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Abstract—Frequency shift of the spectrum of an incident optical pulse
by an intense THz pulse inducing cross-phase modulation (XPM) in
a nonlinear dielectric slab is analyzed. The effect is predicted with a
high degree of accuracy using the well-known transmission line matrix
(TLM) technique. In this research, to model the THz-induced temporal
and spatial variation of the dielectric permittivity of the nonlinear
dielectric slab, the transmission lines of the TLM method are loaded
with open shunt stubs. The parameters of the stubs are modified in
accordance with the refractive index variation of the dielectric slab,
here ZnTe, induced by the strong THz pulse. The obtained numerical
results are verified with a recently reported experimental work.
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1. INTRODUCTION

Nonlinear optics plays an important role in generating, controlling,
and modulating laser pulses. To this end, self-phase modulation
(SPM) [1] or cross-phase modulation (XPM) in a nonlinear medium [2–
8] is commonly used to modulate optical pulses. Alfano et al. are
the first to demonstrate XPM [2]. They showed that propagation
of intense picosecond pulses in bulk glasses leads to a spectral
broadening of a copropagating weaker pulse. It has been shown
that spectral broadening of a single-frequency laser pulse induced by
a chaotic laser pulse in a birefringent single-mode optical fiber can
generate laser pulses of variable bandwidth [9]. In addition, XPM
is useful in compressing weak pulses [10]. Alternatively, ultrafast
pulses copropagating in a nonlinear dispersive medium experience
a significant shift of their center frequencies. This effect has been
attributed to the combined effect of XPM and pulse walk-off [11]. The
frequency shift of optical signals as high as some nanometers can be
utilized for optical frequency switching [12].

Cross-phase modulation is commonly assigned to the Kerr effect.
Yet it has been shown experimentally that a strong THz electric field
induces XPM in a weak optical beam through the Pockel effect [13].
The goal of this paper is to develop a computational technique to
precisely evaluate the frequency shift of an optical beam as a result
of XPM in a nonlinear slab through the Pockel effect. The adopted
computational technique is based on the TLM method. In this method,
the ZnTe slab is first discretized by cells as small as one tenth of the
optical wavelength. Each cell is then modeled by a transmission line
loaded with a shunt open stub. The change of ZnTe refractive index
induced by the copropagating THz pulse is modeled by varying the
shunt stub parameters. In the following section, this technique will be
explained in details. The obtained results along with discussions will
be in Sections 3 and 4.

2. MODELING OF PROPAGATION THROUGH A
NONLINEAR SLAB

A nonlinear dielectric medium is characterized by a nonlinear relation
between the polarization vector and the electric field. It is expressed
as
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where Pi is the ith component of the instantaneous polarization vector,
and Ei is the ith component of the instantaneous electric field of the
optical beam. The indices i, j, k, and l can be x, y, or z. Here, χij is
the linear susceptibility. dijk and χijkl are the second- and third-order
nonlinear susceptibilities, respectively [14].

As shown in Figure 1, the nonlinear dielectric slab, here ZnTe,
occupies the region 0 < x < L. The THz and optical field are
plane wave propagating in the x direction and have only z component.
Since the THz and optical electric field have only one component,
Equation (1) can be rewritten as

Pz = ε0χ
(1)Ez + 2d · E2

z + 4χ(3)Ez
3 (2)

where χ(1), d, and χ(3) are the linear, second-order, and third-order
susceptibilities, and Ez is the only non-zero electric field component
in the z direction. The change of the relative dielectric permittivity
induced by the THz pulse in ZnTe is expressed by ∆εr = ∆εr1 + ∆εr2

where ∆εr1 and ∆εr2 are the relative dielectric permittivity changes
caused by the Pockel and Kerr effects, respectively [13]. The ∆εr1 can
be obtained from the second-order term of the polarization vector, i.e.,

PzNL (t) = 2d·E2
z (3)

Since the optical pulse width is much smaller than the THz pulse width,
variation of the THz pulse amplitude in the whole time duration of the
optical pulse is neglected. With the use of Equation (3), the change of
the relative dielectric permittivity at the optical frequency is obtained
as

∆εr1 =
4d

ε0
ET (x, t) (4)

Figure 1. The optical and THz pulse in the form of a plane wave
applied to the ZnTe slab covering 0 < x < L.
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where ε0 is the vacuum dielectric permittivity, and ET (x, t) is the
calculated THz electric field as a function of time and space. By using
the same process for the third-order nonlinearity polarization, the ∆εr2

is achieved as ∆εr2 = 12χ(3)

ε0
E2

T (x, t). From [13], we know that the
second- and third-order susceptibilities of ZnTe are d= 4.5 × 10−11ε0
and χ(3)=0.75×10−19ε0, respectively. For ETHz<5×107 V

m , the value
of ∆εr1 satisfies ∆εr1 À ∆εr2. Therefore, the Pockel effect is dominant
in the phase shift of the optical beam. The refractive index of ZnTe
at the THz and optical frequency is nTHz = 3.178 and nOpt = 2.85,
respectively [15]. Because of the dispersion, the THz and optical signal
propagate with different phase velocities. In addition, as the pulses
contain various frequency components, these pulses propagate with
different group velocities; thus, their temporal relative position varies
across the ZnTe slab. This is known as the walk-off effect.

To calculate the wavelength shift of the optical pulse in the
presence of the THz pulse, first the THz electric field in the ZnTe
slab is evaluated when the optical pulse is absent. For this calculation,
we expand the THz pulse in terms of N frequency components. Each
of these time harmonic components of the THz pulse is then used
to determine the electric field inside the slab. After superposition of
these single solutions, the electric field of the THz pulse at any position
inside the slab is obtained as a function of time. Figure 2 illustrates
the obtained result. Then, variation of the relative permittivity is

Figure 2. THz electric field inside the ZnTe slab as a function of time
and space in the absence of the optical field.



Progress In Electromagnetics Research M, Vol. 13, 2010 45

calculated using the computed THz signal inside the slab. This is
done using Equation (4). After the calculation of the THz-induced
variation of the relative permittivity, the shift of the optical beam
center frequency is determined with the help of the TLM method. The
TLM method based on the Huygens principle is a powerful numerical
method for solving Maxwell’s equations in the time domain [16]. To
do the numerical calculation, first the ZnTe slab is discretized by cells
(shown in Figure 3). To minimize the numerical dispersion error, the
cell size must be smaller than one-tenth of the wavelength at the
maximum frequency of interest, i.e., λmin. In other words, a useful
“rule of thumb” is that cell thickness ≤ λmin

10 [18]. Therefore, we have
used cells of 1/10 of the optical wavelength. One can choose the cell
thickness smaller than the value selected in the manuscript, but the
computation time increases significantly. In fact, there is a trade-off
between the cell thickness and computation time.

In the next step, the TLM method replaces the discretized
computational domain by a network of interconnected transmission
lines. It is shown that there is a correspondence between the voltages
and currents of the transmission line network and the electric and
magnetic fields of Maxwell’s equations [17]. It should be mentioned
that the main contribution of this work is the modeling of time-variant

Figure 3. ZnTe slab is dis-
cretized by celles as small as a
tenth of the optical wavelength.
The relative permittivity of the
slab varies as a function of space
and time because of the THz
pulse.

Figure 4. Transmission lines for
the cell covering Xn < x < Xn+1.
The change of the refractive index
of ZnTe due to the THz pulse
is modeled with the variation of
the parameters of the shunt open
stub.
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dielectric permittivity. This is required in the analysis of a problem
containing nonlinear materials, particularly when there are two or more
time-harmonic sources. The analysis of time-variant medium is made
possible by adding open shunt stubs with time varying characteristic
impedance. The characteristic impedance of the shunt stubs is updated
in every time step. In this work, the parameters of the stubs are
changed in accordance with the refractive index variation of the ZnTe
slab induced by the strong THz pulse. Figure 4 shows the three
transmission lines used in a TLM cell starting at Xn and ending at
Xn+1. Lines 1 and 2 have the same characteristic impedance ZLine

and a length of dl
2 . The characteristic impedance of the shunt stub,

i.e., Line 3, and its length are ZCS and ds, respectively.
The change of the refractive index corresponds to a capacity per

unit length of the following value C = ε0∆ε1. The capacity can
be modeled with a shunt open stub of the length ds. The length
of the open stub is chosen so that the time needed for a3 going
through the stub and back to the central node is equal to the time
required for a1 or a2 to get to the central node. It means that
ds = dl

4

√
εopt

∆ε1
, where εopt is the dielectric permittivity at the optical

frequency. Therefore, the characteristic impedance of the shunt open
stub should be ZCs = 1

4
1

ε0∆ε1υopt
, where υopt is the velocity of light in

the slab at the wavelength of the optical signal.
In the TLM method, both forward and backward voltage waves

on each transmission line are updated in ∆t time steps. To explain
this procedure, we pay attention to Figure 4. Here, a1, a2, and a3,
i.e., the forward propagating voltages, arrive at the junction after ∆t,
where they are reflected according to the scattering parameters of the
junction. In a general form this can be written as:

[aj ]
r = [Sji] [ai]

i (5)

where [a]r and [a]i are the matrices of reflected and incident voltages,
respectively. The elements of the scattering matrix [Sji] are the voltage
reflection and transmission coefficients at each junction. The reflected
voltage wave at time k from junction n and traveling to the left becomes
incident on junction n− 1 from the right at time k + 1, i.e.,

k+1a
i
(n−1) =ka

r
n (6)

By the same logic the incident pulse from the left at junction n and
at time k + 1 is the reflected voltage wave on junction n− 1 from the
right at time k, i.e.,

k+1a
i
n =ka

r
n−1 (7)

By iterative applications of this procedure, the voltage waves are
updated in multiples of ∆t. For a detailed description of the TLM
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algorithm, the reader is referred to [18]. By calculating the total
voltages of the transmission line network in the successive time
intervals, the time variation of the optical beam transmitted through
the ZnTe slab is determined. As will be discussed in the following
section, the most prominent effect of the nonlinear interaction in
the slab is the wavelength shift of the optical beam which is mainly
dependent on the time delay between the optical and THz signals.

3. RESULTS AND DISCUSSIONS

In this work, it is assumed that the incident Gaussian THz pulse has a
maximum amplitude of 3.5× 107 V

m , a center frequency of 1THz, and
a time duration of 1 ps, while the incident Gaussian optical pulse has
a center wavelength of λOpt = 795 nm and a time duration of 120 fs.
The material of the slab is ZnTe, and its thickness is 0.5 mm. Figure 5
shows the spectral profiles of the optical pulse propagating with and
without the THz field in the ZnTe slab. The solid-line spectrum is for
the case of the optical beam propagating in the absence of the THz
pulse in the crystal. The blue and red-shifted spectra correspond to
the spectra of the optical beam copropagating with the THz pulse for
the time delay 0.3914 and 0.8418 picoseconds, respectively .

In addition, the induced-wavelength shift of the optical signal
versus the input time delay between the THz and optical signals is

(a)(b) (c)

Figure 5. (a) Optical beam propagating in the ZnTe slab with no
THz signal, (b) the blue shift corresponds to the case in which the
input time delay is 0.3914 ps, (c) the red shift corresponds to the case
in which the input time delay is 0.8418 ps.
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Figure 6. THz induced-wavelength shift of the optical beam versus
the time delay between the THz and optical signal, the dashed-line
curve corresponds to the result of [13] and the solid-line one shows the
result of the TLM method.

shown in Figure 6. The obtained result using TLM method is well-
matched with the recently reported experimental work [13]. It should
be mentioned that the theoretical analysis presented in [13] has been
based on simple assumptions. For instance, the total phase shift is
computed using

∆ϕ (t) =
2π

λ0

∫ L

0
∆n[ETHz(t− βz)]dz (8)

where λ0 is the central wavelength of the probe pulse. β is a walk-off
parameter, and L is the length of the ZnTe slab. This is obviously a
simplified expression for ∆ϕ because it does not include several effects
such as the reflection from the slab-air interface, nor the standing THz
wave inside the slab, which evidently varies the refractive index in its
own turn. The authors of [13] have used the simplified relation for
∆ϕ for different walk-off parameters. They noticed that the measured
spectral shifts are compatible with the results of the above formula
when the walk-off parameter is β= 1 ps

mm . Therefore, their method is
not a rigorous one to predict the frequency shift of the optical signal,
because the value of β is unknown without measurement. But we
have applied the TLM technique after some modifications to solve the
time-variant problem of transmission through the ZnTe slab with a
high degree of accuracy such that our results are compatible with the
measurement results without additional assumptions. Note that our
method can also be applied to more complex configurations for example
a configuration of several slabs, whereas the simple ∆ϕ formula of [13]
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is unable to deal with these and many other configurations.

4. CONCLUSION

In conclusion, the frequency shift of the optical beam as a result of the
XPM in a ZnTe slab has been predicted accurately with the help of the
TLM method. The simulated result shows good agreement with those
of the reported experimental work. This agreement shows that the
proposed simulation procedure is accurate. In other words, one may
first calculate the THz electric field inside the slab as a function of time
and space. From the THz field distribution in the slab, the temporal
and spatial variation of the permittivity is computed. Then the effect
of ZnTe refractive index variation on the optical pulse is evaluated.

Being a time-domain method of analysis, our proposed method is
applicable to a large number of cases including but not limited to single
cycle terahertz and optical pulses with different center frequencies,
time durations, amplitudes, and waveforms. As long as the second-
order susceptibility of the nonlinear material and its refractive index
at THz and optical frequency are known, the method of this work can
be utilized to analyze the nonlinear behavior of the problem. However,
to verify our method, we had to apply it to a specific problem for which
experimental data were available. The experimental work of [13] was
a suitable candidate for this purpose. Moreover, this work forms the
basis of many THz detection systems.
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