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Abstract—Rotating coils constitute a type of electrical transformers
used to produce alternating voltage pulses exploiting the phenomenon
of electromagnetic induction. In this study, we investigate the influence
of the electromagnetic scattering from a metallic obstacle located
inside the moving component. In particular, a perfectly conducting
spherical core is positioned eccentrically inside a thin circular ring,
rotating around an arbitrary axis passing through its own center,
under plane wave excitation. Methods and formulas implemented in
scattering and induction problems have been utilized for the derivation
of the developed potential difference around the loop. Several graphs
of the voltage output versus the geometrical characteristics of the
configuration, are shown and explained.

1. INTRODUCTION

It is common knowledge that the electromagnetic induction is the
production of voltage across a conductor situated in a changing
magnetic field or a conductor moving through a stationary magnetic
field. Many studies have been published concerning analyses and
applications on such a phenomenon. In [1], a time stepping two-
dimensional FEM is performed for modeling and analysis of an
induction machine where the technique is used for the magnetic field
calculation, and for the vector potential derivation of the machine.
In addition, Sun and Nie have illustrated the capabilities of a flexible
numerical approach to study the multicomponent induction response in
anisotropic formations involving eccentric tools, while dipping beds are
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included to demonstrate the flexibility of the method [2]. Furthermore,
the negative effect of the induction from high power microwaves on
integrated circuits has been examined in [3], where three kinds of
destructions are also investigated.

The electromagnetic scattering is defined as the modification of the
incident field in the presence of an obstacle through the fulfillment of
the boundary conditions. Numerous treatises have been performed on
this issue, especially related to scattering by spherical obstacles whose
shape is susceptible to analytical solutions. For example, the problem
of the electrical current distribution along thin radial impedance
monopole, located on the perfectly conducting sphere, has been solved
in a rigorous electrodynamic formulation [4]. In [5], the point-source
scattering by an electrically large conducting sphere is discussed, where
Bessel functions of complex order are utilized. Moreover, the scattering
cross section of a spherical obstacle constructed from a medium that
gives effective doubly-negative permittivity and permeability, has been
rigorously derived [6]. Finally in [7], a simplified solution is obtained
to the problem of a circular wire flown by arbitrary current radiating
in the presence of a metallic core.

In this work, we combine the two aforementioned issues (induction
and scattering), by considering a structure comprised of a rotating
thin circular loop and an eccentrically positioned metallic spherical
scatterer, illuminated by a plane wave. The rotation happens around
an arbitrary axis passing through the center of the spherical cavity.
The magnetic vector potential at the position of the thin closed wire,
is evaluated with use of spherical eigenfunction expansions and through
the enforcement of the boundary conditions. The time rate of change
of magnetic flux is computed from the line integral of the electric field
around the metallic coil. The presence of the sphere, modifies the
direction of the magnetic field and implicitly the magnetic flux through
the ring, an influence which has not been studied yet. The DC offset
and the RMS value of the produced voltage are represented in several
graphs with respect to the size of the sphere, the rotation axis and the
excitation/rotation frequencies as well. By inspection of the variations,
one can reach various useful and applicable conclusions.

2. MATHEMATICAL FORMULATION

2.1. Device Configuration

The physical configuration of the inspected problem is shown in
Fig. 1(a), where the spherical (unprimed) coordinate system (r, θ, φ)
and the equivalent Cartesian one (x, y, z) are also defined. The origin
O coincides with the center of a perfectly conducting sphere of radius



Progress In Electromagnetics Research M, Vol. 12, 2010 195

x’ ( = /2)

z ( =0)

y’

O

( 0, 0)

-a at

b-d

b+d

(b)

θ

µε

ω

θ Π

(a)

Figure 1. The physical configuration of the examined device as viewed
from: (a) the positive z semi axis, (b) the positive y′ semi axis.
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a posed into vacuum (intrinsic parameters: ε0, µ0). A thin circular
metallic wire of radius b > a is shown on the x-y plane, with its
center K at (x, y, z) = (0, d, 0) posed eccentrically to the spherical
core. This ring is rotated with respect to the axis φ = π/2 − ξ (on
the plane z = 0) with circular frequency ω, in the presence of an x-
polarized plane wave Einc (magnetic field Binc with sole y direction),
with magnitude Q (in V/m), advancing towards the negative z semi-
axis. Mind that the harmonic time dependence of the incident field,
is of the form exp(−iω0t), possessing its own circular frequency ω0.
Another (primed) coordinate system is additionally shown in Fig. 1(a)
which is obtained by turning clockwise the unprimed one around z
axis (which is common for both systems) by the angle ξ. In this way,
the y′ axis coincides with the rotating axis of the ring. In Fig. 1(b),
we present a side view of the device as appeared from the positive y′
semi-axis, when the frame is rotated by angle ωt, at an arbitrary time
t.

2.2. Curve Parametrization for ξ = 0

The polar radius P (φ) of the eccentric circular loop at t = 0 (Fig. 1(a)),
is determined by applying the law of cosines to the shaded triangle
(OKT ), where T is the representative point of the ring, yielding to:

P (φ) = d sinφ +
√

b2 − d2 cos2 φ. (1)
Let us extract the parametric equation set of the rotated coil denoted
by {x = χ(φ, t), y = ψ(φ, t), z = ζ(φ, t)}, at the arbitrary time t when
ξ = 0. The azimuthal angle φ ∈ [0, 2π) will play the role of the
parametric variable even when the rotated closed wire does bot belong
exclusively to x-y plane. As the closed wire is rotated with respect to
y axis, the corresponding coordinate ψ(φ, t) will be fixed, independent
from the angle ωt and equal to P (φ) sin φ. The rest two equations
are derived by projecting the other edge of length P (φ) cosφ, which is
posed at angle ωt, upon the axes x and z. Accordingly, one obtains
the following expressions:

χ(φ, t) = P (φ) cos φ cosωt, (2a)
ψ(φ, t) = P (φ) sin φ, (2b)
ζ(φ, t) = −P (φ) cos φ sinωt. (2c)

The negative sign in (2c), is explained by inspection of Fig. 1(b).

2.3. Curve Parametrization for ξ 6= 0

In order to find the parametric equation of the curve when ξ 6= 0,
we use the primed coordinate system. The polar equation of the
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loop is now given by Π (φ′) = P(φ′ − ξ), while the two azimuthal
angles are connected obviously via the relation φ′ = φ + ξ. Therefore,
we take the formulas (2a)–(2c) replacing P by Π and the unprimed
variables {χ, ψ, ζ, φ} by the primed ones {χ′, ψ′, ζ ′, φ′}. In this sense,
the parametric set of the primed coordinates with respect to unprimed
azimuthal angle φ (after trivial algebraic manipulations), is written as
follows:

χ′(φ, t) = P (φ) cos(φ + ξ) cosωt, (3a)
ψ′(φ, t) = P (φ) sin(φ + ξ), (3b)
ζ ′(φ, t) = −P (φ) cos(φ + ξ) sin ωt. (3c)

The parametric equations of the arbitrarily rotated wire loop expressed
in the unprimed coordinate system are denoted by {x = X(φ, t), y =
Y (φ, t), z = Z(φ, t)} and are determined from the transformation
relation below [8]:

[
X(φ, t)
Y (φ, t)
Z(φ, t)

]
=

[ cos ξ sin ξ 0
− sin ξ cos ξ 0

0 0 1

]
·
[

χ′(φ, t)
ψ′(φ, t)
ζ ′(φ, t)

]
. (4)

If terms of the unprimed spherical coordinate system, the parametric
representation of the arbitrarily rotated ring is constituted by the
following equations:

R(φ, t) =
√

X2(φ, t) + Y 2(φ, t) + Z2(φ, t), (5a)

Θ(φ, t) = arccos
[
Z(φ, t)
R(φ, t)

]
, (5b)

Φ(φ, t) = arctan
[

Y (φ, t)
X(φ, t)

]
. (5c)

Note that the distance of an arbitrary point from the origin remains
constant throughout the rotation procedure equal to P (φ).

2.4. Electromagnetic Induction

According to Faraday’s law of induction [9], the induced voltage across
a closed metallic wire (W ) is defined as the line integral of the local
electric field around the loop. In case of a monochromatic electric field
with circular frequency ω0, the related formula is given below:

U = <
[
e−iω0t

∫

(W )
E · dw

]
. (6)

It should be stressed that E does not denote the real, time-dependent
quantity, but the corresponding complex phasor. In case the field



198 Valagiannopoulos

quantities are expressed in terms of the unprimed spherical coordinate
system, the Cartesian components are given by [10]:
[

Ex(r, θ, φ)
Ey(r, θ, φ)
Ez(r, θ, φ)

]
=

[cosφ sin θ cosφ cos θ − sinφ
sinφ sin θ sinφ cos θ cosφ

cos θ − sin θ 0

]
·
[

Er(r, θ, φ)
Eθ(r, θ, φ)
Eφ(r, θ, φ)

]
. (7)

Once these functions are determined, the line integral of (6), is
particularized to give [11]:

U(t) =

<
[
e−iω0t

∫ 2π

0
(ex(φ, t)Xφ(φ, t)+ey(φ, t)Yφ(φ, t)+ez(φ, t)Zφ(φ, t)) dφ

]
, (8)

where subscript φ corresponds to the azimuthal partial derivative of
the related function. The small-e functions {ex, ey, ez} are the electric
field components evaluated around the moving circular loop:

ex(φ, t) = Ex (R(φ, t),Θ(φ, t), Φ(φ, t)) , (9a)
ey(φ, t) = Ey (R(φ, t), Θ(φ, t), Φ(φ, t)) , (9b)
ez(φ, t) = Ez (R(φ, t),Θ(φ, t), Φ(φ, t)) . (9c)

Thus, the only prerequisite to apply expression (8) and compute
the induced voltage, is the explicit form of the total electric field in
unprimed spherical coordinates.

2.5. Electromagnetic Scattering

The electric field into vacuum is comprised of the incident and the
scattering component E = Einc + Escat, where Einc = xQe−ik0z and
k0 = ω0

√
ε0µ0. It is computed with use of spherical eigenfunctions and

the following series expansion [12]:

e−ik0r cos θ =
+∞∑

n=1

(−i)n+1(2n + 1)P0n(θ)jn(k0r). (10)

The symbol Pmn(θ) corresponds to the Legendre function of degree n,
order m and argument cos θ. The nth order spherical Bessel jn(x) and
the spherical Hankel of the first kind hn(x), are also well-known [13].
Once the boundary condition at r = a is imposed, the respective
scattering components of the electric field are given by:

Er,scat(r, θ, φ) = −Q cosφ
+∞∑

n=1

L(n)P1n(θ)
hn(k0r)

k0r
, (11a)
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Eθ,scat(r, θ, φ) = −Q cosφ ·
+∞∑

n=1

[
J(n)

n(n + 1)
P1n(θ)
sin θ

hn(k0r) +
L(n)

n(n + 1)
dP1n(θ)

dθ

hd
n(k0r)
k0r

]
, (11b)

Eφ,scat(r, θ, φ) = Q sinφ ·
+∞∑

n=1

[
J(n)

n(n + 1)
dP1n(θ)

dθ
hn(k0r) +

L(n)
n(n + 1)

P1n(θ)
sin θ

hd
n(k0r)
k0r

]
, (11c)

where:

J(n) = in(2n + 1)
jn(k0a)
hn(k0a)

, L(n) = (−i)n+1(2n + 1)
jd
n(k0a)

hd
n(k0a)

. (12)

The Riccati functions are defined as zd
n(x) = d[xzn(x)]/dx, where zn(x)

can be the spherical Bessel or Hankel function.

3. NUMERICAL RESULTS

3.1. Parameter Selection

Before presenting the numerical results, one should clarify the value
ranges of the input parameters for our consideration. The rotation
frequency of the loop and the oscillating frequency of the incident plane
wave are both chosen within the interval: ω, ω0 ∈ 2π[1, 200] rad/sec,
typically equal to ω, ω0 = 200π rad/sec. The radius of the rotating
ring varies from 0.5 m to 2m, usually close to b = 1 m. The rotation
axis covers the entire plane 0 < ξ < π, while in most cases is taken
equal to ξ = π/4. The amplitude of the plane wave Q is not a crucial
parameter and therefore is chosen high enough to give realistic values
for the output voltages. It should be noted that the series in (11) are
evaluated by truncation; in particular, we keep only the first (N + 1)
terms. The integer N is chosen proportional to the electrical size of
the scatterer |k1|a, in order to achieve convergence with maximum
permissible error of 0.001%. Instead of the radius of the sphere, we
use the normalized parameter a

b−d ∈ [0, 1] as the core should be kept
internal to the rotating ring. The eccentricity ratio d

b−a ∈ [0, 1] is also
utilized to quantify the relative transposition of the scatterer. In the
following graphs, two quantities are mainly represented; the DC offset
and the RMS value of the induced voltage, defined below:

Udc =
ω

2π

∫ 2π
ω

0
U(t)dt, Urms =

√
ω

2π

∫ 2π
ω

0
[U(t)− Udc]

2 dt. (13)
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Figure 2. The RMS value of the induced voltage Urms as function of
the normalized radius of the sphere a

b−d for various radii of the ring
b. Plot parameters: d = 0.2m, ξ = π/4 rad, ω0 = 200π, rad/sec,
ω = 200π rad/sec, Q = 105 V/m.

3.2. Diagrams Discussion

In Fig. 2, the RMS component of the produced voltage is shown as
function of the normalized sphere radius with constant position of
the spherical scatterer d for several sizes of the rotating loop. The
maximum magnetic flux through the circular wire (and implicitly the
induced voltage) is proportional to the size of this ring. Note also that
the normalized radius of the loop plays rather unimportant role when
it is kept low. On the contrary, when the scatterer gets close to the
frame, there is a diminishing effect on the measured quantity, which
gets more significant for larger loops. This could be anticipated because
an enlarged sphere decreases the available area for the magnetic field
vector to pass through.

In Fig. 3, we display the variation of the RMS induced voltage
with respect to the eccentricity ratio, with fixed size of the sphere
a, for various radii of the ring. We do not show the curves for

d
b−a < 0.9 because they exhibit a remarkable stability which verifies
the unimportance of the eccentricity ratio when it possesses moderate
magnitudes. However, substantial increase has been observed in
case d

b−a → 1, which means that the asymmetry of the structure
has a crucially positive influence on the measured response. The
negligible variation for b = 0.5, 1m is attributed to the little available
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Figure 3. The RMS value of the induced voltage Urms as function
of the eccentricity ratio d

b−a for various radii of the ring b. Plot
parameters: a = 0.2m, ξ = π/4 rad, ω = 200π rad/sec, ω0 =
200π rad/sec, Q = 105 V/m.

manoeuvring room for the sphere when its radius is comparable to the
size of the ring. In other words, the same change in eccentricity ratio,
corresponds to lesser difference in the shape of the structure when b is
chosen small enough.

In Fig. 4, the RMS value of the developed voltage around the loop,
is represented as function of the rotation angle for several normalized
radii of the sphere. One can notice that the waveforms are symmetric
with respect to ξ = π/2, which is sensible because two complementary
axes ξ are only diverse in the rotation direction, not affecting the
measured quantity. When ξ = 0, π, the magnetic flux through the
circular frame is null and therefore the produced voltage vanishes.
The optimal result is achieved for ξ = π/2 where the amplifying effect
of the eccentricity (same b, d and smaller a leads to less symmetric
configurations) is rendered more obvious.

In Fig. 5(a), the RMS component of the produced voltage is
shown in a contour plot with respect to the rotation frequency of
the loop and the oscillation frequency of the incident plane wave.
For increasing ω0, the recorded quantity gets reinforced with a pace
negatively related to ω. Once the rotation frequency gets larger, there
is either a stability in the measured output (modest ω0) or a magnitude
boost (substantial ω0). It should be also remarked that when ω is
very low, rapid variations in Urms are observed for little change of ω0.
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Figure 5. The: (a) RMS value Urms and (b) DC component Udc of
the induced voltage (in V ) in contour plot with respect to the rotation
frequency of the loop ω and the excitation frequency of the incident
wave ω0. Plot parameters: b = 1 m, a = 1/3m, d = 1/3m, ξ = π/4 rad,
Q = 105 V/m.

This chaotic behavior is attributed to the fact that, in case ω → 0,
the magnetic flux is considerably affected even by the slightest time
variation in the frequency of the alternating field. In Fig. 5(b), the
DC offset Udc is represented for the same set of parameters. Note
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that in all the previous examples, the presence of the scatterer makes
the produced oscillating voltage to have nonzero average value which
possesses similar waveforms with Urms. This is not the case; when
ω is chosen close to ω0, there is a substantial increase for growing
frequencies.

4. CONCLUSION

In this work, we examine the induction of electromagnetic voltage
across a rotating circular loop, in the presence of an eccentric metallic
sphere under a low-frequency, plane-wave excitation. Similar topics
combining two fundamental phenomena in electromagnetics (induction
and scattering) have not been examined again. The variation of
the measured output is represented as function of the sphere’s
characteristic parameters and several conclusions are drawn describing
its effect on the magnetic flux through the coil. An interesting
expansion of the present paper would be to assume a moving spherical
scatterer affecting the time-dependent developed voltage and giving
it certain desirable characteristics. Also, closed wires of arbitrary
curvature rotating around arbitrary axes could be also investigated
with use of similar techniques.
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