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Abstract—This work presents the derivation of high frequency
electromagnetic field expressions for two dimensional Gregorian system
embedded in a chiral medium. Two cases have been analyzed. Firstly,
the chirality parameter is adjusted to support positive phase velocity
(PPV) for both left circularly polarized (LCP) and right circularly
polarized (RCP) modes traveling in the medium. Secondly, the
chirality is adjusted in such a way that one mode travels with PPV and
other with negative phase velocity (NPV). Method proposed by Maslov
is used, for finding the field expressions, to overcome the problem of
Geometrical Optics (GO) because GO fails at caustics. The results for
both the cases are given in the paper.

1. INTRODUCTION

A chiral medium is macroscopically continuous medium composed of
equivalent chiral objects, uniformly distributed and randomly oriented.
A chiral object is a three dimensional body that cannot be brought
into congruence with its mirror image through any translation and
rotation. Chiral medium supports both LCP and RCP modes [1].
It may supports NPV propagation for both modes, or NPV for one
mode and PPV for the other modes [2]. NPV mediums are those,
in which direction of power flow is opposite to the direction of phase
velocity [3]. Conditions for chiral medium to support NPV propagation
have been derived in [4]. In the present work we have embedded the
Gregorian reflector in chiral medium. Placing a Gregorian Reflector
in chiral medium have many advantages over ordinary medium due
to unique characteristics of chiral medium like polarization control,
impedance matching and cross coupling of electric and magnetic fields.
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By changing the chiral media parameters ω, µ, β the desired value
of the wave impedance and propagation constant can be achieved.
In particular, reflections can be adjusted (decreased or increased)
desirably. In this respect, the chiral medium can be controlled by
variations of three parameters ω, µ, β, whereas an achiral medium
has only two variable parameters, ω, µ. Moreover, in case of negative
reflection caused by NPV, it also gives the advantage of invisibility. We
have considered the two cases, in the first case chiral medium supports
PPV for both LCP and RCP modes. In the second case chiral medium
supporting PPV for one mode and NPV for other mode is taken into
account. As GO fails in the focal regions, so Maslov’s method is
used to study the fields at the focal regions [5, 6]. Maslov’s method
combines the simplicity of asymptotic ray theory and the generality
of the Fourier transform method. This is achieved by representing
the geometrical optics fields in hybrid coordinates consisting of space
coordinates, and wave vector coordinates, that is by representing the
field in terms of six coordinates. It may be noted that information
of ray trajectories is included in both space coordinates and wave
vector coordinates. Solving the Hamiltonian equations under the
prescribed initial conditions, one can construct the geometrical optics
field in space R, which is valid except in the vicinity of focal point.
Near the focal point, the expression for the geometrical optics field
in spatial coordinates is rewritten in hybrid domain. The expression
in hybrid domain is related to the original domain R through the
asymptotic Fourier transform. The reason for considering the hybrid
domain is that, in general the singularities in different domain do not
coincides. This means that a domain always exist in which the solution
is bounded [11]. Analysis of focusing systems has been worked out
by various authors using Maslov’s method [7–16]. In this paper our
goal is to find the focal region fields of two dimensional Gregorian
reflector placed in chiral medium. Section 2 is about the receiving
characteristics of two dimensional Gregorian reflector placed in chiral
medium for both kβ < 1 and kβ > 1. In Section 3 results and
discussions are given and Section 4 is about conclusions in the light
of results given in Section 3.

2. GEOMETRICAL OPTICS FIELDS OF TWO
DIMENSIONAL GREGORIAN REFLECTOR PLACED
IN CHIRAL MEDIUM

The reflection of plane waves, from Perfect Electric Conductor (PEC),
traveling in chiral has been considered in [17]. When both LCP and
RCP hit PEC plane boundary there are four reflected waves. The
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Figure 1. Gregorian system.

system in our problem is Gregorian which consists of two reflectors,
one is parabolic main reflector and other is elliptical sub reflector as
shown in Fig. 1. Here we will consider the receiving characteristics of
this system. Both RCP and LCP waves are incident on main parabolic
reflector, it will cause four reflected waves designated as LL, RR, LR
and RL [18]. These four waves are then reflected from the secondary
elliptical subreflector and will cause eight reflected waves designated
as LLL, RRR, LLR, RRL, RLR, RLL, LRR and LRL. Only four of
these waves (LLL, RRR, LLR, RRL) will converge in the focal region
while other four waves (RLR, RLL, LRR, LRL) will diverge. In this
paper we are considering only four converging rays after reflection from
elliptical subreflector as shown in Fig. 2. Quantities designated as RRR
and RRL are RCP and LCP reflected wave components, respectively,
when RCP is incident. Quantities designated as LLL and LLR are LCP
and RCP reflected waves, respectively, when LCP is incident wave.

In the second case when chirality parameter kβ > 1. It causes
n1 = 1

1−kβ < 0 and n2 = 1
1+kβ > 0, so LCP wave travels with NPV

and RCP wave with PPV. For kβ < −1 RCP wave travels with NPV
and LCP wave with PPV. We have depicted here the case of kβ > 1
only because for kβ < −1, we can get the solutions from kβ > 1 by
interchanging the role of LCP and RCP modes [19]. Gregorian system
for kβ > 1 is shown in Fig. 3. LLL and RRR are reflected at the same
angle while RRL and LLR have different response. It can be seen that
only three rays are contributing to the focus in this case. while LLR
is divergent.
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Figure 2. Gregorian system in chiral medium.

Figure 3. Gregorian system in chiral medium, kβ > 1.

Equations for parabolic and elliptical reflector of Gregorian system
are given by

ζ1 =
ξ2
1

4f
− f + c (1)

ζ2 = a

[
1− ξ2

2

b2

] 1
2

(2)

c2 = a2 − b2 (3)
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where (ξ1, ζ1) and (ξ2, ζ2) are the Cartesian coordinates of the points
on the parabolic and elliptical reflectors, respectively. Incident waves
on main parabolic reflector having unit amplitude are given by.

QL = exp(jkn1z), QR = exp(jkn2z) (4)

Consider the case of normal incidence such that these waves are
incident at angle α with surface normal ~N1 as shown in Figs. 1–3.
The wave vectors of the waves reflected by the parabolic cylinder are
given by [18].

−−→
PLL = −n1 sin 2αîx + n1 cos 2αîz (5)
−−→
PRR = −n2 sin 2αîx + n2 cos 2αîz (6)
−−→
PRL = −n1 sin

[
α + sin−1

(
n2

n1
sinα

)]
îx

+n1 cos
[
α + sin−1

(
n2

n1
sinα

)]
îz (7)

−−→
PLR = −n2 sin

[
α + sin−1

(
n1

n2
sinα

)]
îx

+n2 cos
[
α + sin−1

(
n1

n2
sinα

)]
îz (8)

Now we will take two, RR and LL, waves that will incident on elliptical
subreflector and converge as well after reflection. Initial amplitudes of
these two waves are as following [18].

A0LL =
cosα− cosα2

cosα + cosα2
(9)

A0RR =
cosα− cosα1

cosα + cosα1
(10)

where

sinα =
ξ1√

ξ2
1 + 4f2

(11)

cosα =
2f√

ξ2
1 + 4f2

(12)

~N1 = − sinαîx + cosαîz (13)

The wave vectors of the waves reflected by the elliptical subreflector
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are as following.
−−−→
PLLL = −n1 sin(2α− 2ψ)̂ix − n1 cos(2α− 2ψ)̂iz (14)
−−−→
PRRR = −n2 sin(2α− 2ψ)̂ix − n2 cos(2α− 2ψ)̂iz (15)
−−−→
PRRL = −n1 sin(β1 − ψ)̂ix − n1 cos(β1 − ψ)̂iz (16)
−−−→
PLLR = −n2 sin(β2 − ψ)̂ix − n2 cos(β2 − ψ)̂iz (17)

Corresponding initial amplitudes for these four rays are

A0LLL =
[
cosα− cosα2

cosα + cosα2

] [
cosβ − cosβ2

cosβ + cosβ2

]
(18)

A0RRR =
[
cosα− cosα1

cosα + cosα1

] [
cosβ − cosβ1

cosβ + cosβ1

]
(19)

A0RRL =
[
cosα− cosα1

cosα + cosα1

] [
2 cosβ

cosβ + cosβ1

]
(20)

A0LLR =
[
cosα− cosα2

cosα + cosα2

] [
2 cos β

cosβ + cosβ2

]
(21)

and the corresponding initial phases are

S0LLL = −n1ζ1 = n1

[
2f

cos 2α

1 + cos 2α
− c

]
(22)

S0RRR = −n2ζ1 = n2

[
2f

cos 2α

1 + cos 2α
− c

]
(23)

S0RRL = −n2ζ1 = n2

[
2f

cos 2α

1 + cos 2α
− c

]
(24)

S0LLR = −n1ζ1 = n1

[
2f

cos 2α

1 + cos 2α
− c

]
(25)

where

β1 = sin−1

(
n2

n1
sinβ

)
(26)

β2 = sin−1

(
n1

n2
sinβ

)
(27)

β = (2α− ψ) (28)

sinψ =
−1√
R1R2

a

b
ξ2 (29)

cosψ =
1√

R1R2

b

a
ζ2 (30)

~N2 = − sinψîx + cosψîz (31)
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In the above equation R1 and R2 are the distances from the point
(ξ2, ζ2) to the focal points z = −c and z = c respectively with
c2 = a2 − b2. The cartesian coordinates of the ray reflected by the
elliptical cylinder is given by.

xLLL = ξ2 + PxLLLt = ξ1 + PxLLt1 + PxLLLt (32)
xRRR = ξ2 + PxRRRt = ξ1 + PxRRt1 + PxRRRt (33)
xRRL = ξ2 + PxRRLt = ξ1 + PxRRt1 + PxRRLt (34)
xLLR = ξ2 + PxLLRt = ξ1 + PxLLt1 + PxLLRt (35)
zLLL = ζ2 + PzLLLt = ζ1 + PzLLt1 + PzLLLt (36)
zRRR = ζ2 + PzRRRt = ζ1 + PzRRt1 + PzRRRt (37)
zRRL = ζ2 + PzRRLt = ζ1 + PzRRt1 + PzRRLt (38)
zLLR = ζ2 + PzLLRt = ζ1 + PzLLt1 + PzLLRt (39)

where

t1 =
√

(ξ2 − ξ1)2 + (ζ2 − ζ1)2 (40)

t =
√

(x− ξ2)2 + (z − ζ2)2 (41)

After transforming cartesian coordinates (x, z) to the ray fixed
coordinates (ξ1, t) and then finding the jacobian transform we will get
following expressions.

JLLL = 1− n1t

R1
(42)

JRRR = 1− n2t

R1
(43)

JRRL = 1− n1t cosβ

R2 cosβ1

×




n2R1 cosβ − a

{√
n2

1 − n2
2 sin2 β + n2 cosβ

}

R1

√
n2

1 − n2
2 sin2 β


 (44)

JLLR = 1− n2t cosβ

R2 cosβ2

×




n1R1 cosβ − a

{√
n2

2 − n2
1 sin2 β + n1 cosβ

}

R1

√
n2

2 − n2
1 sin2 β


 (45)
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The GO field for each ray can now be written as

U(r)LLL = A0LLL(ξ) [JLLL]−1/2

× exp
[−jk

(
S0LLL + n2

1t + n1t1
)]

(46)

U(r)RRR = A0RRR(ξ) [JRRR]−1/2

× exp
[−jk

(
S0RRR + n2

2t + n2t1
)]

(47)

U(r)RRL = A0RRL(ξ) [JRRL]−1/2

× exp
[−jk

(
S0RRL + n2

1t + n1t1
)]

(48)

U(r)LLR = A0LLR(ξ) [JLLR]−1/2

× exp
[−jk

(
S0LLR + n2

2t + n2t1
)]

(49)

where A0(ξ) and S0(ξ) are the initial phases and amplitudes. Their
expressions are given in Eqs. (18)–(25).

Since GO becomes infinite at caustics, so we find approximate field
at the caustics by Maslov’s method. To calculate the field at caustic
we need expression J(t)∂Pz

∂z for all four rays, reflected form elliptical
subreflector, which are found below.
[
J(t)LLL

∂PzLLL

∂z

]
=

n1 sin2(2α− 2ψ)
R1

(50)
[
J(t)RRR

∂PzRRR

∂z

]
=

n2 sin2(2α− 2ψ)
R1

(51)

[
J(t)RRL

∂PzRRL

∂z

]
=


 n2

1 sin2(β1 − ψ) cos2 β

cosβ1

√
n2

1 − n2
2 sin2 β





n2bR1 − a

√
(R1R2)(n2

1 − n2
2 sin2 β)− n2ab

bR1R2




(52)
[
J(t)LLR

∂PzRRL

∂z

]
=


 n2

2 sin2(β2 − ψ) cos2 β

cosβ2

√
n2

2 − n2
1 sin2 β





n1bR1 − a

√
(R1R2)(n2

2 − n2
1 sin2 β)− n1ab

bR1R2




(53)
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The phase functions are given by

SLLL = S0LLL + n1t1 + n2
1t− z(x, PzLLL)PzLLL + zPzLLL (54)

SRRR = S0RRR + n2t1 + n2
2t− z(x, PzRRR)PzRRR + zPzRRR (55)

SRRL = S0RRL + n1t1 + n2
1t− z(x, PzRRL)PzRRL + zPzRRL (56)

SLLR = S0LLR + n2t1 + n2
2t− z(x, PzLLR)PzLLR + zPzLLR (57)

In these phase functions S0 and t1 are given above. While the extra
terms are given by

SexLLL = n2
1t− z(x, PzLLL)PzLLL + zPzLLL

= n2
1t− (ζ2 + PzLLLt)PzLLL + zPzLLL

= (z − ζ2)PzLLL + P 2
xLLLt

= (z − ζ2)PzLLL + (x− ξ2)PxLLL

= n1 [−x sin(2α− 2ψ)− z cos(2α− 2ψ)]
+n1 [ξ2 sin(2α− 2ψ) + ζ2 cos(2α− 2ψ)] (58)

Similarly

SexRRR = n2 [−x sin(2α− 2ψ)− z cos(2α− 2ψ)]
+n2 [ξ2 sin(2α− 2ψ) + ζ2 cos(2α− 2ψ)] (59)

SexRRL = n1 [−x sin(β1 − ψ)− z cos(β1 − ψ)]
+n1 [ξ2 sin(β1 − ψ) + ζ2 cos(β1 − ψ)] (60)

SexLLR = n2 [−sx sin(β2 − ψ)− z cos(β2 − ψ)]
+n2 [ξ2 sin(β2 − ψ) + ζ2 cos(β2 − ψ)] (61)

After substituting all the required parameters and simplifying them we
will get the following final expressions at caustics.

U(r)LLL =

√
k

2jπ

[∫ A2

A1

+
∫ −A2

−A1

]
A0LLL(ξ)

√
R1

× exp[−jk{S0LLL + n1t1 + SexLLL}]d(2α) (62)

U(r)RRR =

√
k

2jπ

[∫ A2

A1

+
∫ −A2

−A1

]
A0RRR(ξ)

√
R1

× exp[−jk{S0RRR + n2t1 + SexRRR}]d(2α) (63)
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U(r)RRL =

√
k

2jπ

[∫ A2

A1

+
∫ −A2

−A1

]
A0RRL(ξ)

1√
n2

1 − n2
2 sin2 β

×

 R1R2bn2 cosβ1

abn2 + a
√

(R1R2)(n2
1 − n2

2 sin2 β)− bn2R1



−1/2

× exp[−jk{S0RRL + n1t1 + SexRRL}]d(2α) (64)

U(r)LLR =

√
k

2jπ

[∫ A2

A1

+
∫ −A2

−A1

]
A0LLR(ξ)

1√
n2

2 − n2
1 sin2 β

×

 R1R2bn1 cosβ2

abn1 + a
√

(R1R2)(n2
2 − n2

1 sin2 β)− bn1R1



−1/2

× exp[−jk{S0LLR + n2t1 + SexLLR}]d(2α) (65)

Eqs. (62)–(65) are the field expressions at caustics and found using
Maslov’s method.

3. RESULTS AND DISCUSSIONS

Field pattern around the caustic of a Gregorian system are determined
using Eqs. (62)–(65) by performing the integration numerically. Values
of the different parameters are: kf = 125, ka = 80, kb = 70, kd = 70,
kD = 110. Limits of integration are selected using the following
relations [20].

A1 = 2 tan−1

(
D

2f

)
(66)

A2 = tan−1

(
d

2c

)
(67)

Variations in magnitude of the fields are shown versus kz in Fig. 4
to Fig. 10. Equations of caustics for ULLL and URRR are given by
Eq. (62) and Eq. (63). These are similar as in the case ordinary
medium [20]. LLL and RRR coincide for all values of kβ. As the
value of kβ increases, magnitude of the field around caustic increases.
This behavior is depicted in Fig. 4 and Fig. 5. For kβ = 0, n1 = n2 = 1
and

ULLL = URRR = 0 (68)
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Figure 4. |ULLL| of Gregorian system at kx = 0, kβ = 0, 0.01, 0.05,
0.1.

Figure 5. |URRR| of Gregorian system at kx = 0, kβ = 0, 0.01, 0.05,
0.1.

Equations of caustics of RRL and LLR rays are given by Eq. (64)
and Eq. (65). With the increase in value of chirality parameter kβ, the
gap between the focal points of RRL and LLR rays increases as shown
in Fig. 6 and Fig. 7. For kβ = 0, n1 = n2 = 1 and

URRL = ULLR = 0 (69)
Eq. (68) and Eq. (69) justifies the fact that for kβ = 0, LL and RR rays
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Figure 6. |URRL| of Gregorian system at kx = 0, kβ = 0, 0.01, 0.05,
0.1.

Figure 7. |ULLR| of Gregorian system at kx = 0, kβ = 0, 0.01, 0.05,
0.1.

goes to zero. So its quite obvious that LLL, RRR, LLR and RRL will
also be zero for zero chirality. While other four rays LRL, LRR, RLR,
RRL, caused due the incidence of RL and LR will be like ordinary
medium waves [20] for this zero chirality case.
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Figure 8. |ULLL| of Gregorian system at kx = 0, kβ = 1.2, 1.5, 1.75.

Figure 9. |URRR| of Gregorian system at kx = 0, kβ = 1.2, 1.5, 1.75.

Plots of LLL, RRR, RRL and LLR rays for kβ > 1 are given in
Fig. 8 to Fig. 10. We have the same values of kf , ka, kb, kd, and
kD = 110 as for PPV case. It is seen clearly that for kβ > 1 LCP
wave is traveling with NPV and RCP with PPV. LLR wave diverges
out and do not form a real focus while RRL wave forms a focus with
much shifted towards left.
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Figure 10. |URRL| of Gregorian system at kx = 0, kβ = 1.2, 1.5,
1.75.

4. CONCLUSION

It is found that excitation of a Gregorian reflector, placed in reciprocal
and homogenous chiral medium, by plane wave may yield eight rays
four of which converge and their field expressions are determined in
this paper. Two of them, LLL and RRR, are located at the same
location as if the reflector is placed in ordinary medium [20]. It is
seen that for PPV case other two focal points, LLR and RRL, are on
the opposite sides of caustic located at ordinary medium location [20].
As the chirality parameter increases, the gap between LLR and RRL
increases. For NPV case, the LLR ray diverges and does not form
a focus, while focal point of RRL ray shifts to left with increase in
chirality parameter.
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