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Abstract—An efficient technique for the analysis of scattering by
uniaxial anisotropic objects is presented. The technique is based on
the method of higher order MoM of the surface integral equations.
This higher order MoM solution uses the higher order hierarchical
basis functions which are based on the modified Legendre polynomials.
Numerical results are given to demonstrate that the higher order
hierarchical basis functions are more accurate and efficient in the
calculations of uniaxial anisotropic objects scattering problem than
the low-order basis function.

1. INTRODUCTION

The method of moments (MoM) is an efficient way to analyze the
electromagnetic scattering problems formulated in terms of integral
equations [1–3]. The conventional straightforward application of MoM
involves low-order basis functions with the mesh cells’ size in the order
of one tenth of a wavelength, leading to a dense system of linear
equations. With N being the number of unknowns, the memory
requirement is O(N2), and the solution complexity is O(N3) for a
direct solver and O(N2) for an iterative one. Several techniques have
been proposed to reduce the memory demands as well as the solution
complexity of the conventional MoM. Fast integral equation solvers,
such as the multilevel fast multiple method (MLFMM) [4, 5], adaptive
integral method (AIM) [6, 7] and its close counterpart, the precorrected
FFT (PC-FFT) [8, 9], reach the solution complexity and memory
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requirement as O(N log(N)). However, when the scatter becomes
electrically large, the number of unknowns becomes so large that even
the fast integral equation solvers cannot solve it efficiently. Therefore,
ways must be found to limit the number of unknowns.

We know that an efficient MoM technique should apply an
iterative method. This requires a set of basis functions that do not
lead to an ill-conditioned matrix. One of the most efficient ways
is to employ higher order basis functions. However, the traditional
higher order basis functions usually lead to an ill-conditioned system
matrix. This problem can be avoided by making the basis functions
near-orthogonal. In 2004, Jorgensen introduced a set of higher order
hierarchical basis functions that provide a lower condition number than
the existing higher order basis functions [10]. The basis is derived
from orthogonal Legendre polynomials which are modified to impose
continuity of vector quantities between neighboring elements while
maintaining most of their desirable features. Moreover, a further
improvement of the matrix condition number is obtained by defining
appropriate scaling factors that multiply each basis function. As a
result of the low condition number, MoM matrix systems with even
tenth-order Legendre basis functions can be solved iteratively. These
basis functions also have some other properties such as decreasing the
number of unknowns, reducing the computational complexity in filling
the impedance matrix, allowing different order bases used on different
patches, etc.

Because of its good performance, a lot of scholars have solved
many electromagnetic scattering problems using this kind of higher
order basis functions [11–13]. However, there are few papers applying
them to the anisotropic objects. In this paper, we will solve this
problem using the higher order hierarchical Legendre basis functions.

2. FORMULATION

2.1. Higher Order Hierarchical Legendre Basis Functions

Here, we consider a curved quadrilateral patch of arbitrary order with
an associated parametric curvilinear coordinate system defined by
−1 ≤ u, v ≤ 1. The surface current on each patch can be represented
as

⇀

J s = Ju
s

⇀
au + Jv

s
⇀
av (1)

where ⇀
au and ⇀

av are the co-variant unitary vectors ⇀
au = ∂

⇀
r/∂u and

⇀
av = ∂

⇀
r/∂v, Ju

s can be expanded as follows using higher order basis
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functions.

Ju
s =

1
ζs (u, v)

Mu∑

m=0

Nv∑

n=0

au
mnPm (u) Pn (v) (2)

where ζs(u, v) = |⇀au × ⇀
av| is the surface Jacobian, and Mu and Nv

denote the expansion order along the direction of the current and the
transverse direction, respectively. au

mn are unknown coefficients, and
Pm(u) and Pn(v) are expansion polynomials which are chosen as the
Legendre polynomials

Pm(u) =
1

2mm!
dm

dum

(
u2 − 1

)m (3)

The expansion in (2) is not appropriate if normal continuity of the
current flowing across patch boundaries is to be enforced. Therefore,
the polynomials need to be modified. In [10], the author presented the
modified orthogonal Legendre polynomials, and Ju

s can be expanded
as [10]

Ju
s (u, v) =

1
ςs (u, v)
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n=0

bu
mnC̃mP̃m (u) CnPn (v)

=
1

ςs (u, v)

{
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[bu
0n (1− u) + bu

1n (1 + u)] C̃0CnPn (v)

+
Mu∑
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mnC̃mP̃m (u) CnPn (v)

}
(4)

where bu
mn are the new unknown coefficients, and P̃m(u) is the

alternative modified higher order polynomials

P̃m (u) =





1− u, m = 0
1 + u, m = 1
Pm (u)− Pm−2 (u) , m ≥ 2

(5)

C̃m and Cn are scaling factors which are chosen to make sure that the
Euclidean norm of each function is in unity on a unit square patch.

C̃m =
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4
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As for Jv
s , it can be obtained by interchanging u and v in (4). Thus,

the surface current can be written as

⇀

J s =
1

ςs (u, v)

(
⇀
au

Mu∑

m=0

Mv−1∑

n=0

bu
mnC̃mP̃m (u) CnPn (v)

+⇀
av

Mv∑

m=0

Mu−1∑

n=0

bv
mnC̃mP̃m (v) CnPn (u)

)
(7)

In the above equation, when Mu = Mv = 1, the well-known roof-
top basis function can be obtained. For more information about the
higher order basis functions, the reader can refer to [10]. In this paper,
we will use the higher order hierarchical Legendre basis functions to
analyze the scattering problems of anisotropic structure.

2.2. Integral Equations

For an interface of two dielectric objects, as shown in Figure 1, we use
the well-known PMCHWT integral equations.

−



⇀

E
i

⇀

H
i


=

∫

S′

[
Ḡ1

e + Ḡ2
e Ḡ1

em + Ḡ2
em

Ḡ1
me + Ḡ2

me Ḡ1
m + Ḡ2
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]
·
[

⇀

J
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M

]
d

⇀
r
′
,

⇀
r ∈ S (8)

where
⇀

Ei and
⇀

H i are the incident electromagnetic field.
⇀

J and
⇀

M are
the surface electric and magnetic currents. Ḡj

e and Ḡj
me are the dyadic

Green’s functions in region j (j = 1, 2), corresponding to the electric

Figure 1. The geometry for the construction of PMCHWT
formulations.
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and magnetic fields due to delta electric current source. Likewise,
Ḡj

em and Ḡj
m are associated with the electric and magnetic fields due

to delta magnetic current source.
General uniaxial media are described by constitutive tensors of

permittivity and permeability of the following form

ε̄ = ε⊥
(
ââ + b̂b̂

)
+ ε//ĉĉ = ε⊥Ī +

(
ε// − ε⊥

)
ĉĉ

µ̄ = µ⊥
(
ââ + b̂b̂

)
+ µ//ĉĉ = µ⊥Ī +

(
µ// − µ⊥

)
ĉĉ

(9)

where Ī is the unit dyadic. â, b̂ and ĉ are the unit vectors. Without
loss of generality it can be assumed that ĉ = êzε// is the relative
permittivity along the distinguished axis (ĉ or // axis), and ε⊥ is
along the other directions (â, b̂ or ⊥ axis). Similarly, µ// and µ⊥ are
the relative permeability along the // and ⊥ axes. For nonmagnetic
(µ̄ = Ī) uniaxial dielectric media, the dyadic Green’s functions take
the form [14]
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where
⇀

R = ⇀
r−⇀

r
′
, R = |⇀r − ⇀

r
′|, Re =

√
ε//(

⇀

R · ε̄−1 · ⇀

R), k0 = ω
√

µ0ε0,
k⊥ = k0

√
ε⊥.

In (10)–(13), when ε̄ = Ī, the free space dyadic Green’s functions
can be obtained.

The surface currents in (8) can be expanded as

⇀

J =
N∑

n=1

αn

⇀

Bn and
⇀

M =
N∑

n=1

βn

⇀

Bn (14)

where N is the total number of basis functions, and αn and βn are the
unknown expansion coefficients. The basis functions

⇀

Bn take the form
of (7). We can obtain the surface currents by solving (8). Then the
scattering problem can be solved.

3. NUMERICAL RESULTS

In this section, we will present some numerical examples to validate
the efficiency and accuracy of the higher order hierarchical Legendre
basis functions and compare them with the roof-top basis function.
Here, the GMRES iteration method with a relative error norm of 0.001
is adopted for all calculations. All calculations are carried out on a
Pentium 4 with 2.8 G CPU and 1 GB RAM in single precision.

First, consider a uniaxial anisotropic dielectric cube with the edge
length 2λ0, and λ0 is the wave length in free space. Its relative
permittivity is ε⊥ = 5, ε// = 3, and permeability is µ0 in air. The
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incident wave is given by
⇀

Einc = ⇀
ex exp(−jkz). As shown in Figure 2,

the bistatic RCS with θθ-polarization obtained by the higher order
MoM are compared with the results obtained by using the roof-top
basis function and HFSS solution. A good agreement of the four
results is observed. Table 1 gives several important parameters of the
calculation. From Table 1, we can see that the two kinds of bases get
the same results, but when the higher order basis functions are used,
the number of unknowns decreases dramatically.

The second example is a conducting sphere coated with uniaxial
anisotropic medium. The geometry of the structure is shown in
Figure 3. The electric dimensions of the inner and outer radii are
k0a1 = 1.6π and k0a2 = 2π. The medium is TiO2 whose relative
permittivity is εt = 5.913, εz = 7.197, and permeability is µ0 in air.
With the same plane-wave source as that in the first example, the
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Figure 2. E plane bistatic RCS of the cube with edge length 2m at
300M.

Table 1. Several parameters in the calculation of the cube edge length
2m.

Basis functions 1st order (roof-top) 2nd order 3rd order
Patch size (λ) 0.09 0.3 0.5
Patch number 3174 294 96

Unknowns 12696 4707 3456
Memory (MB) 1230 169 91
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Figure 3. The geometry of scattering by a conducting sphere coated
with uniaxial anisotropic medium.
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Figure 4. E plane Bistatic RCS of the uniaxial anisotropic medium
coated sphere with radius a1 = 0.8m, a2 = 1 m at 300 M.

bistatic RCS with θθ-polarization obtained by the higher order MoM
are compared with the results obtained by using the roof-top basis
functions and HFSS solution, as shown in Figure 4. Again, a good
agreement of these results is observed. Several important parameters
of the simulation are given in Table 2. From Table 2, we can see that
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higher order basis functions require much fewer unknowns and less
computer memory than low-order basis.

In order to show how the anisotropic permittivity influences the
numerical result, we calculate two uniaxial anisotropic spheres. By
comparing the anisotropic cases with isotropic case in Figure 5, we can
see that the scattering characteristics of dielectric objects are greatly
influenced by the presence of uniaxial anisotropy. By calculating other
various uniaxial cases, we find that the RCS of a uniaxial anisotropic
dielectric object is very sensitive to the anisotropy, even for a 1%
variation of uniaxial anisotropy. But the uniaxial anisotropy influences
the RCS in a complex fashion and is not predictable from a simple
theory.

Table 2. Several parameters in the calculation of the uniaxial
anisotropic medium coated sphere.

Basis functions 1storder (roof-top) 2nd order 3rd order
Patch size (λ) 0.1 0.32 0.55
Patch number 3106 366 208

Unknowns 9810 4528 2808
Memory (MB) 734 156 60
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Figure 5. Bistatic RCS of the uniaxial anisotropic sphere and
isotropic sphere (a) k0a = π, (b) k0a = 2π. Isotropic sphere ——
ε// = ε⊥ = 2.5; Uniaxial anisotropic sphere - - - - ε// = 2.5, ε⊥ = 2.4, –
- – - – ε// = 2.4, ε⊥ = 2.5.
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4. CONCLUSION

A higher order MoM scheme has been presented for solving the
scattering problem of the uniaxial anisotropic objects. Numerical
examples for scattering by a PEC sphere coated with a uniaxial
anisotropic medium and a uniaxial anisotropic dielectric cube
demonstrate an excellent agreement between the results of our higher
order MoM and the low-order MoM. It is shown that for electrically
large scattering problem the higher order MoM yields a significant
reduction of unknowns and thus decreases the computational demand
dramatically. Therefore, it is efficient and accurate to use the higher
order hierarchical MoM in the calculation of uniaxial anisotropic
objects scattering problem. In the process of the calculation, we found
that for the matrix filling time, higher order basis functions do not have
an obvious advantage over low order basis functions. This is because
our algorithm is not optimized. Therefore, our next work is improving
the algorithm to decrease the matrix filling time.

ACKNOWLEDGMENT

This work is supported partly by the Program for New Century
Excellent Talents in University of China and partially by the
National Natural Science Foundation of China under Contract
No. 60601028, No. 60801040, National Key Laboratory Foundation
and the Fundamental Research Funds for the Central Universities.

REFERENCES

1. Harrington, R. F., Field Computation by Moment Methods, Wiley-
IEEE, New York, 1993.

2. Rao, S. M., D. R. Wilton, and A. W. Glisson, “Electromagnetic
scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas
Propag., Vol. 30, No. 3, 409–418, May 1982.

3. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, “A tetrahedral
modeling method for electromagnetic scattering by arbitrarily
shaped inhomogeneous dielectric bodies,” IEEE Trans. Antennas
Propag., Vol. 32, No. 1, 77–85, Jan. 1984.

4. Song, J. M., C. C. Lu, and W. C. Chew, “Multilevel fast
multipole algorithm for electromagnetic scattering by large
complex objects,” IEEE Trans. Antennas Propag., Vol. 45, No. 10,
1488–1493, Oct. 1997.

5. Sertel, K. and J. L. Volakis, “Multilevel fast multipole method



Progress In Electromagnetics Research M, Vol. 13, 2010 143

solution of volume integral equations using parametric geometry
modeling,” IEEE Trans. Antennas Propag., Vol. 52, No. 7, 1686–
1692, Jul. 2004.

6. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, “AIM:
Adaptive integral method for solving large-scale electromagnetic
scattering and radiation problems,” Radio Science, Vol. 31, No. 5,
1225–1251, Sep.–Oct. 1996.

7. Zhang, Z. Q. and Q. H. Liu, “A volume adaptive integral
method (VAIM) for 3-D inhomogeneous objects,” IEEE Antennas
Wireless Propag. Lett., Vol. 1, 102–105, 2002.

8. Phillips, J. and J. White, “A precorrected-fft method for
electrostatic analysis of complicated 3-d structures,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., Vol. 16, No. 10,
1059–1072, 1997.

9. Nie, X. C., N. Yuan, L. W. Li, Y. B. Gan, and T. S. Yeo, “A
fast volume-surface integral equation solver for scattering from
composite conducting-dielectric objects,” IEEE Trans. Antennas
Propag., Vol. 53, No. 2, 818–824, Feb. 2005.

10. Jorgensen, E., J. L. Volakis, P. Meincke, and O. Breinbjerg,
“Higher order hierarchical legendre basis functions for electromag-
netic modeling,” IEEE Trans. Antennas Propag., Vol. 52, 2985–
2995, Nov. 2004.

11. Jorgensen, E., P. Meincke, and O. Breinbjerg, “A hybrid
PO higher-order hierarchical MoM formulation using curvilinear
geometry modeling,” IEEE International Symposium on Antennas
and Propagation, Columbus, OH, USA, Jun. 2003.

12. Jorgensen, E., O. Kim, P. Meincke, and O. Breinbjcrg, “Higher-
order hierarchical discretizationscheme for surface integral
equations for layered media,” IEEE Trans. on Geoscience and
Remote Sensing, Vol. 42, No. 4, 764–772, Apr. 2004.

13. Kim, O. S., P. Meincke, O. Breinbjerg, and E. Jørgensen, “Method
of moments solution of volume integral equations using higher-
order hierarchical Legendre basis functions,” Radio Science,
Vol. 39, 5003, 2004, 10.1029/2004RS003041.

14. Weiglhofer, W. S., “Dyadic green’s functions for general uniaxial
media,” IEEE Proc. Microw. Antennas Propag., Vol. 137, No. 1,
5–10, Feb. 1990.


