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Abstract—Guided-wave propagation in chiral H-guides is analyzed,
using a building-block approach. In a first stage, a 2D chiral
parallel-plate waveguide is studied using a lossless frequency dispersion
model for the optically active medium, where the constitutive chiral
parameter is assumed to be dependent on the gyrotropic parameter.
In the second stage, the mode matching technique and the transverse
resonance method are used to characterize the 3D structure. A full
parametric study is presented for a fixed frequency. The operational
and dispersion diagrams for the chiral H-guide are presented. By
replacing the common isotropic slab with a chiral slab, chirality
provides an extra degree of freedom in the design of new devices.

1. INTRODUCTION

Chiral media are known to exhibit optical activity, while keeping
reciprocity. Therefore, unlike magnetically biased ferrites, these
media can be useful in the design of some reciprocal devices such as
mode converters, polarizers and phase shifters (see [1] and references
therein). The application of chiral media to closed metallic waveguides,
originally termed as chirowaveguides, and to open slab waveguides and
circular rods has been exhaustively studied in the last years [2–14].
However, to the authors’ best knowledge, no work has been published
yet on their application to hybrid waveguides as an H-guide. The
major reason for this may be the unfeasibility of an exact closed
solution for any rectangular geometry waveguide, due to the coupled
differential equations that govern the transverse variation of the field
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components. In fact, TE and TM modes cannot propagate whenever
metallic rectangular cross-section waveguiding structures are filled
with chiral materials. Some numerical analyses have been presented
in the literature for the metallic rectangular waveguide totally filled
with a chiral material [2–4], based on the finite-element or finite-
difference methods. Exact analytical solutions are only available for the
metallic circular waveguide [2], for a ground chiral slab [5], and for the
parallel-plate waveguide [6–10], totally or partially filled. The analysis
of isotropic-chiral material discontinuities in rectangular waveguides,
using the coupled mode method combined with the mode matching
technique, has been presented in [11]. The same approach has been
used for the analysis of a parallel-plate waveguide partially filled with
a chiral media [12]. On the other hand, for very small values of the
chirality parameter χ, the solutions to the modal equation can be
expressed in terms of this parameter up to first order [13, 14], the
zero order term being the solutions for the achiral waveguide and the
first order term, which is proportional to χ, would give the impact of
chirality on the solution. With this approach, it is possible to grant
insight into the transition from TE/TM modes, in the achiral case,
to hybrid modes in the chiral case. But this approach is limited to
geometries for which an analytical solution of the modal equation can
be derived.

This paper addresses the guided-wave propagation in an H-
guide when the common isotropic slab is replaced by a chiral slab
(Fig. 1). The main advantage of H-guides is the possibility of frequency
scaling. Therefore, devices based on chiral waveguides, operating in the
microwave regime [1], can be realized at higher frequencies (e.g., in the
millimeter-wave regime) using chiral H-guides.

Several examples of H-guides, involving other types of complex
media, have been already published in the literature, namely, the
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Figure 1. Chiral H-guide.
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cases when the isotropic slab is replaced by a uniaxial crystal [15], a
transversely magnetized ferrite [16], an omega medium [17] or a double-
negative metamaterial [18]. However, so far, no analysis has been
published for the chiral H-guide. This can be an interesting structure
as chirality may provide an important degree of freedom and allow new
potential applications.

A semi-analytical method, based on a building-block approach,
is used in this paper. When compared with fully numerical methods
(like the finite-element method), this approach allows more physical
insight into the results. The procedure is based on the transverse
resonance method together with a mode matching technique, as an
extension of the method used in [19, 20], after the method originally
derived by Peng and Oliner [21]. The building-block approach is
divided in two stages. In a first stage, a chiral parallel-plate waveguide
is studied using a frequency dispersion model for the optically active
medium. When operating at lower frequencies, far below the resonance
frequency of the chiral particles, losses may be neglected and dispersion
may be characterized by the simple Condon model. A constitutive
chiral parameter based on the gyrotropic parameter is assumed [22].
This study provides the elementary modes propagating in the inner
region, which are then used for the complete full-wave analysis. Several
numerical results for the chiral H-guide are presented in the last section.

2. THE CHIRAL PARALLEL-PLATE WAVEGUIDE

The parallel-plate waveguide is the elementary constitutive 2D
structure of an H-guide. In this Section, we analyze the chiral parallel-
plate waveguide depicted in Fig. 2. Since this is a completely closed
structure, with perfectly conducting planes placed at x = ±b, only
discrete modes may propagate.

 x

 z
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Figure 2. Chiral parallel-plate waveguide.
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2.1. Chiral Media

For a chiral medium, the constitutive relations may be written as[
D
B

]
=

[
ε0ε −j

√
ε0µ0χ

j
√

ε0µ0χ µ0µ

] [
E
H

]
(1)

with ε0Z0 = µ0Y0 =
√

ε0µ0 = 1/c, where c is the vacuum light velocity
and χ is the normalized chirality parameter, which can be modeled
by χ(ω) = cgω, where g is the gyrotropy parameter. The chirality
parameter, responsible for the optical activity and spatial dispersion,
is an odd function of frequency and vanishes in the steady-state regime.

Considering plane wave propagation of the form exp [−j(kz − ωt)],
and using Maxwell’s equations for source-free regions in the frequency
domain [ ∇× I 0

0 −∇× I

] [
E
H

]
= −jω

[
B
D

]
(2)

where I is the unit dyadic, we can easily see that, in unbounded chiral
media, there are two TEM characteristic waves: a RCP (right-hand
circularly polarized) wave and a LCP (left-hand circularly polarized)
wave and hence, in optically active media, the polarization plane of
linearly polarized light rotates with propagation.

Using now Bohren’s decomposition [23], one may write

D± = ε0ε±E± (3)
B± = µ0µ±H (4)

where ε± = ε ± ycχ and µ± = µ ± χ/yc with yc = Yc/Y0 =
√

ε/µ.
Therefore, Maxwell Equation (2) are recast into

∇×E± = −jωµ0µ±H± (5)
∇×H± = jωε0ε±E± (6)

Choosing Ey and Hy as the field supporting components

Ey(x, y, z, t) = F (x) exp [−j(kz − ωt)] (7)
Hy(x, y, z, t) = G(x) exp [−j(kz − ωt)] (8)

the other field components may be obtained from (5) and (6) according
to

E±
x =

k

ωε0ε±
H±

y (9)

E±
z = − j

ωε0ε±

∂H±
y

∂x
(10)

H±
x = − k

ωµ0µ±
E±

y (11)
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H±
z =

j

ωµ0µ±

∂E±
y

∂x
(12)

while E±
y satisfy to the Helmholtz equation

∇2E±
y + k2

±E±
y = 0 (13)

with k± = (
√

εµ ± χ)k0 = ε±k0/yc = ycµ±k0. According to Bohren’s
decomposition,

Ey = E+
y + E−

y (14)

Hy = H+
y + H−

y = jYc(E+
y − E−

y ) (15)

Writing
E±

y = Ψ±(x) exp [−j(kz − ωt)] (16)

one has

F (x) = Ψ+(x) + Ψ−(x) (17)
G(x) = jYc [Ψ+(x)−Ψ−(x)] (18)

where, according to (13), Ψ±(x) obey to the following Helmholtz
equation

∇2Ψ± + (k2
± − k2)Ψ± = 0 (19)

Owing to the symmetry of the structure, the propagating modes
can be divided into even and odd modes. Therefore, the solutions
of (19) can be written as

Ψ± = A± cos(h±x) (20)

for the even modes, and

Ψ± = A± sin(h±x) (21)

for the odd modes, where h2± = k2± − k2.

2.2. Dispersion Diagram

Due to the perfectly conducting planes, placed at x = ±b, one must
have Ey(x = ±b) = 0 and Ez(x = ±b) = 0. Imposing these boundary
conditions to the six field components derived in Appendix A, a
homogeneous set of algebraic equations, for the coefficients A± in (20)
and (21), is obtained. For a nontrivial solution, the determinant of the
correspondent matrix must be zero, leading to the following two modal
equations
ε−h+ + ε+h−

2
sin [(h+ + h−)b]± ε−h+ − ε+h−

2
sin [(h+ − h−)b] = 0.

(22)
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where the plus sign stands for the even modes and the minus sign for
the odd modes,

At the cutoff, one has k = 0 or, according to (19), h± = k±. At
this point, one can use ε−h+ = ε+h− in the modal Equations (22),
to obtain sin [(k+ + k−)b] = 0, or b/λ = n/(4

√
εµ), with n being an

integer. The fundamental even mode, with no cutoff frequency, is
obtained for n = 0.

The dispersion diagram for the first even and odd hybrid modes
is depicted in Fig. 3, for ε = 4, µ = 1, b = 0.001m and g =
10−21 s2/m. The two dashed oblique lines in this figure correspond to
the asymptotic limiting values of k = k+ and k = k−. For all modes,
k goes to k+ when b/λ →∞, although transiently they may approach
k−. Moreover, except for the fundamental mode, all dispersion curves
start at the cutoff for k = 0. One should note that the cutoff values of
the odd modes are exactly the same as for the even modes.

This diagram is very important as it provides the numerical values
for the wavenumbers of the elementary modes propagating obliquely
along the chiral slab of the H-guide. These values are necessary in the
mode matching technique applied to the transverse resonance method,
as it will be discussed in the next section.
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Figure 3. Dispersion diagram for the first propagating modes of a
chiral parallel-plate waveguide, with ε = 4, µ = 1, b = 0.001m and
g = 10−21 s2/m: (a) Even modes (thick lines); (b) Odd modes (thin
lines).
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3. THE CHIRAL STEP DISCONTINUITY

3.1. Scattering Matrix under Oblique Incidence

In this section, the step discontinuity in a parallel-plate waveguide
depicted in Fig. 4 is analyzed and its scattering matrix under oblique
incidence is derived. The mathematical framework presented in this
section is quite different from the formalism used in [19, 20], where the
elementary modes were pure TE and TM modes, and the waveguide
under consideration was a completely open structure. In fact, the
modal propagation along the chiral H-guide can be seen as the
transverse resonance of the elementary hybrid modes of a parallel-plate
waveguide propagating obliquely and bouncing back and forth at two
lateral step discontinuities.

The structure coordinates (x, y, z) and the wave coordinates
(x, u, v) can be simply related through

[
x
y
z

] = [ 1 0 0
0 sin θ cos θ
0 − cos θ sin θ

] [
x
u
v

]
(23)

For an incident mode, one has



ki = βv
Ei = {Exx̂ + Euû + Evv̂} exp(−jβv)
Hi = {Hxx̂ + Huû + Hvv̂} exp(−jβv)

(24)

where {
û = sin θ ŷ − cos θ ẑ
v̂ = cos θ ŷ + sin θ ẑ (25)

u

x

v

y

z

θ

χ

Figure 4. Step discontinuity in a chiral parallel-plate waveguide and
the corresponding coordinate systems (x, y, z) and (x, u, v).
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After replacing (25) in (24), one gets, for the incident wave,



Ei
x = Ex exp [−j (qy + kz))]

Ei
y = [sin θEu + cos θEv] exp [−j (qy + kz))]

Ei
z = [− cos θEu + sin θEv] exp [−j (qy + kz))]

H i
x = Hx exp [−j (qy + kz))]

H i
y = [sin θHu + cos θHv] exp [−j (qy + kz))]

H i
z = [− cos θHu + sin θHv] exp [−j (qy + kz))]

(26)

Similarly, for the reflected wave, one has



Er
x = Ex exp [−j (−qy + kz))]

Er
y = [sin θEu − cos θEv] exp [−j (−qy + kz))]

Er
z = [cos θEu + sin θEv] exp [−j (−qy + kz))]

Hr
x = Hx exp [−j (−qy + kz))]

Hr
y = [sin θHu − cos θHv] exp [−j (−qy + kz))]

Hr
z = [cos θHu + sin θHv] exp [−j (−qy + kz))]

(27)

while, for a transmitted wave,



Et
x = Ēx exp [−j (q̄y + kz))]

Et
y =

[
sin θ̄Ēu + cos θ̄Ēv

]
exp [−j (q̄y + kz))]

Et
z =

[− cos θ̄Ēu + sin θ̄Ēv

]
exp [−j (q̄y + kz))]

Ht
x = H̄x exp [−j (q̄y + kz))]

H i
y =

[
sin θ̄H̄u + cos θ̄H̄v

]
exp [−j (q̄y + kz))]

Ht
z =

[− cos θ̄H̄u + sin θ̄H̄v

]
exp [−j (q̄y + kz))]

(28)

where the variables with a bar stand for the air parallel-plate
waveguide, and θ̄ is the propagating angle for the transmitted wave.

In general, there may be a set of elementary modes propagating
in each of the two sides of the step. Therefore, the total fields must
be written as the modal superposition of the individual fields of each
mode, according to




Ei
x =

∞∑
n=1

anExn exp [−j (qny + kz))]

Er
x =

∞∑
n=1

bnExn exp [−j (−qny + kz))]

Et
x =

∞∑
p=1

cpĒxp exp [−j (q̄ny + kz))]

(29)





H i
x =

∞∑
n=1

anHxn exp [−j (qny + kz))]

Hr
x =

∞∑
n=1

bnHxn exp [−j (−qny + kz))]

Ht
x =

∞∑
p=1

cpH̄xp exp [−j (q̄ny + kz))]

(30)
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Ei
z =

∞∑
n=1

an [− cos θnEun + sin θnEvn ] exp [−j (qny + kz))]

Er
z =

∞∑
n=1

bn [cos θnEun + sin θnEvn ] exp [−j (−qny + kz))]

Et
z =

∞∑
p=1

cp

[− cos θ̄pĒup + sin θ̄pĒvp

]
exp [−j (q̄ny + kz))]

(31)

and



H i
z =

∞∑
n=1

an [− cos θnHun + sin θnHvn ] exp [−j (qny + kz))]

Hr
z =

∞∑
n=1

bn [cos θnHun + sin θnHvn ] exp [−j (−qny + kz))]

Ht
z =

∞∑
p=1

cp

[− cos θ̄pH̄up + sin θ̄pH̄vp

]
exp [−j (q̄ny + kz))]

(32)

The boundary conditions at y = 0 may be written in the following
form:

Ei
x(0) + Er

x(0) = Et
x(0) (33)

H i
x(0) + Hr

x(0) = Ht
x(0) (34)

Ei
z(0) + Er

z(0) = Et
z(0) (35)

H i
z(0) + Hr

z (0) = Ht
z(0) (36)

Replacing (29) in (33) one gets
∞∑

n=1

(an + bn)Exn =
∞∑

p=1

cpĒxp (37)

On the other hand, replacing (30) in (34) one has
∞∑

n=1

(an + bn)Hxn =
∞∑

p=1

cpH̄xp (38)

Replacing (31) in (35) one has

−
∞∑

n=1

(an − bn) cos θnEun +
∞∑

n=1

(an + bn) sin θnEvn

=
∞∑

p=1

cp

[− cos θ̄pĒup + sin θ̄pĒvp

]
(39)



294 Topa, Paiva, and Barbosa

Finally, after replacing (32) in (36), one gets

−
∞∑

n=1

(an − bn) cos θnHun +
∞∑

n=1

(an + bn) sin θnHvn

=
∞∑

p=1

cp

[− cos θ̄pH̄up + sin θ̄pH̄vn

]
(40)

3.2. Orthogonality Relations

Introducing the following vector inner product

〈f ,g〉 =

b∫

−b

(f1g1 + f2g2)dx. (41)

the orthogonality relations for the hybrid modes can be written in the
following form

Opm = 〈W ·ϕm, ϕn〉 = δmn (42)

where δmn stands for the Kronecker delta,

φm = [ Eum Hum ]T (43)

and

W =
1
∆

[
ε jχ
jχ −µ

]
. (44)

On the other hand,

ψ = −βW ·ϕ (45)

with
ψ = [ Hx Ex ]T . (46)

Therefore,

Opm = −βp 〈W ·ϕp,ϕm〉 =

b∫

−b

(HxpEum + ExpHum)dx = −βpδpm.

(47)

3.3. Mode Matching

Multiplying Equation (38) by Ēum(x) and Equation (37) by H̄um(x),
adding and integrating between−b and +b, and using the orthogonality
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relations, one can get the amplitude coefficients cm of the transmitted
waves

cm = − 1
β̄m

∞∑

n=1

(an + bn)Pnm (48)

where

Pnm = −βn 〈W ·ϕn, ϕ̄m〉 =

b∫

−b

(HxnĒum + ExnH̄um)dx (49)

On the other hand, multiplying Equation (39) by H̄xm(x) and
Equation (40) by Ēxm(x), adding and integrating between −b and +b,
and using the orthogonality relation one can get

−
∞∑

n=1

(an − bn) cos θnQmn +
∞∑

n=1

(an + bn) sin θnRmn

= cm cos θ̄mβ̄m +
∞∑

p=1

cp sin θ̄pSmp (50)

where

Qmn = −β̄m

〈
W̄ · ϕ̄m, ϕn

〉
=

b∫

−b

(H̄xmEun + ĒxmHun)dx (51)

and

Rmn = −β̄m

〈
W̄ · ϕ̄m, κn

〉
=

b∫

−b

(H̄xmEvn + ĒxmHvn)dx (52)

Smp = −β̄m

〈
W̄ · ϕ̄m, κ̄p

〉
=

b∫

−b

(H̄xmĒvp + ĒxmH̄vp)dx (53)

with κ = [ Ev Hv ]T . The bi-orthogonality relations (49) and (51)
are derived in Appendix B. Finally, replacing (48) in (50) one has

∞∑

n=1

an


cos θnQmn−sin θnRmn−cos θ̄mPnm−

∞∑

p=1

1
β̄p

sin θ̄pPnpSmp




=
∞∑

n=1

bn


cos θnQmn+sin θnRmn+cos θ̄mPnm+

∞∑

p=1

1
β̄p

sin θ̄pPnpSmp




(54)
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Defining

a = [ a1, a2, . . . , an, . . . ]T (55)

b = [ b1, b2, . . . , bn, . . . ]T (56)

Equation (54) can be written in the following matrix form

A · a = B · b, (57)

where

Amn=cos θnQmn−sin θnRmn−cos θ̄mPnm−
∞∑

p=1

1
β̄p

sin θ̄pPnpSmp (58)

Bmn=cos θnQmn+sin θnRmn+cos θ̄mPnm+
∞∑

p=1

1
β̄p

sin θ̄pPnpSmp (59)

Finally, Equation (57) may be rewritten as

(C + D) · a = (C−D) · b, (60)

where

Cmn = cos θnQmn (61)

Dmn = − sin θnRmn − cos θ̄mPnm −
∞∑

p=1

1
β̄p

sin θ̄pPnpSmp (62)

4. THE CHIRAL H-GUIDE

4.1. Transverse Resonance

Referring to the waveguide depicted in Fig. 1, the plane y = 0 is a
geometrical symmetry plane. Therefore, one has only to analyze the
region y ≥ 0. In fact, relatively to y, the supermodes can be divided
into even and odd modes.

In that case, for the even modes, the boundary conditions at y = 0
are

H i
x(0) + Hr

x(0) = 0 (63)
H i

z(0) + Hr
z (0) = 0, (64)

whilst, for the odd modes they are written as

Ei
x(0) + Er

x(0) = 0 (65)
Ei

z(0) + Er
z(0) = 0. (66)
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From (63) and (64), one has

a = −L · b (67)

where
L = diag( e−j2q1 l, e−j2q2 l, . . . , e−j2qn l, . . . ) (68)

On the other hand, from (65) and (66), one has

a = L · b (69)

Therefore, it is possible to write

a =
←
Γ · b (70)

where ←
Γ = Γ L (71)

and Γ = +1 for the even modes and Γ = −1 for the odd modes.
Replacing (67) in (57) it is possible to get

(A · ←Γ−B) · b = 0, (72)

or, from (60), [
C (

←
Γ− I) + D (

←
Γ + I)

]
· b = 0, (73)

where, again, I stands for the unit matrix. Non-trivial solutions of (73)
are only possible when

det

[
I +

D (
←
Γ + I)

C (
←
Γ− I)

]
= 0. (74)

Equation (74) is the modal equation of the waveguide in Fig. 1,
which was derived using the transverse resonance method.

4.2. Numerical Results

In this section, some numerical results for the chiral H-guide, depicted
in Fig. 1, are presented. These results have been obtained using the
formalism developed in the previous sections. All the elementary
surface modes in each region, propagating above cutoff, have been
included in the analysis.

The dispersion diagram for the modes in a chiral-parallel plate
waveguide and for an empty parallel-plate waveguide are both depicted
in Fig. 5. For example, using b/λ = 0.3, the vertical line drawn in
this diagram dictates the number of modes propagating above cutoff
and the values for their longitudinal wavenumbers. These elementary
modes are necessary for the analysis of the chiral H-guide.
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Figure 5. Dispersion diagram
for the even modes of a chiral
parallel-plate waveguide, with ε =
2, µ = 1, b = 1mm, and
g = 10−21 s2m−1 (thick lines).
The thin lines are for the empty
parallel-plate waveguide.
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Figure 6. Variation of the
longitudinal wavenumbers with
the girotropy parameter, when
ε = 2, µ = 1, b = 1 mm, and
b/λ = 0.3 (thick lines). The thin
lines are for the empty parallel-
plate waveguide.

The variation of the longitudinal wavenumbers of these modes
with the girotropy parameter is depicted in Fig. 6. Again, for a
given value of the girotropy parameter, e.g., g = 10−21 s2m−1, the
vertical line drawn in this diagram gives the values for the longitudinal
wavenumbers of these modes.

The operational diagram for a chiral H-guide is depicted in Fig. 7.
The vertical dashed line gives the cutoff values for the slab half-width,
telling how many modes are propagating in the structure for a given set
of parameters. The modes are termed Hn, meaning that they are all
hybrid, with n being the order of the mode and expressing the number
of maximums in the inner region. As was already pointed out, due to
the waveguide spatial symmetry relatively to the central plane y = 0,
every propagating mode has either even or odd symmetry.

The effect of the slab width in the value of the longitudinal
wavenumber for the first propagating modes is illustrated in Fig. 8.
Results for the case of an H-guide with vanishing chirality (i.e., using
a conventional dielectric) are also depicted to put in evidence the
differences between the chiral and the achiral cases. As was expected,
for the chiral case, there is also a fundamental mode with no cutoff,
while mode coupling between some of the modal curves can be easily
identified.
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for a chiral H-guide with b =
1mm, when ε = 2, µ = 1, and
f = 100 GHz.
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Figure 8. Effect of the slab
width on the H-guide performance
for g = 10−21 s2m−1 (dashed lines
are for vanishing chirality).

5. CONCLUSIONS

We have proposed a semi-analytical method based on a building-block
approach, suitable to analyze 3D chiral waveguides with rectangular
geometry. So far, this type of waveguides had only been analyzed
through the use of fully numerical methods. In this paper, the
conventional mode matching technique and the usual transverse
resonance method have been generalized to be applied to the hybrid
guided modes of chiral waveguides with rectangular geometry. The
proposed method was successfully applied to the analysis of a chiral
H-guide. A full parametric study was presented for a chiral H-guide
operating at a fixed frequency. The numerical results show that
chirality may provide an extra degree of freedom useful for the design
of new devices.
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APPENDIX A. FIELD COMPONENTS FOR THE EVEN
HYBRID MODES OF THE CHIRAL PARALLEL-PLATE
WAVEGUIDE

For a chiral parallel-plate waveguide, one has



300 Topa, Paiva, and Barbosa

{
Ey = A [cos(h+x) + Q cos(h−x)]
Hy = jYcA [cos(h+x)−Q cos(h−x)] (A1)





Ex = A jYck
ωε0

[
1

ε+
cos(h+x)− Q

ε− cos(h−x)
]

Hx = −A k
ωµ0

[
1

µ+
cos(h+x) + Q

µ− cos(h−x)
] (A2)





Ez = A Yc
ωε0

[
−h+

ε+
sin(h+x) + h−Q

ε− sin(h−x)
]

Hz = A j
ωµ0

[
−h+

µ+
sin(h+x)− h−Q

µ− sin(h−x)
] (A3)

The case of an air parallel plate waveguide can be recovered by
making ε+ = ε− = 1, µ+ = µ− = 1, Yc = Y0 and h+ = h− = hm =
mπ/(2b), with m = 1, 2, 3 . . .. The fundamental mode TM0, with no
cutoff frequency, is obtained for m = 0. For TE modes one has Q = 1
while for TM modes Q = −1.

APPENDIX B. BI-ORTHOGONALITY RELATIONS

The bi-orthogonality relation Pnm between the modes of each region
is defined as

Pnm = −βn 〈W ·ϕn, ϕ̄m〉 =

b∫

−b

(HxnĒum + ExnH̄um)dx (B1)

or

Pnm = −AnAm
kn

ω




(
1

µ+µ0
+

YcY0

ε+ε0

) b∫

−b

cos(h+nx) cos(hmx)dx

+Qm

(
1

µ+µ0
− YcY0

ε+ε0

) b∫

−b

cos(h+nx) cos(hmx)dx

+Qn

(
1

µ−µ0
− YcY0

ε−ε0

) b∫

−b

cos(h−nx) cos(hmx)dx

+ QnQm

(
1

µ−µ0
+

YcY0

ε−ε0

) b∫

−b

cos(h−nx) cos(hmx)dx



 (B2)
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Finally,

Pnm = −2kn

ω

{ 1+Qm

µ0µ+
+ 1−Qm

ε+ε0
YcY0

h2
+n
− h2

m

[h+n sin(h+nb) cos(hmb)− hm cos(h−nb) sin(hmb)]

+
1+Qm

µ0µ− − 1−Qm

ε−ε0
YcY0

h2−n
− h2

m

Qn

[h−n sin(h−nb) cos(hmb)− hm cos(h−nb) sin(hmb)]} (B3)

The bi-orthogonality relation Qmn between the modes of each
region is defined as

Qmn = −β̄m

〈
W̄ · ϕ̄m,ϕn

〉
=

b∫

−b

(H̄xmEun + ĒxmHun)dx (B4)

or

Qmn = −AmAn
km

ω




(
1
µ0

+
YcY0

ε0

) b∫

−b

cos(h+mx) cos(hnx)dx

+Qn

(
1
µ0
− YcY0

ε0

) b∫

−b

cos(h+mx) cos(hnx)dx

+Qm

(
1
µ0
− YcY0

ε0

) b∫

−b

cos(h−mx) cos(hnx)dx

+ QmQn

(
1
µ0

+
YcY0

ε0

) b∫

−b

cos(h−mx) cos(hnx)dx



 (B5)

Finally,

Qmn = −2km

ω

{
1+Qn

µ0
+ 1−Qn

ε0
YcY0

h2
+m

− h2
n

[h+m sin(h+mb) cos(hnb)− hn cos(h−mb) sin(hnb)]

+
1+Qn

µ0
− 1−Qn

ε0
YcY0

h2−m
− h2

n

Qm

[h−m sin(h−mb) cos(hnb)− hn cos(h−mb) sin(hnb)]} (B6)
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