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Abstract—Application of multi-dimensional Cauchy approximation
and coarse-discretization electromagnetic (EM) models to surrogate-
based optimization of microwave structures is discussed. Space
mapping is used as an optimization engine with the surrogate model
constructed as a Cauchy approximation of the coarsely discretized
device EM model. The proposed approach allows us to perform
computationally efficient optimization of microwave structures without
using circuit-equivalent coarse models traditionally exploited by space
mapping algorithms. We demonstrate our technique through design
of a range of microwave devices, including filters, antennas, and
transitions. Comprehensive numerical verification of the proposed
methodology is carried out with satisfactory designs obtained — for
all considered devices — at a computational cost corresponding to a
few full-wave simulations.
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1. INTRODUCTION

Electromagnetic (EM) simulation offers accurate but computationally
expensive evaluation of microwave devices and circuits. Therefore,
using a high-accuracy full-wave EM simulator to optimize complex
structures is usually impractical. One of possible alternatives is circuit
decomposition, i.e., breaking down an EM model into smaller parts and
combining them in a circuit simulator to reduce the CPU-intensity
of the design process [1–3]. This is only a partial solution though
because the EM-embedded co-simulation model is still subject to direct
optimization. Adjoint sensitivity approaches [4], on the other hand,
aim at efficiently estimating the sensitivity information required for
gradient-based optimization. They require post processing of stored
electromagnetic fields to extract the sensitivity information.

Despite these difficulties, simulation-driven design is the only
available option in many practical cases. That includes, in particular,
some of emerging classes of structures such as ultrawideband (UWB)
antennas [5–9] and substrate-integrated circuits [10]. Due to the lack of
good analytical models and systematic design procedures, satisfactory
design is typically obtained using tedious and time-consuming
parameter sweeps involving numerous full-wave EM simulations.

Practical, i.e., computationally efficient, EM-simulation-driven de-
sign can be realized using surrogate-based optimization (SBO) [11, 12].
The most successful SBO approaches in microwave engineering to
date are space mapping (SM) [13–27], tuning [28–31], various com-
binations of SM and tuning [32–35], as well as response correction
techniques [36, 37]. Tuning can be extremely efficient, however, it is
an invasive technique because it requires modification of the struc-
ture being optimized, which is necessary to insert the tuning compo-
nents [31]. Also, tuning may not be able to directly handle radiat-
ing structures. Moreover, applying tuning to certain parameters (e.g.,
cross-sectional ones, microstrip width, etc.) is not straightforward [33].
Space mapping is a more versatile methodology that allows efficient
optimization of expensive (or “fine”) EM-based models by means of
the iterative optimization and updating of less accurate but cheaper
to evaluate “coarse” models. The coarse model is supposed to be a
physically-based representation of the fine model so that it has a good
prediction capability. On the other hand, the coarse model should
be computationally much cheaper than the fine model. Therefore,
equivalent-circuit models or models exploiting analytical formulas are
preferred [14]. Reliable equivalent-circuit models, however, may be
difficult to develop for certain types of microwave devices (e.g., UWB
antennas and their feeding networks, low-reflective broadband inter-
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connects, substrate integrated hybrid circuits). Also, an extra simula-
tor of the coarse model must be invoked in the optimization process.

Probably the most generic approach to creating a coarse model is
by exploiting the same EM solver as the one used to evaluate the fine
model with a coarser discretization. While coarsely discretized EM
models can be quite accurate, they are usually computationally too
expensive to be directly used in space mapping optimization process.
In order to take full advantage of the space mapping principle, the
coarse model should evaluate at least two to three orders of magnitude
faster than the fine model. Otherwise, the computational overhead
related to numerous coarse model evaluations necessary to execute the
basic steps of the SM algorithm may degrade space mapping efficiency.

Parameterized Cauchy models [38] offer a good alternative to
direct use of the coarsely discretized EM models. This approach
utilizes a number of coarse model simulations to model an arbitrary
response as a ratio of two polynomials. The coefficients of these
polynomials are determined through the solution of a much faster
optimization approach. This approach was first developed for one-
dimensional responses where typically a frequency domain response
is modeled [39]. Later, it was extended to the multi-dimensional
case [40]. Previous approaches for multi-dimensional Cauchy models
suffered from the possibility of generating a spurious solution [41]. A
more robust approach for obtaining the coefficients of the polynomials,
which is based on a fast linear programming formulation and excludes
any non physical solutions, can be found in [42].

In this work, we propose an efficient approach for creating reliable
coarse models for space mapping optimization. We utilize a multi-
dimensional Cauchy model [38, 42] of the coarsely discretized device
EM model. The coarse model built in this way is very fast and easy to
optimize. An additional circuit-based coarse model is not needed and
space mapping optimization can be implemented using a single EM
simulator. The proposed approach is illustrated and verified through
the design optimization of two microstrip filters, a monopole antenna,
and a cpw-to-microstrip transition.

2. DESIGN OPTIMIZATION USING SPACE MAPPING

In this section, we formulate the design optimization problem, recall
the basics of space mapping optimization, as well as discuss the role and
important characteristics of the coarse model — the key component of
the SM algorithm.
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2.1. Design Optimization Problem

Our goal is to solve the following problem
x∗f ∈ arg min

x∈Xf

U (Rf (x)) (1)

where Rf ∈ Rm denotes the response vector of the fine model of the
device of interest, e.g., the modulus of the reflection coefficient |S11|
evaluated at m different frequencies. U is a given scalar merit function,
e.g., a minimax function with upper and lower specifications. Vector x∗f
is the optimal design to be determined. The fine model is assumed to
be computationally expensive so that its direct optimization is usually
prohibitive.

2.2. Space Mapping Optimization Basics

Space mapping (SM) is probably the most successful surrogate-based
optimization technique in microwave engineering. Instead of solving
the problem (1) directly, SM generates a sequence of approximate
solutions to (1), denoted as x(i), i = 0, 1, 2, . . ., and a family of
surrogate models R(i)

s , as follows [14]:

x(i+1) = arg min
x

U
(
R(i)

s (x)
)

(2)

Here, x(0) is the initial design. The surrogate model R(i)
s is a

representation of Rf created using available fine model data, and
updated after each iteration.

SM constructs a surrogate model based on the coarse model Rc:
a less accurate but computationally cheap representation of the fine
model. Let R̄s be a generic SM surrogate model, i.e., Rc composed
with suitable (usually linear) transformations. At the ith iteration, the
surrogate model R(i)

s is defined as

R(i)
s (x) = R̄s(x,p(i)) (3)

where

p(i) = arg min
p

∑i

k=0
wi.k||Rf (x(k))− R̄s(x(k),p)|| (4)

is a vector of model parameters and wi.k are weighting factors; a
common choice of wi.k is wi.k = 1 for all i and all k (all previous
designs contribute to the parameter extraction process) or wi.1 = 1
and wi.k = 0 for k < i (the surrogate model depends on the most
recent design only).

Various space mapping surrogate models are available [13, 14].
They can be categorized into four groups:
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• Models based on a (usually linear) distortion of coarse model
parameter space, e.g., input SM of the form R̄s(x,p) =
R̄s(x,B, c) = Rc(B · x + c) [13];

• Models based on a distortion of the coarse model response, e.g.,
output SM of the form R̄s(x,p) = R̄s(x,d) = Rc(x) + d [14];

• Implicit space mapping, where the parameters used to align
the surrogate with the fine model are separate from the design
variables, i.e., R̄s(x,p) = R̄s(x,xp) = Rc.i(x,xp), with Rc.i

being the coarse model dependent on both the design variables x
and so-called preassigned parameters xp (e.g., dielectric constant,
substrate height) that are normally fixed in the fine model but can
be freely altered in the coarse model [43];

• Custom models exploiting characteristic parameters of a given
design problem. The most commonly used characteristic
parameter is frequency. Frequency SM exploits a surrogate model
of the form R̄s(x,p) = R̄s(x,F) = Rc.f (x,F) [13], where Rc.f

is a frequency-mapped coarse model. Here, the coarse model
is evaluated at frequencies different from the original frequency
sweep for the fine model, according to the mapping ω → f1 +f2ω,
with F = [f1f2]T .

The basic SM types can be combined, e.g., the surrogate model
employing both input, output and frequency SM types would be as
follows: R̄s(x,p) = R̄s(x, c,d,F) = Rc.f (x + c,F) + d. The rationale
for this is that a properly chosen mapping may significantly improve
the performance of the SM algorithm, however, the optimal selection of
the mapping type for a given design problem is not trivial [27, 44, 45].

The space mapping optimization algorithm flow can be described
as follows:

1. Set i = 0; choose the initial design solution x(0);
2. Evaluate the fine model to find Rf (x(i));
3. Obtain the surrogate model R(i)

s using (3) and (4);
4. Given x(i) and R(i)

s , obtain x(i+1) using (2);
5. If the termination condition is not satisfied go to Step 2; else

terminate the algorithm;
Typically, x(0) = arg min {x : U(Rc(x))}, i.e., it is the optimal

solution of the coarse model: the best initial design normally available.
We usually terminate the algorithm when it converges (i.e., ||x(i) −
x(i−1)|| is smaller than some user-defined value) or when the maximum
number of iterations (or, more often, the number of Rf evaluations) is
exceeded.
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2.3. Coarse Models and Performance of Space Mapping

It is of primary importance for the performance of SM optimization
that the coarse model is physically-based, i.e., it describes the same
phenomena as the fine model. This would ensure that the surrogate
model constructed using Rc has a good prediction capability [27]. If the
surrogate model is a sufficiently good representation of the fine model,
the SM algorithm typically requires a few fine model evaluations to
yield a satisfactory solution, substantially less than for any method
directly involving the fine model in the optimization loop [13, 14]. On
the other hand, Rc should be computationally much cheaper than
Rf so that the overhead due to numerous coarse model evaluations
while optimizing the surrogate model (2) and solving the parameter
extraction sub-problem (4) is reasonably small.

The preferred choice for the coarse model is an equivalent
circuit implemented in a circuit-based simulator, e.g., Agilent
ADS [46]. Unfortunately, for many structures (e.g., antennas,
substrate integrated circuits), it is difficult or impossible to build a
reliable circuit-based coarse model. On the other hand, the accuracy
of such models is often insufficient, which may result in the SM process
performing poorly. If the coarse model is insufficiently accurate, the
SM algorithm may need more fine model evaluations or may even fail
to find a good quality design. Also, it might be difficult to find a
suitable combination of SM transformations to construct a sufficiently
good surrogate model [27, 44].

3. COARSE MODELS USING COARSELY
DISCRETIZED EM MODELS AND
MULTI-DIMENSIONAL CAUCHY APPROXIMATIONS

A coarse model that is accurate and yet computationally cheap can
be constructed by approximating the response of coarse-discretization
EM model data obtained by sampling the design space using a
suitable design of experiments technique. In this section, we discuss
basic features of coarsely discretized EM models and discuss the
method of creating the coarse model using multi-dimensional Cauchy
approximation.

3.1. Coarse-mesh EM-simulation-based Models

One of the possible ways of implementing the coarse model is by
exploiting the same EM solver used to evaluate the fine model, however,
with coarser discretization. In this case, however, it is difficult to
find a satisfactory trade-off between the coarse model accuracy and
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evaluation time. The evaluation time of Rc should be at least two
orders of magnitude smaller than that of Rf in order to make the
overhead of solving (2) and (4) reasonably small. Otherwise, the
computational cost of surrogate model optimization and, especially,
parameter extraction, starts playing important role in the total cost of
SM optimization and may even determine it. Another problem is that
the coarse-mesh EM-based model may have poor analytical properties
(e.g., non-differentiability) which make them difficult to optimize [47].

The aforementioned problems can be overcome if the coarse model
is created by approximating the coarse-mesh EM model data using a
suitable function approximation technique. In this case, it is only
necessary to evaluate the coarse-mesh EM model at a predefined set
of training points, and the resulting coarse model is computationally
cheap. In this work, the coarse model is built using the Cauchy rational
approximation. For further reference, the coarse-mesh EM model will
be denoted as Rf -c.

3.2. Multi-dimensional Cauchy Approximation [42]

Cauchy interpolation technique was initially proposed in [39] for
approximating the frequency response of a high frequency structure
by a rational function of two polynomials. Each polynomial was a
function of frequency only. The frequency response was calculated at
a continuous band of frequencies using only few simulated frequencies.
This approach, however, does not provide a parameterized model that
can be efficiently used in optimization, tolerance analysis, statistical
analysis, and yield analysis.

In [40], rational function approximation was extended to modeling
of multi-dimensional EM problems. This approach is justified because
even for fixed frequency, the response of many structures can exhibit
strong nonlinearities with respect to material properties and different
dimensions. The parameterized Cauchy model can be defined as
follows. Consider a scalar system response Rs(x), where x is the vector
of design variables x = [x1 x2 . . . xn]T representing, e.g., frequency,
geometry parameters, material properties, etc. The response Rs can
be modeled by a multi-dimensional Cauchy rational approximation of
the form:

R̄s(x) =
a0 + a1x1 + a2x2 + a3x

2
1 + a4x1x2 + a5x

2
2 + . . .

b0 + b1x1 + b2x2 + b3x2
1 + b4x1x2 + b5x2

2 + . . .
(5)

where a = [a0 a1 . . . aM ]T and b = [b0 b1 . . . bM ]T are the unknown
coefficients. The order of the polynomials in the numerator and
denominator can be adjusted depending on the nonlinearity of Rs.
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The target of Cauchy-based modeling is to determine the coefficients
[aT bT ]T that make the given model (5) satisfy a given set of data
samples S = {(xi, Ri

s), i = 1, 2, . . . , Ns}.
In [40], a recursive technique was proposed to make the solution

of the model extraction feasible, which breaks down the multi-
dimensional problem into a number of one-dimensional problems that
are solved recursively to finally achieve the desired model [40]. This
method, however, may require a large number of data samples as it
utilizes a fixed number of samples in each dimension. A modified
model extraction technique exploiting the total least squares (TLS)
method [48] was reported in [41]. This method, however, may lead
to spurious solutions that do not give a physical model [48]. It was
further enhanced in [49] by employing an adaptive sampling technique
to reduce the number of sample points required for a specific accuracy.
An alternative formulation that promises a more robust solution to
the ill-conditioned system of equations was proposed in [50]. It was
applied though for only one dimensional interpolation with respect to
frequency.

In this paper, we use a robust algorithm for the extraction of
parameterized Cauchy model introduced in [42], which allows for
an error margin in the given response data resulting in a stable
formulation that is less sensitive to errors. It also implements safeguard
constraints that eliminate spurious solutions. As shown in [3], the
model coefficients can be found by solving the linear program of the
form

min
v

cTv subject to A(δ)v ≤ d (6)

where v = [t aT bT ]T is the vector of unknowns with t being an
auxiliary variable introduced by the linear program. The matrix A
depends on the set of data pairs S. The number of rows in the matrix
A depends linearly on Ns, the vectors c and d are constant vectors
whose dimensions also depend on Ns. The global optimum of the
linear program (6) can always be found [42]. The vector of tolerances
δ = [δ1 δ2 . . . δNs]T is defined as Ri − δi ≤ R̄s(xi) ≤ Ri + δi, where δi

is allowed tolerance for the ith data sample. Here, the tolerances are
identical for all samples and preset to a small value (typically 10−3).

3.3. Construction of the Coarse Model

Let XB = {x1,x2, . . . ,xN} denotes a base set, such that the
responses Rf -c(xj) are known for j = 1, 2, . . . , N . Let Rf -c(x) =
[Rf -c.1(x) . . . Rf -c.m(x)]T . The Cauchy approximation coarse model Rc
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is defined as

Rc(x) =
[
R̄f -c.1(x) R̄f -c.2(x) . . . R̄f -c.m(x)

]T (7)

where R̄f -c.i(x) is the Cauchy model of the ith component of Rf -c(x)
constructed as described in Section 3.2.

Note that the coarse model built as proposed here has a number
of advantages:

• It is computationally cheap, smooth, and easy to optimize;
• There is no need for a circuit-equivalent model, and, consequently,

no extra simulation software needs to be involved;
• The SM algorithm implementation is simpler (exploits a single

EM solver),
• It is possible to apply SM for problems where finding reliable and

fast coarse models is difficult or impossible (e.g., antennas). Also,
the initial design obtained through optimization of the coarse-
mesh EM model is usually better than the initial design that could
be possibly obtained using other methods.

It should be emphasized that the Cauchy-approximation coarse
model described here has certain limitations. In particular, it can
be used efficiently only when only few designable parameters are
considered. For larger n, the required number of evaluations of Rf -c

quickly increases so that the computational cost of creating the coarse
model becomes unacceptably high. Also, the coarse model is set up
only once for the entire optimization process. Therefore, it has to
have relatively large region of validity, and, consequently, higher-order.
This increases the number of model parameters and the number of
necessary training points. It also creates difficulties in ensuring the
required accuracy of the Cauchy approximation. A modified version
of our technique that alleviates these limitations will be addressed in
a future work.

4. DESIGN OPTIMIZATION PROCEDURE

The flowchart of the proposed design optimization procedure is shown
in Fig. 1. The space mapping optimization algorithm (Section 2.2) uses
the Cauchy-approximation-based coarse model Rc created as described
in Section 3.2, and also evaluates the fine model (once per iteration).
The same EM solver is exploited to evaluate the fine model Rf and the
coarse-discretization model Rf -c. The latter is used both to produce
the starting point for SM algorithm and to generate the data for
creating Rc.
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Figure 1. Flowchart of the design optimization procedure exploiting
space mapping and Cauchy-approximation-based coarse models. Two
main blocks are construction of the coarse model and the SM
optimization algorithm. The starting point for SM optimization is the
design obtained by optimizing coarse-discretization EM model Rf -c.
The Cauchy-approximation coarse model is set up as described in
Section 3.2. The SM algorithm is implemented as described in Section
2.2. The fine model is evaluated only once per SM iteration. The same
EM solver is used to generate the data necessary to build the coarse
model.

5. EXAMPLES

In this section, we illustrate the operation and computational efficiency
of the design optimization technique described in Section 4. We
consider various examples including microstrip filters, a monopole
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antenna, and a microstrip-to-CPW transition. Our examples
demonstrate that the proposed methodology can be used to handle
a wide range of microwave structures. For all test cases, an optimized
design is obtained at a cost corresponding to several evaluations of the
fine model. It should be emphasized that using a coarsely discretized
EM-based coarse model allows us to generate quite good starting point
for the design optimization process, which would be difficult to obtain
by means of other methods.

5.1. Second-order Dual-behavior Resonator Filter [51]

Consider the second-order dual-behavior resonator (DBR) filter [51]
shown in Fig. 2. The design parameters are x = [L1 L2 L3]T . The
fine model is simulated in FEKO [52]. The total mesh number for
the fine model is 1027 with simulation time of 37 minutes. The mesh
number for the coarse-mesh FEKO model Rf -c is 52 meshes with a
simulation time of 14 seconds. The considered response of the fine
model is the modulus of the transmission coefficient, |S21|, evaluated
at 59 frequency points equally spaced over the frequency band 4.0 GHz
to 6.0 GHz. The design specifications are |S21| ≥ −3 dB for 4.9 GHz
≤ ω ≤ 5.1 GHz, and |S21| ≤ −20 dB for 4.0GHz ≤ ω ≤ 4.6GHz and
5.4GHz ≤ ω ≤ 6.0GHz.

The initial design is xinit = [8.0 4.0 6.0]T mm (minimax
specification error +20 dB). In the first stage, the coarse-mesh model
Rf -c is optimized using a pattern search with a rough grid of 0.5 mm
× 0.5mm to yield a starting point for SM optimization process. The
initial design x(0) = [6.5 5.0 6.0]T mm (minimax specification error
+9.3 dB) is obtained after 17 evaluations of Rf -c. Fig. 3 shows the

L1

L3

L2

Input Output

Figure 2. Geometry of the dual-behavior resonator filter [51].
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Figure 3. DBR filter: fine model responses at the initial design
xinit (dashed line) and at the optimized design x(0) of the coarse-mesh
FEKO model Rf -c (solid line), as well as the response of Rf -c at x(0)
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Figure 4. DBR filter: fine model response (solid line) and the space-
mapped coarse model response (×) at optimized design of the coarse-
mesh FEKO model Rf -c, x(0).

fine model responses at xinit and x(0) as well as the response of Rf -c

at x(0). The Cauchy-approximation-based coarse model Rc (7) is
constructed in the region 6.3 mm ≤ L1 ≤ 6.7mm, 4.8 mm ≤ L2 ≤
5.2mm, 4mm≤ L3 ≤ 8mm using 43 = 64 evaluations of Rf -c allocated
on the rectangular grid. The DBR filter was optimized using the
SM algorithm with the input and output SM surrogate of the form
R̄s(x,p) = R̄s(x, c,d) = Rc(x + c) + d. Fig. 4 shows the response of
Rf and space-mapped Rc at x(0).

The design obtained after two SM iterations is x(2) =
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Figure 5. DBR filter: fine model response at the final design x(2).

Table 1. Computational cost of optimizing the second-order DBR
filter.

Algorithm

Component

Model

Involved

Number of Model

Evaluations

Absolute

Time [min]

Relative

Time

Optimization of

Rf-c

Rf-c 17 4 0.1

Setting up the

Cauchy model Rc

Rf-c 64 15 0.4

Evaluation of Rf Rf 3∗ 111 3.0

Total optimization

time
N/A N/A 130 3.5

∗ Excluding evaluation of the fine model at initial design.

[6.52 4.86 4.00]T mm. The fine model minimax specification error at
x(2) is −1.8 dB (Fig. 5). Table 1 summarizes the computational cost
of the optimization: the total optimization time corresponds to only
3.5 evaluations of Rf . It should be noted that further reduction of the
computational cost of the optimization process could be achieved by
reducing the number of frequency samples for the coarsely-discretized
model Rf -c.

5.2. Monopole Planar Antenna

We also consider the planar monopole antenna shown in Fig. 6(a). The
input 50 ohm microstrip line with a conductor width of Wm = 3.45mm
is excited at the substrate periphery. The substrate dielectric is
described by the general second order dispersion model [53] fitting
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permittivity and loss tangent of FR408 laminates [54]. Metal thickness,
t, is 0.035 mm. The design parameters are x= [Lt Lo LGND]T . The
other variables are fixed at Lp = 16.0mm, Wp = 18 mm, Ls = 3.0mm,
and Ws = 2.0mm.

The fine model is simulated in CST Microwave Studio [53] using
the transient solver and a fine subgrid spatial discretization (247,319
mesh cells). The simulation time for Rf is 48 min. The coarse-
discretization model Rf -c has 8,963 mesh cells with a simulation time
of only 55 s. In both models the background medium (free space) is
truncated by PMLs (8 layers in the fine model and 4 layers in the coarse
model). The response of the fine model is the modulus of the reflection
coefficient |S11| over the frequency band 2.0 GHz to 9.0 GHz. The

LGND

Wp

hrt

LtLo

Wm

Lp

Ws

Ls

LGND=10 mm

Wp

hrt

Lt=0 mm

Lo=0 mm

Wm

Lp

Ws

Ls

ε ε

(a) (b)

Figure 6. Monopole antenna: (a) frame geometry for optimization;
(b) geometry of the initial design xinit.
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Figure 7. Monopole antenna: fine model responses at the initial
design xinit (dashed line) and at the optimized design x(0) of the coarse-
discretization CST model (solid line), and the response of Rf -c at x(0)

(×).
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design specifications are |S11| ≤ −10 dB for 3.1GHz ≤ ω ≤ 8.0 GHz.
The initial design is xinit = [0 0 10.0]T mm (minimax specification

error +7 dB). The starting point for the SM algorithm, x(0) =
[7 0 14]T mm, is obtained by grid-search optimization of Rf -c on the
1.0mm × 1.0mm grid. The computational cost is 28 evaluations of
Rf -c. Fig. 7 shows the fine model responses at xinit and x(0) as well
as the response of Rf -c at x(0). The Cauchy-based coarse model Rc

is constructed in the region 3.0mm ≤ Lt ≤ 8.0mm, −1.0mm ≤ Lo ≤
1.0mm, 12.0mm ≤ LGND ≤ 16.0mm using 53 = 125 evaluations of
the coarse-discretization model Rf -c.

Because of limited accuracy of the coarse-discretization model,
the input SM is not able to provide sufficient alignment between the
coarse and fine models. Therefore, a variation of output SM, so-
called adaptive response correction technique [37] was used as the
optimization engine in this case. Adaptive response correction is
a generalization of the output SM that exploits a design-variable
dependent response correction term that tracks the changes of the
coarse model that occur during the coarse model optimization and
maps these changes into the surrogate model [37].

The design obtained after two iterations is x(2) =
[3.472 0.708 15.523]T mm. The fine model minimax specification error
at x(2) is −2.2 dB (Fig. 8), i.e., we have |S11| < −12 dB from 3.1 GHz
to 8 GHz. Table 2 summarizes the computational cost. The total
optimization time corresponds to less than 6 evaluations of the fine
model.
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-15
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0

Frequency [GHz]
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1| [
d

B
]

Figure 8. Monopole antenna: fine model response at the final design
x(2).
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Figure 9. Common ground microstrip-to-CPW transition: (a) 3D
view (substrate not shown); (b) layout views.

Table 2. Computational cost of optimizing the monopole antenna.

Algorithm

Component

Model

Involved

Number of Model

Evaluations

Absolute

Time [min]

Relative

Time

Optimization of

Rf-c

Rf-c 28 26 0.5

Setting up the

Cauchy model Rc

Rf-c 125 115 2.4

Evaluation of Rf Rf 3∗ 144 3.0

Total optimization

time
N/A N/A 285 5.9

∗ Excluding evaluation of the fine model at initial design.

5.3. Common Ground Microstrip-to-coplanar Waveguide
Transition

A microstrip-to-coplanar waveguide (CPW) transition is shown in
Fig. 9. The microstrip and CPW are interfaced through a single
via connecting the signal traces with the transmission lines (TLs)
sharing the same ground plane [55], see Fig. 9. Unlike in [55], the
design geometry in our example is defined with the CPW ending on
the rectangular slot and the straight barrel via with no pads. The
lengths of the input TLs are 15.0mm each. We use 0.635 mm thick
RT6010 substrate. The dielectric is described with the 1st order Debye
model. The metal has a conductivity of 5.7e8 S/m and a thickness of
0.0254mm. The remaining dimensions are as follows: Wm = 0.6mm,
Wc = 0.8mm, sc = 0.3mm, and Wg = 9.4mm. The low frequency
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TL impedances are 50 ohm. The transition is simulated using the CST
MWS transient solver [53]. The fine model Rf has 1,254,528 cells (at
the initial design) with a simulation time of approximately 50 min.
The coarse discretization model Rf -c has 393,984 mesh cells with a
simulation time of 640 s.

The design objective is to obtain |S11| ≤ −25 dB and |S22| ≤
−25 dB from DC to 20 GHz. The design variables are x = [Zv Rv]T

with a starting point x(0) = [0.5 0.3]T . Because of the fact that the
coarsely discretized model Rf -c is relatively expensive (only 5 times
cheaper than the fine model), the starting point for SM algorithm,
x(0) = [0.4 0.1296]T mm, is obtained by optimizing even coarser model
Rf−cc (69,888 mesh cells, simulation time is 116 s). The computational
cost is 31 evaluations of Rf−cc. Fig. 10 shows the fine model responses
at xinit and x(0) as well as the response of Rf -c at x(0). The second-
order Cauchy-based coarse model Rc is constructed in the region
defined by ±10% deviation from x(0). A total of 12 evaluations of
the model Rf -c allocated on the uniform 3× 4 grid are utilized within
this region.

As we can observe in Fig. 10, the model responses are relatively
complex, however, overall accuracy of the coarsely discretized model
Rf -c is good. Therefore, we use the output-SM-based surrogate model
of the form R̄s(x,p) = R̄s(x,d) = Rc(x) + d with the vector
d calculated, at ith iteration, as d = Rf (x(i)) − Rc(x(i)). The
optimization process is terminated after two iterations and yields
the design x(2) = [0.354 0.1274]T mm. The fine model minimax

Figure 10. Common ground transition microstrip-to-CPW: responses
of the fine model at the initial design xinit (thin solid line) and at the
optimized design x(0) of the coarse-discretization model Rf−c (thick
solid line), as well as the response of Rf−c at x(0) (dashed line). |S22|
distinguished from |S11| using circles.
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specification error at x(2) is −1.8 dB (Fig. 11), i.e., we have |S11|, |S22|
less then about −27 dB in the entire frequency range of interest (DC
to 20GHz). The computational cost is summarized in Table 3. The
total optimization time corresponds to less than 7 evaluations of the
fine model.
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Figure 11. Common ground transition microstrip-to-CPW: fine
model response at the final design x(2). |S22| distinguished from |S11|
using circles.

Table 3. Computational cost of optimizing the common ground
microstrip-to-CPW transition.

Algorithm

Component

Model

Involved

Number of Model

Evaluations

Absolute

Time [min]

Relative

Time

Optimization of

Rf-c
#

Rf-cc 31 60 1.2

Setting up the

Cauchy model Rc

Rf-c 12 128 2.6

Evaluation of Rf Rf 3∗ 150 3.0

Total optimization

time
N/A N/A 338 6.8

∗ Excluding evaluation of the fine model at initial design.
# This step was performed using a very-coarse-discretization model Rf-cc

(69,888 mesh cells, simulation time 116 s).
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5.4. Microstrip Bandpass Filter with Two Transmission
Zeros [56]

Our last example is a microstrip bandpass filter with two transmission
zeros [56] shown in Fig. 12. The design parameters are x = [Ls d]T .
We also have L = L1 = L2, and g = 0.1mm. The fine model is
simulated in FEKO [52]. The total mesh number for Rf is 1084 with
a simulation time of 24 min. The total mesh number for the coarse-
mesh FEKO model Rf -c is 150 meshes corresponding to a simulation
time of 40 seconds. The design specifications are |S21| ≤ −20 dB for
1.5GHz ≤ ω ≤ 1.8GHz, |S21| ≥ −1 dB for 1.95 GHz ≤ ω ≤ 2.05GHz,
and |S21| ≤ −20 dB for 2.2 GHz ≤ ω ≤ 2.5 GHz.

The initial design is xinit = [7.5 0.2 2.0]T mm with a minimax

L1

L2

Input

Output

L1

L2

d

d

s

gg

Figure 12. Microstrip bandpass filter with two transmission zeros:
geometry [56].
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Figure 13. Bandpass filter with two transmission zeros: fine model
responses at the initial design xinit (dashed line) and at the optimized
design x(0) of the coarse-mesh FEKO model Rf -c (solid line), as well
as the response of Rf -c at x(0) (×).
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specification error of +25 dB. The starting point for the SM
optimization algorithm, x(0) = [6.953 0.398 2.102]T mm (specification
error +9.3 dB), is obtained by optimizing Rf -c. A total of 97
evaluations of the coarsely discretized EM model are required. The fine
model responses at xinit and x(0) as well as the response of Rf -c at x(0)

are shown in Fig. 13. The Cauchy-based coarse model is constructed
in the region x(0) ± [0.1 0.1 0.1]T mm using 4× 4× 3 = 48 evaluations
of Rf -c allocated on the rectangular grid. The filter is then optimized
using the SM algorithm with the frequency and output SM surrogate
of the form R̄s(x,p) = R̄s(x,F,d) = Rc.f (x,F) + d [13], where Rc.f

is a frequency-mapped coarse model (cf. Section 2.2). The design
obtained after two SM iterations is x(2) = [6.888 0.418 2.2]T mm with a
minimax specification error of −0.6 dB. The fine model at this response
is shown in Fig. 14. The total computational cost of the optimization
(Table 4) corresponds to 7 evaluations of the fine model. Similarly
as in the first example, further reduction of the computational cost of
the optimization process could be achieved by reducing the number of
frequency samples for the coarsely-discretized model Rf -c.
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Figure 14. Bandpass filter with two transmission zeros: fine model
response at the final design x(2).

5.5. Discussion

As mentioned in the introduction and in Section 3, the main
novelty of the proposed technique is the way of creating the coarse
model for the space mapping optimization process. Because the
coarse model is built from coarsely-discretized EM model data, our
technique is quite versatile and allows us to handle a large variety of
microwave structures as illustrated above. This is not the case for
standard SM which typically exploits equivalent-circuit models and
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Table 4. Computational cost of optimizing the bandpass filter with
two transmission zeros.

Algorithm

Component

Model

Involved

Number of Model

Evaluations

Absolute

Time [min]

Relative

Time

Optimization of

Rf-c

Rf-c 97 64 2.7

Setting up the

Cauchy model Rc

Rf-c 48 32 1.3

Evaluation of Rf Rf 3∗ 72 3.0

Total optimization

time
N/A N/A 168 7.0

∗ Excluding evaluation of the fine model at initial design.

has difficulty with handling EM-based coarse models directly [47].
As the accuracy of Cauchy-approximation-based coarse models is
typically better than that of equivalent-circuit ones or the models
using analytical formulas, the proposed technique usually yields a
satisfactory design after just two or three iterations of the SM
algorithm. The algorithm exploiting equivalent-circuit model typically
needs more iterations [13, 14]. However, the computational cost of
the optimization process is similar to that of SM exploiting equivalent
circuits because of the additional overhead related to the coarse model
creation. Nevertheless, the most important advantage of the proposed
technique is its versatility: it allows application of space mapping for
cases where reliable circuit-based or analytical coarse models are not
available (cf. Sections 5.2 and 5.3).

6. CONCLUSION

An efficient implementation of space mapping optimization algorithm
has been presented. This novel implementation exploits the multi-
dimensional Cauchy approximation of coarse-mesh EM simulation data
for creating the coarse model. The proposed approach is particularly
suitable for problems where it is difficult or impossible to find a
circuit-equivalent or analytical coarse models. These include, among
others, the design of UWB antennas and substrate integrated circuits.
The efficiency of our technique is demonstrated through the design
optimization of two microstrip filters, a monopole antenna, as well as
a microstrip-to-CPW transition. Satisfactory designs are obtained at
the cost of a few EM simulations of the respective structures.
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