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Abstract—This paper presents an extension over a novel, three
dimensional high frequency method for the calculation of the scattered
electromagnetic (EM) field from a Perfect Electric Conductor (PEC)
plate, which is based on the Physical Optics (PO) approximation
and the Stationary Phase Method (SPM). This extension defines
a new analytical method which is proved to be very efficient in
computer execution time and enhances the accuracy of its predecessor
around the area of the main scattering lobe. This new analytical
method accomplishes high accuracy through the use of higher order
approximation terms, which imply the use of Fresnel functions (SPM-
F method). By using higher order Fresnel approximation terms,
no impact on the time efficiency of the SPM method appears to
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occur, since the extended SPM-F method just removes the troublesome
vanishing denominators when the stationary point coincides with the
edges of the scatterer. The SPM-F results are compared to other
straightforward numerical and exact solution methods for the same
problem in the far field, Fresnel zone and the near field area of the
scatterer.

1. INTRODUCTION

In a recent publication [1], we have developed and presented a novel
three-dimensional (3-D) high frequency analytical method for the
calculation of the vector potential A, and eventually the scattered
electromagnetic field (EM) from a Perfect Electric Conductor (PEC)
plate geometry, which is presented in Fig. 1. This method is based
on Physical Optics (PO) approximation and Stationary Phase Method
(SPM) three dimensional calculations. Comparisons with numerical
integration end exact solution results yielded excellent agreement,
except for the main scattering lobe. This discrepancy is due to the
fact that the denominator of the first order analytical approximation
vanishes when the stationary point coincides with the end point located
at the edges of the scatterer, i.e., the rectangular plate. In this
paper, we present a higher order approximation term for the edge
contribution, which is based again on the Stationary Phase Method,
but also includes Fresnel functions, hence the name (SPM-F). Using
Fresnel functions, the accuracy is improved and the newly derived
method lacks any singularities/inaccuracies in the vicinity of the main
scattering lobe encountered in earlier published SPM results [1]. Vector
potential A and scattered electric field E expressions are derived in
the sections below, according to the modified version of the method
that was presented in [1], but now all calculations include the new
Fresnel terms. Fig. 1, below, shows the geometry of scattering of
an electromagnetic (EM) wave with incident wavevector ki from a
perfect electric conductor (PEC) rectangular plate. The scattered field
is calculated at an arbitrary observation point R(x, y, z).

Possible applications of the extended 3D-SPM-F method include
common radio-propagation tools in urban outdoor environment, where
2D [2] and 3D (under development by our research group) scattering
and diffraction calculations take place, including both first and second
order scattering phenomena. In such microcellular geometries in
2D [2], both transmitter and receiver are considered to be well
below rooftop level and well above the ground. A 2-D approach
leads to field calculation by calculating single integrals, while a 3-D
approach — more complicated formulation presented in next sections
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Figure 1. Scattering from a PEC rectangular plate of dimensions a−b
and c− d.

of this publication — requires the calculation of double integrals.
Both single and double integral calculations may be achieved by
using the appropriate Stationary Phase Method with Fresnel functions
presented here. The calculations are accurate and fast enough to avoid
long simulation times, which constitute one of the most significant
drawbacks that occur in radio-propagation tools, which often pertain
to modern high frequency communication wireless networks. Then the
scattering of EM waves from building walls in the actual 3D radio
coverage problem in urban outdoor environment can be formulated
through the method presented in this paper. Other numerical and
efficient methods for the same scattering problem for a rectangular
plate have also been introduced by our research group [3].

The inclusion of Fresnel functions in three dimensional SPM
method with analytical results for the calculation of EM wave
scattering from rectangular plate geometries has not been documented
in literature [4–15] and appears to be very useful for calculating
the path loss in urban outdoor environments [16]. In this paper
(Section 5), three dimensional SPM-F simulation results are compared
to corresponding results obtained in the Near\Fresnel-zone\Far field
areas with other methods. These results validate the excellent accuracy
of the proposed methodology with standard numerical integration,
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3D-SPM [1] calculation and Boundary Integral (BI) — Multilevel
Fast Multipole Method (MLFMM) full wave Exact Solution results
(ES) [17–23]. 3D-SPM-F method presented here proves to be more
accurate and equally fast in computation times when compared to
3D-SPM [1]. Finally, the finite conductivity of the rectangular plate
is examined in detail in Appendix D since walls, roads and roofs in
the actual 3D radiocoverage problem, which eventually are modeled as
segments and plates [2], are highly non-PEC surfaces.

2. DEFINITION OF THE ELECTROMAGNETIC
SCATTERING PROBLEM/APPROXIMATIONS AND
CALCULATIONS

2.1. Electromagnetic Layout

An electromagnetic wave is considered to be incident in the direction
of wave vector ki upon a PEC rectangular plate of negligible thickness,
according to the layout in Fig. 1. According to Fig. 1, the plate
vertices lie at the intersections of the lines x = a, b and y = c, d.
A pair of angles, namely θi (TÔz) and ϕi defines the direction of
incidence. Assuming that transmitter T lies at a point z > 0 far
from the scattering plate, our first goal is the calculation of the vector
potential A at an arbitrary observation point R(x, y, z) with z > 0,
and subsequently, the calculation of the electric field E at the same
observation point, which lies in the near, intermediate (Fresnel) or the
far (Fraunhofer) field region of the scatterer. The time dependence of
the electric field is proportional to the factor exp(+jωt).

In the cases of GSM, UMTS, Wi-Fi or Wi-Max network
technologies, the operating frequency is about 1 GHz or higher. At that
frequency, scatterers such as buildings are considered to be electrically
large, and current density induced on the scatterer may be calculated
with good accuracy using the Physical Optics (PO) approximation.
Then, by using appropriate three-dimensional Green’s function, the
vector potential calculation leads us to an integral expression, which
is in the form of an amplitude function multiplied by a complex
exponential, i.e., the phase function. In this equation, it is possible
to apply our proposed SPM-F method in order to calculate the vector
potential, and eventually the electric field. This two dimensional
scatterer is a necessary prerequisite in order to model propagation in
an urban outdoor environment, which consists of three dimensional
walls and other scatterers.
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2.2. Current Density Calculation Using Physical Optics
(PO) Approximation — Vector Potential Calculation —
Electric Field Calculation

The well-known current density induced on the surface of the PEC
rectangular plate due to an incident plane wave with wavevector ki,
according to the PO approximation is presented in [2, 4]. Then, by
referring to [1] and by applying the PO current density approximation
Js on the rectangular plate mentioned above, the vector potential
A(x, y, z) at an arbitrary observation point R(x, y, z) with z > 0 results
in the following equation:

A(x, y, z) =
−µ0

2πη
[x̂(E0θ cosφi − E0φ cos θi sinφi)

+ŷ (E0θ sinφi + E0φ cos θi cosφi)]

·
c∫

y′=d

a∫

x′=b

ejk(x′K+y′L)e−jk
√

(x−x′)2+(y−y′)2+z2

√
(x− x′)2 + (y − y′)2 + z2

dx′dy′(1)

where µo: magnetic permeability of the vacuum (µo = 4π · 10−7 H/m);
r = (x, y, z): position vector of observation; r′ = (x′, y′): position
vector of source current; η =

√
µ0/ε0 = free space impedance,

k = 2π/λ is the wavenumber, and K, L are constants which depend
on the angles of incidence (θi, ϕi) [4].

In [1], the vector potential A of Eq. (1) has already been computed
with three different ways, i.e., SPM, standard numerical integration
(NI) in two dimensions and exact solution (ES) [17–23]. SPM-F
method and results follow in sections below.

The calculation of the scattered electric field E follows the
calculation of vector potential A according to formula (A1).

3. STATIONARY PHASE METHOD WITH FRESNEL
FUNCTIONS CALCULATIONS (SPM-F)

The main contribution terms in stationary phase method approxima-
tions are presented in Eqs. (2)–(7), below. The core algorithm [1] is
now explained in detail and the edge point contribution terms will be
changed in order to include the newly introduced higher order approx-
imation terms with Fresnel functions. Initially we calculate asymptot-
ically the definite Double Integral (DI) of the form:

I (k) =

c∫

d

a∫

b

F (x, y)ejkf(x,y)dxdy (2)
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After the asymptotic calculations [5] take place, the following
expression is obtained for Eq. (2):

I (k) ∼ F (xs, ys) ejkf(xs,ys) j2πδ

k
√
|4AB − C2| (3)

where the end-points contribution terms are neglected here, and: k:
real wavenumber, relatively high; (xs, ys): Stationary point of function
f(x, y), i.e., the point where the partial derivatives of the phase
function f(x, y) with respect to x and y vanish.

For frequency f = 1 GHz, k = 2πf/c ≈ 21m−1, a value which for
the scatterer’s maximum dimension under consideration in this paper
can be considered relatively high for Stationary Phase Calculations [5].
In other words, for the numerical implementations of Section 5, the
electrical length of the rectangular scatterer’s maximum dimension
(diagonal of the plate) is kLmax = 40π

√
2 À 1.

Phase function f(x, y): Slowly varying, real, non-singular
function, independent of k.

Amplitude function F (x, y): non-singular function, may be
complex [5], should also be independent of k. In the present work,
F (x, y) is a real-valued function.

a, b, c, d: limits of the double integral. Here it should be
emphasized that the stationary point must be placed within the surface
boundaries, i.e., b < xs < a, d < ys < c.

A, B, C: Constants related to the second derivatives of the phase
function f(x, y), according to the definitions:

A =
1
2
f ′′xx (xs, ys) (4)

B =
1
2
f ′′yy (xs, ys) (5)

C = f ′′xy (xs, ys) (6)

δ: the value of δ is determined from the relative values of the constants
A, B and C:

δ =





+1, 4AB > C2, A > 0
−1, 4AB > C2, A < 0
−j, 4AB < C2

(7)

To emphasize a previous statement, Eq. (3) is used only in the
case when the stationary point lies between the finite limits of the
plate, otherwise the SPM contribution vanishes, under the present
considerations.

The SPM calculation term denoted in Eq. (3) is not taking into
account the contribution from the finite limits of the plate, (a, b,
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c, d). In [6], and for the case of single integral calculations (SI),
the term over the interval (a, b) is extended to the indefinite interval
(−∞, +∞) and correction terms related to the edge contributions
a, b are subtracted. The core algorithm of our proposed method
is to generalize this method [6] for the case of Double Integrals
(DI) by adding edge calculation terms based on the Fresnel function
(see Section 3.2, below). In Section 3.1, below, we summarize this
method [6] for the case of a Single Integral (SI). Furthermore, in
Section 3.2, we apply initially the equations of the single integral to
appropriate integrand functions. Afterwards, by defining appropriate
new integrand functions, we apply the SPM method regarding the
second integration of the double integral, always paying attention
to include the second order Fresnel function edge approximation
terms. The final result is nine integration terms, eight of which
take into account the Fresnel function edge terms, as explained
in Section 3.2 below, resulting in a new analytical calculation of
the double integral in a novel closed form (to our knowledge not
documented to date in the literature [4–15]). This novel form uses
nine terms of stationary phase, which contain the total information
about the finite limits of the plate, (a, b, c, d). The complexity
of the corresponding mathematical expressions (elaborate analytical
formulas), and the complicate calculations of Fresnel values lead
us to implement analytically this method in a standard MATLAB
computational package, both for the case of single and double integral.
As it will be explained in Section 6, below, Stationary Phase Method
analytical calculations, even with edge calculation terms based on
Fresnel functions, are very fast in terms of actual computation time.
All relative mathematical formulas are described below.

3.1. SPM-F Single Integral Calculations

In the case of the Single Integral (SI), the procedure for the calculation
of the limits’ contribution to the integral is presented in [6]. In this
case, the SPM integral is defined by:

I ′ =

a∫

b

F (x) · exp (jkf (x)) · dx (8)
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and it can be written subsequently as:

I ′ =

+∞∫

−∞
F (x) exp (jkf (x)) dx−

+∞∫

a

F (x) exp (jkf (x)) dx

−
+∞∫

−b

F (−x) exp (jkf (−x)) dx =

+∞∫

−∞
F (x) exp (jkf (x)) dx

−
+∞∫

a

F (x) exp (jkf (x)) dx−
+∞∫

−b

FF (x) exp (jkff (x)) dx

= Io − Ia − Ib (9)
where functions FF and ff are defined from equations:

FF (x) = F (−x) (10)
ff (x) = f (−x) (11)

Io term is calculated according to [6] or equivalently according to [5],
as:

Io =

√
2π

k |f ′′ (xo)|F (xo) · exp
(
j
[
kf (xo) +

π

4
sgn

{
f ′′ (xo)

}])
(12)

where xo denotes the stationary point for which f ′(xo) = 0. For
the other two terms, higher order approximation terms using Fresnel
functions are taken into account:

Iq = εq · F (q) exp
{
jkf (q)∓ ju2

q

}×
√√√√√

2

k

∣∣∣∣ ∂2f
∂x′2

∣∣∣
x′=q

∣∣∣∣
Fr± [uq] (13)

where q = a, b and
εq = sgn (q − xo) (14)

uq =

√√√√√
k

2
∣∣∣∣ ∂2f

∂x′2

∣∣∣
x′=q

∣∣∣∣

∣∣∣∣∣
∂f

∂x′

∣∣∣∣
x′=q

∣∣∣∣∣ (15)

Fr± (uq) =

∞∫

uq

exp
(±jt2

)
dt (16)

where the combination (exp
{
jkf (q)− ju2

q

}
, Fr+ [uq]) is used

in Eq. (13) when
(

∂2f
∂x′2

∣∣∣
x′=q

)
≥ 0, and the combination
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(exp
{
jkf (q) + ju2

q

}
, Fr− [uq]) in the same equation is used when(

∂2f
∂x′2

∣∣∣
x′=q

)
< 0. According to notation (see also Section 5 below),

second order approximation terms with Fresnel functions are valid
when parameters uq ≤ 3.0 [6], otherwise simple SPM calculations [1]
apply.

Using the above formulas (9), (12), (13)–(16) of Stationary Phase
Method with Fresnel functions (SPM-F), we have presented a complete
approximate formula for the asymptotic calculation of the Single
Integral (SI) using Fresnel functions (SPM-F).

3.2. SPM-F Double Integral Calculations

In this section, we will derive the closed-form analytical formulas for
the calculation of the Double Integral [DI, Eq. (2)] according to the
newly proposed enhanced analytical SPM-F method†. Our final results
will be included in Eqs. (20), (A8), (A9), (24), (29) and (39) below.

Integrals of the form of Eq. (2) are frequently encountered
during the procedure of calculating the vector potential A in common
electromagnetic problems. Assuming an incident plane wave which
is scattered by a perfect conducting plate, we calculate the vector
potential A using SPM-F approximations, and subsequently, the
electric field E at an arbitrary observation point R(x, y, z). For
the calculation of the vector potential, we assume current density
distribution according to the Physical Optics (PO) approximation,
which is sufficiently accurate for electrically large scatterers (i.e.,
kLmax À 1, where Lmax is the maximum dimension of the scatterer).
This result is important, because it provides a very fast method of
calculation, as compared to standard numerical integration techniques.
Furthermore, it provides an analytical (instead of numerical) method
for the calculation of the scattered electric field. Extending these
results, we may obtain an expression for the prediction of path losses
in an electromagnetic propagation scenario.

We rewrite Eq. (2) with slightly modified variables so that it
complies with the form of Eq. (8) above, as follows:

I (k; x, y, z) =

c∫

y′=d

a∫

x′=b

F
(
x, y, z, x′, y′

)
ejkf(x,y,z,x′,y′)dx′dy′ (17)

† An alternative, far more complicated way for calculating Eq. (17) is by using an
appropriate combination of rotation and change of variables in the double integral, as
described in brief in [6], a method that we intentionally avoided here — see Appendix B.
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Equation (17) refers to functions F and f , which are functions
of two variables, so we have to calculate a double integral, and
the algebraic expressions must be modified properly. Using Eq. (9),
Eq. (17) is calculated in two steps, in order to take into account the
contribution of all four limits of the plate (a, b, c, d).

The first step is related to the calculation of the inner (single)
integral of Eq. (17), and it is described by Eqs. (18), (19) and (A2)–
(A4) below:

Ĩ ′q = sgn (q − xo) · F
(
q, y′

)
exp

{
jkf

(
q, y′

)∓ j(uq(q, y′))2
}

×
√√√√√

2

k

∣∣∣∣ ∂2f
∂x′2

∣∣∣
x′=q,y′=y′

∣∣∣∣
Fr±

[
uq

(
q, y′

)]
(18)

uq

(
q, y′

)
=

√√√√√
k

2
∣∣∣∣ ∂2f

∂x′2

∣∣∣
x′=q,y′=y′

∣∣∣∣

∣∣∣∣∣
∂f

∂x′

∣∣∣∣
x′=q,y′=y′

∣∣∣∣∣ (19)

where q = a, b and (∓ and ±) combination varies according to
Section 3.1 and xo = xo(y′) is the curve determined by equating the
first partial derivative of the phase function f(x′, y′) with respect to
x′ with zero, replacing the variables x′ = xo and y′ = y′, and solving
with respect to xo as explained in Eq. (A5).

3.3. Area Division Approach

Equation (17) is extended properly, to include calculations involving
Eqs. (18), (19), (A2)–(A4). According to our proposed first approach,
the domain surrounding the rectangular patch is being divided into
four separate regions (regions 1–4, while region 0 corresponds to the
whole x-y plane) according to the pattern in Fig. 2.

According to Fig. 2, Eq. (17) may be rewritten as in Eq. (A6) or,
equivalently as in Eq. (A7) or (20).

I (k; x, y, z) = I0 − I1 − I2 − I3 − I4 (20)

Term I[0] = I0 is calculated according to Eq. (3), using the
notation of Eq. (12) [where Eq. (12) has been written for the Single
Integral case] — see also Eq. (A8).

Equations (3) and (A8) are equivalent expressions, in a slightly
different form, but leading to the same result.

Regarding the calculation of integral I[1] = I1, this is calculated
in the following two steps: First the inner integral (from x′ = a to
x′ = +∞) is calculated according to Eq. (18). Then by defining
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Figure 2. Ranges of integration for the calculation of integral of
Eq. (17).

new appropriate amplitude and phase functions (F ′
02 and f ′02) by the

following equations:

F ′
(02)

(
y′

)
=sgn (a−xo)F

(
a, y′

)
√√√√√

2

k

∣∣∣∣ ∂2f
∂x′2

∣∣∣
x′=a,y′=y′

∣∣∣∣
Fr±

[
ua

(
y′

)]
(21)

ua

(
y′

)
=

√√√√√
k

2
∣∣∣∣ ∂2f

∂x′2

∣∣∣
x′=a,y′=y′

∣∣∣∣

∣∣∣∣∣
∂f

∂x′

∣∣∣∣
x′=a,y′=y′

∣∣∣∣∣ (22)

f ′(02)

(
y′

)
=f

(
a, y′

)∓

(
∂f
∂x′

∣∣∣
x′=a,y′=y′

)2

2
∣∣∣∣ ∂2f

∂x′2

∣∣∣
x′=a,y′=y′

∣∣∣∣
(23)

the outer integration (for −∞ < y′ < +∞) is performed again using
the SPM of Eq. (A4). The final result of this procedure is obtained by
Eq. (A9), where y02 is a modified stationary point defined by Eq. (A10).

In the same way integral I[2] = I2 is calculated. The final result
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is:

I2 =

+∞∫

−∞

x′=b∫

−∞
F

(
x′, y′

)
ejkf(x′,y′)dx′dy′ ∼

√√√√√√
2π

k

∣∣∣∣∣
∂2f ′

(03)

∂y′2

∣∣∣∣
y′=y03

∣∣∣∣∣

F ′
(03) (y03)

exp


j


kf ′(03) (y03) +

π

4
sgn





∂2f ′(03)

∂y′2

∣∣∣∣∣
y′=y03









 (24)

where functions F ′
03 and f ′03 are defined by equations:

F ′
(03)

(
y′

)
=sgn (b− xo) F

(
b, y′

)
√√√√√

2

k

∣∣∣∣ ∂2f
∂x′2

∣∣∣
x′=b,y′=y′

∣∣∣∣
Fr±

[
ub

(
y′

)]
(25)

ub

(
y′

)
=

√√√√√
k

2
∣∣∣∣ ∂2f

∂x′2

∣∣∣
x′=b,y′=y′

∣∣∣∣

∣∣∣∣∣
∂f

∂x′

∣∣∣∣
x′=b,y′=y′

∣∣∣∣∣ (26)

f ′(03)

(
y′

)
=f

(
b, y′

)∓

(
∂f
∂x′

∣∣∣
x′=b,y′=y′

)2

2
∣∣∣∣ ∂2f

∂x′2

∣∣∣
x′=b,y′=y′

∣∣∣∣
(27)

and y03 is a modified stationary point defined by:

∂f ′(03) (y′)

∂y′

∣∣∣∣∣
y′=y03

= 0 (28)

Regarding the calculation of integral I[3] = I3 in Eqs. (A7), (20),
this is also calculated in two steps as follows: First the inner integral
(for b ≤ x′ ≤ a) is calculated using the SPM-F formulation through
Eqs. (18), (19), (A2)–(A4), and subsequently the outer integration (for
−∞ < y′ ≤ d) is calculated through Eq. (18). Then the final result is
given below Eqs. (29)–(35):

I3 =

y′=d∫

−∞

a∫

x′=b

F
(
x′, y′

)
ejkf(x′,y′)dx′dy′ =

y′=d∫

−∞

(
I ′0 − I ′a − I ′b

)
dy′

= I3.1 − I3.2 − I3.3 (29)
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where integrals I[3.1], I[3.2] and I[3.3] are calculated as:

I3.1 =

y′=d∫

−∞
I ′ody′= sgn (d−y01)F ′

(01)(d) exp
{
jkf ′(01)(d)∓ j(u(1)

d (d))2
}

×
√√√√√√

2

k

∣∣∣∣∣
∂2f ′

(01)

∂y′2

∣∣∣∣
y′=d

∣∣∣∣∣

Fr±
[
u

(1)
d (d)

]
(30)

u
(1)
d (d) =

√√√√√√
k

2

∣∣∣∣∣
∂2f ′

(01)

∂y′2

∣∣∣∣
y′=d

∣∣∣∣∣

∣∣∣∣∣∣
∂f ′(01)

∂y′

∣∣∣∣∣
y′=d

∣∣∣∣∣∣
(31)

I3.2 =

y′=d∫

−∞
I ′ady′= sgn (d−y02)F ′

(02)(d) exp
{
jkf ′(02)(d)∓ j(u(2)

d (d))
2
}

×
√√√√√√

2

k

∣∣∣∣∣
∂2f ′

(02)

∂y′2

∣∣∣∣
y′=d

∣∣∣∣∣

Fr±
[
u

(2)
d (d)

]
(32)

u
(2)
d (d) =

√√√√√√
k

2

∣∣∣∣∣
∂2f ′

(02)

∂y′2

∣∣∣∣
y′=d

∣∣∣∣∣

∣∣∣∣∣∣
∂f ′(02)

∂y′

∣∣∣∣∣
y′=d

∣∣∣∣∣∣
(33)

I3.3 =

y′=d∫

−∞
I ′bdy′= sgn (d−y03)F ′

(03)(d) exp
{
jkf ′(03)(d)∓ j(u(3)

d (d))
2
}

×
√√√√√√

2

k

∣∣∣∣∣
∂2f ′

(03)

∂y′2

∣∣∣∣
y′=d

∣∣∣∣∣

Fr±
[
u

(3)
d (d)

]
(34)

u
(3)
d (d) =

√√√√√√
k

2

∣∣∣∣∣
∂2f ′

(03)

∂y′2

∣∣∣∣
y′=d

∣∣∣∣∣

∣∣∣∣∣∣
∂f ′(03)

∂y′

∣∣∣∣∣
y′=d

∣∣∣∣∣∣
(35)
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where functions F ′
01 and f ′01 are defined by the following equations:

F ′
(01)

(
y′

)
=

√√√√√
2π

k

∣∣∣∣ ∂2f
∂x′2

∣∣∣
x′=xo,y′=y′

∣∣∣∣
F

(
xo, y

′)

exp

(
j
π

4
sgn

{
∂2f

∂x′2

∣∣∣∣
x′=xo,y′=y′

})
(36)

f ′(01)

(
y′

)
= f

(
xo, y

′) (37)

y01 is a modified stationary point defined by:

∂f ′(01) (y′)

∂y′

∣∣∣∣∣
y′=y01

= 0 (38)

and functions F ′
02, f ′02, F ′

03 and f ′03 have been defined previously in
Eqs. (21), (23) and (25), (27).

Finally, integral I[4] = I4 in Eqs. (A7), (20) is calculated in the
same way with integral I[3] and the final result is given by Eqs. (39)–
(45) below:

I4 =

+∞∫

y′=c

a∫

x′=b

F
(
x′, y′

)
ejkf(x′,y′)dx′dy′ =

+∞∫

y′=c

(
I ′o − I ′a − I ′b

)
dy′

= I4.1 − I4.2 − I4.3 (39)

I4.1 =

+∞∫

y′=c

I ′ody′= sgn (c−y01)F ′
(01)(c) exp

{
jkf ′(01)(c)∓ j(u(1)

c (c))
2
}

×
√√√√√√

2

k

∣∣∣∣∣
∂2f ′

(01)

∂y′2

∣∣∣∣
y′=c

∣∣∣∣∣

Fr±
[
u(1)

c (c)
]

(40)

u(1)
c (c) =

√√√√√√
k

2

∣∣∣∣∣
∂2f ′

(01)

∂y′2

∣∣∣∣
y′=c

∣∣∣∣∣

∣∣∣∣∣∣
∂f ′(01)

∂y′

∣∣∣∣∣
y′=c

∣∣∣∣∣∣
(41)
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I4.2 =

+∞∫

y′=c

I ′ady′= sgn (c−y02)F ′
(02)(c) exp

{
jkf ′(02)(c)∓ j(u(2)

c (c))
2
}

×
√√√√√√

2

k

∣∣∣∣∣
∂2f ′

(02)

∂y′2

∣∣∣∣
y′=c

∣∣∣∣∣

Fr±
[
u(2)

c (c)
]

(42)

u(2)
c (c) =

√√√√√√
k

2

∣∣∣∣∣
∂2f ′

(02)

∂y′2

∣∣∣∣
y′=c

∣∣∣∣∣

∣∣∣∣∣∣
∂f ′(02)

∂y′

∣∣∣∣∣
y′=c

∣∣∣∣∣∣
(43)

I4.3 =

+∞∫

y′=c

I ′bdy′= sgn (c−y03) F ′
(03)(c) exp

{
jkf ′(03)(c)∓ j(u(3)

c (c))
2
}

×
√√√√√√

2

k

∣∣∣∣∣
∂2f ′

(03)

∂y′2

∣∣∣∣
y′=c

∣∣∣∣∣

Fr±
[
u(3)

c (c)
]

(44)

u(3)
c (c) =

√√√√√√
k

2

∣∣∣∣∣
∂2f ′

(03)

∂y′2

∣∣∣∣
y′=c

∣∣∣∣∣

∣∣∣∣∣∣
∂f ′(03)

∂y′

∣∣∣∣∣
y′=c

∣∣∣∣∣∣
(45)

Regarding the above calculations of integral I(k;x, y, z) in
Eq. (A7), we note here that the modified stationary points y01, y02, y03

and x0 will be included in the final result, only if y01, y02, y03 ∈ (d, c)
and x0 ∈ (b, a). In any other case, the contribution regarding these
integral terms is zero. Also, note here that the stationary point (xs, ys)
of Eq. (3) coincides with the stationary point (xo, y01) of Eqs. (A5),
(38).

Before proceeding to analytical calculations, we note that for large
angles of scattering parameters ua, ub, u

(1)
c , u

(2)
c , u

(3)
c , u

(1)
d , u

(2)
d , u

(3)
d in

Eqs. (19), (22), (26), (31), (33), (35), (41), (43) and (45) are larger than
3.0 (ua, ub, u

(1)
c , u

(2)
c , u

(3)
c , u

(1)
d , u

(2)
d , u

(3)
d > 3.0) thus the replacement

formulas in Eqs. (18) are not uniform according to [6], and equations
without Fresnel functions [1] must be used for best accuracy (i.e.,
combination formulas). Combination formulas are easy to accomplish
with an additional control variable, being able to switch simulation
results to appropriate formulation between SPM-F and SPM for large
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scattering angles.
A second method of calculation of the double integral of Eq. (26),

which differs slightly from the method described above (and which
finally is not used in the numerical simulations provided in Section 5
below), is presented in Appendix B. A comparison of these two methods
is provided in Appendix C.

4. VECTOR POTENTIAL CALCULATIONS USING SPM

In order to calculate the vector potential A from Eq. (1) by using
the SPM-F method described in Section 3 above, we first define the
amplitude F (x, y) and phase functions f(x, y) by:

F (x′, y′) =
1√

(x− x′)2 + (y − y′)2 + z2
(46)

f(x′, y′) = x′K + y′L−
√

(x− x′)2 + (y − y′)2 + z2 (47)

Note here that the functions F , f satisfy the appropriate
conditions for SPM properties, given above (below Eq. (3)).
Subsequently, according to the proposed SPM-F method, in
Sections 3.2 and 3.3, the application requires various procedures, such
as calculation of the partial derivatives, the solution of complicated
systems of equations, computation of additional coefficients and
implementation of various computational procedures. All the above are
calculated by using the symbolic toolbox of MATLAB computational
package.

First, we calculate the stationary point for the function f(x′, y′)
by:

∂f

∂x′

∣∣∣∣x=xs
y=ys

≡ f ′x′ (xs, ys) = 0 (48)

∂f

∂y′

∣∣∣∣x=xs
y=ys

≡ f ′y′ (xs, ys) = 0 (49)

By substituting function f(x′, y′) from Eq. (47), we obtain the
following system of equations:




K + x−xs√
(x−xs)2+(y−ys)2+z2

= 0

L + y−ys√
(x−xs)2+(y−ys)2+z2

= 0
(50)

The solution of the above system yields the stationary point
(xs, ys) of functionf(x′, y′). Note that for the EM scattering problem
under consideration, one stationary point can exist at maximum,
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as expected from physical intuition, which corresponds to specular
scattering. The solution is found by using the MATLAB computational
package, thus yielding the following result:

(xs, ys) =
(

x +
K |z|√

1−K2 − L2
, y +

L |z|√
1−K2 − L2

)
(51)

Having defined the stationary point (xs, ys), we check whether this
point is located within the dimensions of the plate. This means both
xs and ys must lie within (b, a) and (d, c) respectively. We continue
the application of the method by calculating the A, B, C parameters,
by using Eqs. (4), (5) and (6):

A = − y2 − 2yys + y2
s + z2

2 (x2 − 2xxs + x2
s + y2 − 2yys + y2

s + z2)
3
2

(52)

B = − x2 − 2xxs + x2
s + z2

2 (x2 − 2xxs + x2
s + y2 − 2yys + y2

s + z2)
3
2

(53)

C =
(x− xs) (y − ys)

(x2 − 2xxs + x2
s + y2 − 2yys + y2

s + z2)
3
2

(54)

Substituting the values of the stationary point (xs, ys) from Eq. (51)
to Eqs. (46)–(47) we obtain:

F (xs, ys) =
1√(

K|z|√
1−K2−L2

)2
+

(
L|z|√

1−K2−L2

)2
+ z2

(55)

f(xs, ys) =
(

x +
K |z|√

1−K2 − L2

)
K +

(
y +

L |z|√
1−K2 − L2

)
L

−
√(

K |z|√
1−K2 − L2

)2

+
(

L |z|√
1−K2 − L2

)2

+ z2 (56)

Subsequently, through the definition of Eqs. (46)–(47), the DI
SPM method described in Sections 3.2 and 3.3 above is used to
calculate the vector potential A, Eq. (1), where the contribution from
the plate edges (boundaries a, b, c, d) are also taken into account. The
DI of the vector potential A, Eq. (1), is therefore calculated according
to the definition of F , f by Eqs. (46)–(47), formula (3), and Eqs. (20)–
(45) and (A8)–(A10).

We may also note here that the results of Eqs. (3) and (A8) are
completely identical. Also note that Eqs. (A9), (24), (30), (32), (34),
(40), (42), (44) refer to the contribution of the vertices (a, b, c, d) of the
rectangular plate.
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Finally, the two components Ax and Ay of the vector potential A
are obtained according to Eq. (1) by:

Ax =
−µ0

2πη
[E0θ cosφi−E0φ cos θi sinφi]F (xs, ys) ejkf(xs,ys)

j2πδ

k
√
|4AB−C2| (57)

Ay =
−µ0

2πη
[E0θ sinφi+E0φ cos θi cosφi] F (xs, ys) ejkf(xs,ys)

j2πδ

k
√
|4AB−C2| (58)

Having calculated the vector potential A, we proceed to calculate
the scattered electric field E as in [1].

5. NUMERICAL RESULTS USING MATLAB

Regarding the numerical implementation, finally yielding the vector
potential and scattered electric field for the geometry of Fig. 1, the
procedure is as follows: the vector potential A is calculated by Eq. (1),
where the corresponding integration is calculated through the methods
of Sections 3 and 4.

Subsequently, regarding the calculation of the three components
of grad (divA) in the formulae of the scattered electric field [1], this
can be performed in MATLAB environment in two different ways. In
the first way, function A(x, y, z) is given in analytical form and the
appropriate differentiations are calculated analytically in MATLAB
environment. In the second way, the appropriate differentiations for
calculating grad (divA) are performed in MATLAB environment using
standard numerical differentiation techniques. We have implemented
both these techniques in our simulations and excellent agreement was
observed.

Furthermore, in our numerical simulations we compare results
based on our proposed 3D analytical SPM-F method with 3D analytical
SPM method [1], numerical integration technique using Gaussian
quadrature [2] and Finite Element Boundary Integral (FEBI) full-
wave exact solution (see Ref’s. [17–23]). In the case of the numerical
integration technique, a numerical integration tolerance error level
of 10−6 is specified, which is of satisfactory accuracy and leads to
acceptable run-time in our simulations.

With working frequency set equal to 1 GHz, the simulation
parameters, according to the geometry of Fig. 1 are provided in Table 1:
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Table 1. Double integral simulation parameters.

Symbol Quantity Value
λ Wavelength 0.3 m

r Observation distance
Near Field area1, Fresnel area1,

Far Field area1

ϕi Angle of incidence 225◦

θi Angle of incidence 45◦

ϕs Observation angle 45◦

θs Observation angle 0◦ − 90◦

E0θ
Constant related to
emitted field (θi)

1V/m

E0ϕ
Constant related to
emitted field (ϕi)

1V/m

a− b x axis plate dimension 20λ, 40λ, 60λ, 80λ
c− d y axis plate dimension 20λ, 40λ, 60λ, 80λ

1As calculated from the corresponding Fresnel and Far Field area
distances, given by well known expressions as in Ref. [2].

In Figs. 3, 4 and 5, numerical results are displayed for a plate of
dimensions 20λ×20λ for the far field, Fresnel zone and near field areas
respectively. As expected for all these cases, the maximum value for
the main scattering lobe is observed for angle of observation θs equal
to angle of incidence θi. Also we note that in the far field area the
number of the side lobes is proportional to the electrical size (kL) of
the plate (where k is the wavenumber k = 2π/λ, and L = a−b = c−d).

5.1. Far Field Area Results

5.1.1. Far Field Approximation

For the Far Field Area, calculations may be further simplified according
to the following approximations:

∣∣r − r′
∣∣ =

√
(x− x′)2 + (y − y′)2 + z2 ∼=

√
x2 + y2 + z2 = r (59)

for the amplitude factor and
∣∣r − r′

∣∣ =
√

(x− x′)2 + (y − y′)2 + z2 ∼= r − xx′ + yy′

r
(60)

for the phase factor.
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(a) Vector Potential, A (    )θs

(b) Total Electric Field, Etot (    )θ s

Figure 3. 1GHz simulation results for plate of dimensions 20λ× 20λ
and observation distance 600m (Far field area). (a) Magnitude of
vector potential A as a function of observation angle θs. (b) Magnitude
of total electric field E as a function of observation angle θs.
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(a) Vector Potential, A (    )θs

(b) Total Electric Field, Etot (    )θ s

Figure 4. 1GHz simulation results for plate of dimensions 20λ× 20λ
and observation distance 100 m (Fresnel area). (a) Magnitude of vector
potential A as a function of observation angle θs. (b) Magnitude of
total electric field E as a function of observation angle θs.
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(a) Vector Potential, A (    )θs

(b) Total Electric Field, Etot (    )θ s

Figure 5. 1GHz simulation results for plate of dimensions 20λ× 20λ
and observation distance 25m (Near field area). (a) Magnitude of
vector potential A as a function of observation angle θs. (b) Magnitude
of total electric field E as a function of observation angle θs.
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Since variables x and y are calculated from
x

r
= sinϑs cosϕs (61)

y

r
= sinϑs sinϕs (62)

the integral of Eq. (17) is transformed to

I ∼= e−jkr

r

a∫

x′=b

ejkx′(sin ϑi cos ϕi+sin ϑs cos ϕs)dx′

·
c∫

y′=d

ejky′(sin ϑi sin ϕi+sin ϑs sin ϕs)dy′ (63)

I ∼= e−jkr

r
(a−b) (c−d) sinc

[(
k (a−b)

2

)
(sinϑi cosϕi+sinϑs cosϕs)

]

sinc
[(

k (c− d)
2

)
(sinϑi sinϕi + sin ϑs sinϕs)

]
(64)

Furthermore, the vector potential A, and electric field E will be
simplified to the following expressions:

A (x, y, z) =
−µ0 (a−b) (c−d)

2πη

e−jkr

r
{x̂ (E0ϑ cosϕi−E0ϕ cosϑi sinϕi)

+ŷ (E0ϑ sinϕi + E0ϕ cosϑi cosϕi)}
· sinc

[(
k (a− b)

2

)
(sinϑi cosϕi + sinϑs cosϕs)

]

sinc
[(

k (c− d)
2

)
(sinϑi sinϕi + sinϑs sinϕs)

]
(65)

|E (x, y, z)|= |−jωA (x, y, z)| (66)

5.1.2. Far Field Numerical Results and Comments

From the above results (Fig. 3), it can be easily concluded that
the proposed 3D analytical SPM-F method yields results of excellent
accuracy for all angles of observation. Also the errors of respective
results in SPM method [1] are significantly reduced from 2–4 dB [1]
to a maximum of 0.1–0.2 dB here. Also we note that any errors that
exist in SPM-F method are reduced in the case of a larger scatterer, i.e,
80λ×80λ scatterer (not shown here), as expected once SPM-F is a high
frequency asymptotic method. Finally, an error of about 30 dB, which
appears at several observation angles between the standard numerical
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integration method and the analytical sinc function result, is explained
due to the highly oscillatory behavior of the induced physical optics
currents on the surface of the rectangular plate.

5.2. Fresnel Area Results and Comments

In this case (Fig. 4), we observe results of very satisfactory accuracy.
Errors of about 2–4 dB [1] were reduced significantly to about 0.1 dB.
Any errors will be reduced in the case when the scatterer is electrically
larger (not shown here/see comment at Section 5.1.2 above).

5.3. Near Field Area Results and Comments

In the case of near field observations, the results (Fig. 5) are found to
be rather accurate, since errors of 15 dB in [1] were reduced to 4–7 dB
at maximum here. By physical intuition, we expect a larger numerical
error at the near field area, since it appears that for this case the field
contribution from only one stationary point and the diffracting edges of
the scattering plate is not enough for very accurate calculations. Once
again, these errors can be corrected when the scatterer is electrically
larger (not shown here/see comment at Section 5.1.2 above).

Comparison graphs in Figs. 3–5 above indicate the improved
behavior around the area of the main scattering lobe between the
asymptotic results of the SPM-F and SPM [1] methods.

6. RUN-TIME CONSIDERATIONS OF THE PROPOSED
ANALYTICAL METHOD

Table 2 below compares the run-time needed for all four methods
(SPM-F, SPM [1], Numerical Integration — NI [2] and Exact
Solution — ES [17–23]) for the cases of 20λ and 80λ plate scatterers
on a standard desktop personal computer with Pentium M 2GHz
processor and 1GB of RAM memory. ES results of a full-wave exact
method [Boundary Integral (BI) — Multilevel Fast Multipole Method
(MLFMM)/Exact Solution (ES)] [17–23] simulated on an AMD Athlon
XP 2800+ (faster processor) are provided only for the case of 20λ
scatterer, since it is meaningless to perform such a task for the case of
a 80λ scatterer. As shown in Table 2, Stationary Phase Method with
Fresnel functions is much faster than numerical integration and almost
equal in computation time to 3D SPM [1]. Moreover, as it is clearly
seen below in Table 2, we note that the run-time for the proposed
3D analytical SPM-F method is almost independent of the electrical
length of the scatterer, unlike the numerical integration (NI) method
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where the run-time increases drastically with the electrical length of
the scatterer. Furthermore, for the proposed SPM-F the run-time is

Table 2. Total simulation time for calculations at 90 different
scattering angles on a standard desktop PC1.

Method Run-Time (sec)

Numerical
Integration
to SPM-F

calculations
run-time

ratio

far field

DI SPM-F 20λ 2.98

10
DI SPM 20λ 2.91
DI NI 20λ 30.26
DI ES 20λ 2645

Fresnel area

DI SPM-F 20λ 3.34

12
DI SPM 20λ 3.25
DI NI 20λ 40.31
DI ES 20λ 2645

near field

DI SPM-F 20λ 4.37

14
DI SPM 20λ 4.31
DI NI 20λ 61.46
DI ES 20λ 2645

far field

DI SPM-F 80λ 2.96

54
DI SPM 80λ 2.92
DI NI 80λ 161.27

Fresnel area

DI SPM-F 80λ 3.31

136
DI SPM 80λ 3.07
DI NI 80λ 449.19

near field

DI SPM-F 80λ 4.21

150
DI SPM 80λ 4.11
DI NI 80λ 630.01

1Personal computer with Pentium M 2 GHz processor and 1GB of
RAM memory for the cases of 20λ and 80λ scatterers.
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almost independent of the region of observation (far field or Fresnel
area or near field), while for the numerical integration method the
corresponding run-time increases drastically as the observation point
moves from the far field to the near field area. Finally, it is ascertained
in Table 2 that full-wave exact methods are much slower in actual
computer computation time than PO based methods for the electrically
large scatterers considered in this paper.

Using the above comparison results, we can easily realize the
usefulness of the proposed SPM-F method for the urban outdoor
radio-coverage problem mentioned in Section 1 [2]. A first 2D
approach [2] to a common radio propagation scenario consists of
two rectangular buildings. In this case, the following scattering
mechanisms [2] must be calculated: 8 scattering phenomena of first
order (3 scattering mechanisms and 5 diffraction mechanisms), and
a total of 93 phenomena of second order (31 scattering-diffraction
mechanisms, 29 double scattering mechanisms and 33 diffraction-
scattering mechanisms). A simple addition leads us to the conclusion
that in a typical and simple real world scenario of two buildings, a
total of 96 calculations of integrals of Eq. (1) related to scattering
phenomena are required. Therefore, for this simple scenario and for one
scattering angle of observation the acceleration in our radio coverage
simulation tool will be 93 times the acceleration corresponding to
that provided above for one single plate. Additionally, after realizing

Figure 6. Total scattered electric field comparison results between
PEC and non-PEC [ground and wall] rectangular plates of dimensions
20λ× 20λ in the far field area (600 m), operating frequency 1 GHz.
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(a)

(b)

Figure 7. RCS of a 5λ × 5λ square plate calculated with SPM-F,
IBCM [24] methods, operating frequency 10GHz. Simulation results
for observation distance r = 600m (Far Field area): (a) Radar Cross
Section (RCS) σθθ/λ2 (dB) (vertical, TM polarization) as a function
of monostatic scattering angle θs, (ϕs = 0◦). (b) Radar Cross Section
(RCS) σϕϕ/λ2 (dB) (horizontal, TE polarization) as a function of
monostatic scattering angle θs, (ϕs = 0◦).
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that the above acceleration rates in computation time refer only to
one observation point (position and angle), these figures have to be
multiplied by the number of resolution cells in the urban scene in order
to calculate the total acceleration in computation time for the actual
radio coverage problem. Finally, an arduous trial to compare the above
methods with full-wave exact solution results (BI-MLFMM FEBI [17–
23]), demonstrates faster rates up to 1000 times. In the case of an exact
solution with Eventual BIM (pure MoM), a difficult task not performed
by our research group, the estimated run-time for the solution of the
problem (120,074 unknowns) is approximately 60*3600 sec, whereas
the estimated memory required would approximately be equal to
130GB of RAM.

7. CONCLUSION — FUTURE RESEARCH

In this paper, we presented a novel full 3D analytical method
based on the Stationary Phase Method (SPM) and Fresnel functions
for the scattering of electromagnetic waves from electrically large
conducting rectangular plates. The induced currents on the
rectangular plate are calculated through the Physical Optics method
and subsequently Stationary Phase Method is used to calculate
the contributions from the stationary point within the rectangular
plate, as well as the contributions from the diffracting edges of the
plate. This method was found to be much more accurate around
the main scattering lobe compared to [1] and very fast, compared
to standard numerical integration methods [2] and full-wave exact
solutions [17–23]. Furthermore, the method proposed here can be
used, for example, for calculating the path loss in urban outdoor
environments [2, 16]. Finally, the results of [1] were significantly
enhanced in all aspects, and SPM-F method adds validity and an asset
to the use of Stationary Phase Method techniques for the solution of
electromagnetic problems [25, 26].
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APPENDIX A. BASIC FORMULATION OF THE SPM
DOUBLE INTEGRAL CALCULATION

E(x, y, z) = −jωA− j
ω

k2
grad (div (A)) (A1)

Ĩ ′ =

a∫

x′=b

F
(
x′, y′

)
ejkf(x′,y′)dx′ (A2)

Ĩ ′ = Ĩ ′0 − Ĩ ′a − Ĩ ′b (A3)
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= 0 (A5)
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I (k;x, y, z) =
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APPENDIX B. ALTERNATIVE APPROACH FOR THE
CALCULATION OF THE SPM DOUBLE INTEGRAL

Here, we present an approach for the above calculation which is a
variant to that proposed in Section 3.3. In this alternative approach
the double integral under evaluation, Eq. (A7), namely the integral

I (k; x, y, z) =

c∫

y′=d

a∫

x′=b

F
(
x′, y′

)
ejkf(x′,y′)dx′dy′ (B1)

is calculated using SPM in a straightforward way, that is first by
integrating over variable x′ (b ≤ x′ ≤ a) and then by integrating over
variable y′ (d ≤ y′ ≤ c). The inner integration is performed according
to Eqs. (18), (19), (A2)–(A4). Subsequently, the outer integration over
y′ is performed in a way very similar to that described in the previous
Section 3.3. Then, the final result of this second approach is presented
by the following set of equations, Eqs. (B2)–(B6):

I (k) ∼ I ′1 − I ′2 − I ′3 (B2)

I ′1 = I ′01 − I(1)
c − I

(1)
d (B3a)

I ′2 = I ′02 − I(2)
c − I

(2)
d (B3b)

I ′3 = I ′03 − I(3)
c − I

(3)
d (B3c)

The terms of Eq. (B3a) are given by:
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I
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d =sgn (d− y01)F ′

(01) (d) exp
{

jkf ′(01) (d)∓ j(u(1)
d (d))

2
}

×
√√√√√√

2

k

∣∣∣∣∣
∂2f ′

(01)

∂y′2

∣∣∣∣
y′=d

∣∣∣∣∣

Fr±
[
u

(1)
d (d)

]
(B4c)

The terms of Eq. (B3b) are given by the following equations:
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Finally, the terms of Eq. (B3c) are given by the following
equations:
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APPENDIX C. COMPARISON OF THE AREA DIVISION
APPROACH (SECTION 3.3) WITH THE DIRECT
DOUBLE INTEGRAL CALCULATION APPROACH
(APPENDIX B)

Comparing the two methods of calculation mentioned above, we note
that Eqs. (B3b)–(B6c) of Appendix B have already appeared during
our proposed first approach in Section 3.3 [namely they are Eqs. (A9),
(24), (30), (32), (34), (40), (42) and (44)]. Then, the only difference
between the two approaches, Section 3.3 and Appendix B respectively,
is in the first term of the corresponding representations, namely
between Eqs. (A8) and (B4a). Subsequently, after careful consideration
of Eqs. (A8) and (B4a), these are found to be exactly the same except

for the term: −
(

∂2f
∂x′∂y′

∣∣∣
x′=xs,y′=ys

)
appearing at the denominator of

Eq. (A8) [and not appearing at all at the denominator of Eq. (B4a)].
For this reason the first approach (Section 3.3) is considered of higher
accuracy than the second approach (Appendix B), due to the fact
that it does not ignore the mixed second derivative of the phase
function f(x′, y′) mentioned just above, when taking the appropriate
Taylor expansion according to the SPM [5]. Then, in our numerical
simulations of Section 5 above, we would rather implement numerically
the first approach (Section 3.3).
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APPENDIX D. SCATTERING FROM RECTANGULAR
PLATE WITH FINITE CONDUCTIVITY

For non Perfect Electric Conductor (non PEC) rectangular plates, as is
the case, for example, for the radio coverage problem in urban outdoor
environment examined in [2], the scattered electric field as given in [1]
should be multiplied, as a first approximation, with the appropriate
Fresnel reflection coefficient. This coefficient depends on the electric
characteristics of the surface and the operating frequency, as shown
below:

R⊥(θi) = sin(θi)−
√

εc−cos 2(θi)

sin(θi)+
√

εc−cos2(θi)
(D1)

(Fresnel reflection coefficient for perpendicular polarization)

and

R||(θi) = εc·sin(θi)−
√

εc−cos 2(θi)

εc·sin(θi)+
√

εc−cos2(θi)
(D2)

(Fresnel reflection coefficient for parallel polarization)

where θi is the angle of incidence, εc is the complex relative dielectric
constant of the rectangular plate εc = εr − j60σλ, εr is its relative
permittivity, and σ is its conductivity. The values εr, σ are chosen
according to the literature [16], namely εr = 15, σ = 7 S/m for the
ground and εr = 7, σ = 0.005 S/m for the building walls (roofs are
not considered at this point, once both transmitter and receiver in our
prediction model [2] are considered to be placed well below rooftop
level).

According to these values a comparison diagram for the scattered
electric field results is presented in Fig. 6.

As clearly seen from the results, in the far field area both SPM-
F and BI-MLFMM [21] methods agree not only for the case of a
PEC scatterer (as seen in Fig. 3 above), but also for the case of a
non-PEC scatterer (Fig. 6). Some minor errors (less than 0.1 dB)
are encountered again in the area of the main scattering lobe, as
seen clearly from the zoom window provided at the left top corner
of the graph. The minor errors are justified, since SPM-F is only a
high frequency approximation. Also, minor differences observed for
scattering angles θs greater than 60 degrees are explained due to the
inaccuracies of the PO currents calculated before applying our SPM-F
method in those large scattering angles.

Another approximate approach for the scattering from non-PEC
rectangular plates might be implemented through the use of the
Impedance Boundary Condition Method (IBCM, [24]), which uses the
normalized surface impedance Zs (defined and chosen according to
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Ref. [24]) and yields the results of Fig. 7 for the Radar Cross Section
(RCS) of a plate of dimensions 5λ×5λ at 10 GHz at the Far Field area.

In Fig. 7, some minor errors (less than 0.05 dB as compared
to the SPM-F/BI-MLFMM comparison in Fig. 6) are encountered
mainly in the area of the main scattering lobe. These errors are
significantly smaller than those shown in Figs. 3–6, due to the fact
that the operating frequency of 10 GHz is significantly higher than
that of Figs. 3–6 (1 GHz), and SPM-F is by definition a high frequency
approximation method.
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