework in two and three dimensions. The
cell-vertex based finite volume scheme can be considered to belong to
the “fluctuation-signal” framework proposed by Roe for the solution
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of time-dependent Euler equations of gas dynamics [5]. In Ni’s finite-
volume time integration scheme, the fluctuation is calculated based
on state vector stored at cell vertices and distributed to cell vertices
after a discrete time-step in a multidimensional sense. This is different
from the upwind based redistribution used by Roe in his cell-vertex
based fluctuation-signal framework which forces the redistribution to
a sequence of one-dimensional operations based on solving a Riemann
problem perpendicular to the cell faces. Though Ni originally claimed
the redistribution to be based on wave movement, it can be shown that
the finite volume integration scheme proposed by Ni can be expressed
as a spatially central-differenced Lax-Wendroff scheme [6] which is
second-order accurate in space and time. A second-order update for
the state vector u in Equation (5) based on Taylor series approximation
is written as

δu =

(
∂u
∂t

)n

∆t +

(
∂

∂t

(
∂u
∂t

))n
∆t2

2
(16)

Replacing the time derivatives with space derivatives from Equa-
tion (5),

δu = −
(

∂f
∂x

+
∂g
∂y

)n

∆t−
[

∂

∂x

(
∂f
∂u

∂u
∂t

)
+

∂

∂y

(
∂g
∂u

∂u
∂t

)]n
∆t2

2
. (17)

Equation (17) is approximated using a cell-vertex based finite volume
formulation. Consider a 2-D discretization in Fig. 1, with four cells A,
B, C and D and their corresponding vertices where the state vector
is defined. The vertices of cell C are marked as 1, 2, 3 and 4. The
discrete numerical “change” ∆Uc for a arbitrary quadrilateral cell is

A

B

D

(i+1, j)

(i, j+1) (i+1, j+1)

C

2 3

4

X

Y

1

(i, j)

Figure 1. 2-D arbitrary computational cell.
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approximated using the divergence theorem as

∆Uc =
∆t

∆A

(
4∑

p=1

[
(F(u) · n̂s)p

])
(18)

where ∆A is the area of the cell C, s the face length with an
outer unit normal vector n̂, ∆t is the time step restricted by the
Courant-Friedrich-Lewy (CFL) stability criteria. Flux vectors F(u)
are computed for each pth cell face by taking average of the flux
vectors stored at vertices of the face. ∆Uc is used for the discrete
approximation of the first-order term in Equation (16). Unsteady
fluxes [1] ∆Fc and ∆Gc, in the Cartesian x and y directions are defined
for each cell as

∆Fc =

(
∂f
∂u

)
∆Uc, ∆Gc =

(
∂g
∂u

)
∆Uc (19)

The unsteady fluxes are used to compute second-order contribution in
Equation (17) and are based on replacing (∂u/∂t) by (∆Uc/∆t). The
second-order changes are computed cell-wise by an application of the
divergence theorem to cell based unsteady flux values. The components
that make up the second-order changes are written as

∆fc =
∆t

∆A
(
∆Fc∆yl + ∆Gc∆xl

)

∆gc =
∆t

∆A
(
∆Fc∆ym + ∆Gc∆xm

) (20)

where ∆xl, ∆yl, ∆xm and ∆ym (see Fig. 1) are given as [1, 13]

∆xl =
1
2
(x2 + x3 − x1 − x4)

∆yl =
1
2
(y2 + y3 − y1 − y4)

∆xm =
1
2
(x3 + x4 − x1 − x2)

∆ym =
1
2
(y3 + y4 − y1 − y2)

(21)

Implicit in calculation of the above second-order contributions are the
definition of pseudo-cell faces of default dual cells for applying the
divergence theorem to unsteady cell fluxes. These cell-wise changes
are appropriately distributed to cell vertices that make up the cell
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as [1],

(δu1)C =
1
4

[
∆Uc −∆fc −∆gc

]

(δu2)C =
1
4

[
∆Uc −∆fc + ∆gc

]

(δu3)C =
1
4

[
∆Uc + ∆fc + ∆gc

]

(δu4)C =
1
4

[
∆Uc + ∆fc −∆gc

]

(22)

It can be shown [5] that these distribution formulas ultimately results
in a Lax-Wendroff type distribution. The total correction at grid point
1, δu1, is obtained by adding the contribution from all four neighboring
cells sharing vertex 1

δu1 =
4∑

m=1

(δu1)m (23)

and is added to the state vector at vertex 1 to update to the next time
level. The two-dimensional approach can be extended to construct the
cell-vertex based finite volume technique in three-dimensions [1]. The
first-order numerical change in three-dimension is similarly obtained
as

∆Uc =
∆t

∆V

(
6∑

p=1

[(F(u) · n̂S)p]

)
(24)

where ∆V is the volume of cell C. Second-order changes again are
a function of cell based unsteady fluxes ∆Fc, ∆Gc and ∆Hc in the
Cartesian x, y and z direction. Components of the second-order change
are similarly defined as

∆fc =
∆t

∆V
(
(∆Fc + ∆Gc + ∆Hc) · Sl

)

∆gc =
∆t

∆V
(
(∆Fc + ∆Gc + ∆Hc) · Sm

)

∆hc =
∆t

∆V
(
(∆Fc + ∆Gc + ∆Hc) · Sn

)
(25)

where, Sl, Sm and Sn are surface areas and generalization in 3D of face
lengths defined in Equation (21) for 2D. Corrections are distributed to
the vertices defining cell C using distribution formulas [10],

(δu1)C =
1
8

[
∆Uc + αi∆fc + αj∆gc + αk∆hc

]
(26)

where, 1 denotes vertex 1 of the cell C, and the parameter α(i,j,k) = ±1
is based on the relative position of the vertex being updated. In the
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interest of brevity, the description in 3D has been kept brief. A detailed
description of the 3D treatment for Ni’s cell vertex finite volume is
available in Refs. [10, 12].

3.3. Boundary Conditions

For perfectly electric conducting (PEC) surfaces, the total tangential
electric field n̂ × E = 0 on the scatterer surface, with n̂ the outward
unit normal vector. This condition can be implemented in the scattered
field formulation at the perfectly conducting surface as

n̂×Es + n̂×Ei = 0, (27)

Since the incident field is known analytically, the tangential component
of the scattered electric field on the surface of the scatterer (n̂ × Es)
can be computed. This boundary condition is directly implemented
on the surface of the scatterer in a cell-vertex formulation. Unlike
in a cell-centered formulation where “ghost-cells” may be required
to be defined for implementing this boundary condition. Standard
characteristic boundary conditions can be implemented at the outer
boundary with scattered field variables assumed to be negligible at the
outer boundary.

r
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Figure 2. (a) Schematic of grid around circular cylinder. (b) Bistatic
RCS, circular cylinder (a/λ = 9.6, TM).
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4. NUMERICAL RESULTS-2D

Ni’s cell-vertex finite volume time integration scheme, originally
presented for the two-dimensional Euler equations is initially applied
to the solution of Maxwells equations in two-dimensions. Results
are presented for circular cylinder and NACA 0012 airfoil subject
to incident harmonic transverse magnetic (TM) or transverse electric
(TE) wave. Both bodies are assumed to be perfectly electric conductors
(PEC). Sample bistatic RCS results are presented for a circular
cylinder with TM illumination with a/λ = 9.6, where a is the radius
of cylinder and λ the wavelength of the incident harmonic wave. An
‘O’ topology grid is used with average resolutions of 10 points per
wavelength (PPW) and 20 PPW (fine grid). The ‘O’ grid is shown in
schematic form in Fig. 2(a). Results are compared with exact solution
and good agreement can be seen in Fig. 2(b). Results are similarly
presented for a NACA 0012 airfoil subject to broadside incidence shown
in Fig. 3(a). Bistatic RCS for a TE illumination is compared with
results in Ref. [11] in Fig. 3(b), and again good agreement is seen. For
this test case a/λ = 10, where a indicates the airfoil chord length.

5. SCATTERING FROM 3D BODIES

The present cell-vertex based FVTD scheme is next extended to
compute electromagnetic scattering for three-dimensional geometries.
The three-dimensional extension is non-trivial as it can lead to
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Figure 3. (a) Schematic of grid around NACA 0012 airfoil. (b)
Bistatic RCS, NACA 0012 airfoil (a/λ = 10.0, TE).
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complexities not encountered in three-dimensional cell center based
finite volume schemes. In principle, cell-vertex based FVTD methods
have an advantage over cell-centered schemes as boundary conditions
can be directly applied on the scatterer surface. While this is true
in general, this might not be always correct for discretizations based
on an ‘O-O’ topology [17], usually used to solve for canonical objects
like sphere, almond, etc. O-O topology is normally used to discretize
axisymmetric bodies in a single block structured grid framework and is
described in detail in Ref. [17]. This discretization results in degenerate
points at the two poles. In cell centered finite volume schemes, the
degenerate point is not a problem as the conserved variables are stored
at cell centers. In a cell vertex method, the values of the state vector
at the degenerate point (in an O-O grid) is required to be specified
for flux calculations unlike that in a cell centered approach where
the degenerate point is redundant. In cell centered finite volume
schemes, the face containing the degenerate point has zero area and
does not participate in flux calculations (see Fig. 4). In a cell vertex
finite volume technique, the degenerate point will also contribute to
flux calculations because of cell faces with finite area which also have
degenerate points as vertices as shown in Fig. 4 for a sample O-O grid.
In the current work, value of the state vectors at a degenerate point, as
indicated in Fig. 4 is taken as the average of the state vectors stored at
all the neighboring vertices with common index (k+1) in the azimuthal
(i) direction.

The present cell-vertex based FVTD scheme is used to solve
for electromagnetic scattering from various perfectly conducting 3D

(i+1, j, k+1)

(i, j, k+1)

(i+1, j, k)

(i, j, k)points
degenerate

Figure 4. Schematic of a section of O-O grid showing degenerate
points.
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geometries and compute the RCS. Results are presented for a sphere
and NASA almond [14] with discretizations based on O-O topology
and a aircraft wing geometry [15] in O-H topology. Fig. 5(a) shows a
section of the grid for a PEC sphere discretized using O-O topology.
A description of structured grid discretization using O-H topology for
aerospace wing geometries is available in Ref. [18]. The monostatic
RCS for the sphere is compared with that from exact (Mie series)
results around the resonance region in Fig. 5(b). The almond is an
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Figure 5. (a) Section of O-O grid, sphere. (b) Monostatic RCS for
PEC Sphere.
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Figure 6. (a) Section of grid around almond. (b) RCS for almond
with angle of incidence, 1.19 GHz.
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Figure 7. (a) Section of grid around delta wing. (b) Bistatic RCS for
delta wing, nose-on incidence (l/λ = 1.4), H-H polarization.

EMCC benchmark [14], for which experimental results are available.
Fig. 6(a) shows a section of the grid around an almond geometry.
Fig. 6(b) compares the RCS for different angle of illumination at a
frequency of 1.19 GHz (almond length as 9.936 inches). The agreement
tends to be good. Similarly Fig. 7(a) shows a delta wing configuration
discretized in an O-H topology. Bistatic results at l/λ = 1.4, where
l is the wing span is compared with numerical results in Ref. [15] in
Fig. 7(b).

6. CONCLUSION

The FVTD technique because of its inherent capability to model
complex geometry and deal with different material properties in a
wide range of frequencies is an attractive proposition for simulating
electromagnetic scattering for complex geometries and applications. A
cell-vertex based finite volume technique based on Ni’s novel cell-vertex
finite-volume integration method is applied to predict electromagnetic
scattering from perfectly conducting bodies. Cell-vertex based finite
volume schemes, in principle, can deal with complex geometries more
efficiently compared to cell-centered schemes due to a more accurate
implementation of boundary conditions on the scatterer geometry.
In exceptional case, this might not be true, and approximations
are required as shown in the present work for O-O topology based
discretizations. Results obtained with the present method in 2D and
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3D match well with exact and available results in literature. The
current technique was originally proposed for the solution of Euler
equations of gas dynamics where heavy numerical damping is required
to stabilize the scheme. No such problems are encountered in present
applications involving the solution of time-domain Maxwell equations
for electromagnetic scattering from perfectly conducting geometries.
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