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Abstract—Here we present the rigorous electrodynamical solution of
diffraction problem about the microwave scattering by a multilayered
cylinder. The number and thickness of layers is not limited. We
offer the solution when the central core of multilayered cylinder can
be made of different isotropic materials as a metamaterial, a ceramic
matter or a semiconductor as well as of a perfect metal. The isotropic
coated layers can be of strongly lossy materials. The signs of the
complex permittivity and complex permeability can be negative or
positive in different combinations. Here we present dependencies
of the scattered power of the incident perpendicularly and parallel
polarized microwaves by the metamaterial-glass cylinder on signs of
metamaterial permittivity as well as permeability. The glass layer
absorbed power and metamaterial core absorbed power dependent on
the hypothetic metamaterial permittivity and permeability signs at
the wide range frequencies 1–120 GHz are also presented here. The
metamaterial core of cylinder has a radius equal to 0.0018 m and
the thickness of the coated acrylic-glass layer is 0.0002m. We have
found some conditions when the scattered-power has minimal values
and the absorbed power by the coated acrylic glass layer is constant in
a very wide frequency range. We have discovered that the glass layer
absorbed power increases with increasing of the frequency at the range
1–120GHz for both microwave polarizations.
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1. INTRODUCTION

For several decades scattering problems have been intensively analyzed.
The importance of scattering problems is based on their great
practical utility for many applications, such as reflector antennas, the
analysis of structures in open space, electromagnetic (EM) defence
of structures, the scattering modeling for remote sensing purposes,
high frequency telecommunications, navigation, computer network,
medicine, invisibility cloaks technology and radar systems. The stream
of new scattering problem articles shows the actuality of the topic. EM
scattering by dielectric and metal cylinders is a classical problem in
EMs and has been investigated by many researchers [1–4]. An iterative
algorithms based on the T -matrix approach for the EM scattering by
dielectric cylinders with infinite and finite length is given in [1, 2]. The
incident, scattered and transmitted fields are expressed in terms of the
spherical harmonics in the T -matrix approach.

In paper [3], the computational results of radar cross-section
for infinitely long conducting or dielectric circular cylinders with
multilayer dielectric coatings are considered, where the number of
dielectric layers may be arbitrary. TE, TM and circularly polarized
normally incident plane waves were considered in that article. Paper [4]
presents a hybrid method that was constructed by the finite-difference
frequency domain and mode-matching methods for the analysis of EM
wave scattering from some arbitrary cross-section metallic or dielectric
cylinders.

Some scattering problems have created an enormous demand for
modeling and simulation of cylinders with metamaterial layers [5–12].
The full wave iterative algorithm for the computation of the diffracted
far field of the infinitely long cylinders that were coated with several
dielectric layers is discussed in [5]. A cylindrical local basis function
is used in the modal expansion of the diffraction operators. TE and
TM polarized normally incident plane waves were considered. The
hybrid algorithm that can be applied to a specific cases such as rotating
and stationary metamaterial core coated with metallic or dielectric
materials is given in [6]. The calculations were fulfilled for cylinders of
lossless materials. An algorithm to study the scattering properties of
multilayered metamaterial cylinders by the radiation of a line source
is proposed in [7]. The algorithm is based on the eigenfunctional
expansion. In [8] the EM scattering by a perfect circular cylinder
conductor coated with a double positive (DP) material or a double
negative (DN) material is investigated theoretically when the radiation
source has a line form. The calculations were fulfilled for some lossless
metamaterial cylinders.
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Various methods have been developed to treat diffraction problems
such as the T -matrix approach [1, 2], method of moments [5], Finite-
difference time domain (FDTD) [10], Finite-difference frequency
domain (FDFD) [4, 11], integral method [9] and method of partial
areas [3, 7, 8].

Here we present the rigorous solution of the EM boundary
problem. Our computer program let us take strongly dissipative
materials of the layered cylinder. The proposed algorithm has no
limitation on layers’ thickness or their number. The algorithm is stable
and effective. It enables one to investigate diffraction characteristics
of complex composed cylinders even if the materials of nearby layers
have opposite electric properties, and the sizes of the layers are very
different.

Here we also present our numerical analyses of the scattered power
as well as the absorbed powers by the coated acrylic-glass layer and the
metamaterial core of two layered cylinder in the case of different signs
of metamaterial complex permittivity and permeability components.
The incident perpendicularly and parallel polarized microwaves are
taken in the frequency range 1–120 GHz. The cylinder metamaterial
core has the radius R2 = 0.0018m, and the external radius of the
acrylic-glass layer is R1 = 0.002m.

Our numerical studies can be useful in solving at least two
practical problems: a) for the correction of an antenna pattern, when
the cylinder is placed in an antenna radiated field; b) to achieve
the desired EM compatibility if there exists a problem of EM signal
shielding from the interference with noise signals.

To solve these problems we have to investigate the dependence
of scattered and absorbed powers on the signs of the metamaterial
permittivity and permeability. In our work these signs are determined
by values s1, s2, s3, s4. Our calculations were fulfilled when the
permittivity was equal to −ε′ − iε′′ (Re EPS is negative) at s1 = s2 =
−1 or ε′ − iε′′ (Re EPS is positive) at s1 = s2 = 1. And analogically
the permeability was equal to −µ′ − iµ′′ at s3 = s4 = −1 or µ′ − iµ′′
at s3 = s4 = 1.

Many papers have reported the theoretical and experience
development of metamaterials [12–19]. The variety of technologies
for creation of engineering metamaterials increases rapidly. We do
not introduce restrictions on the design elements of our hypothetical
metamaterial and its aggregate state. Our hypothetical metamaterials
can be liquid [14, 15], with alternating layers of metal and ceramic
substrate [16], with ceramic inclusions [17], in the form of powder [18],
ferromagnetic composites’ inclusions [19], etc.

Analysis of articles on metamaterials shows that metamaterials



106 Bucinskas, Nickelson, and Sugurovas

can be classified depending on the signs of their permittivity and
permeability. In our work the double negative (DN) metamaterial
is defined by values s1 = s2 = s3 = s4 = −1; double positive
(DP) material [13] is determined by values s1 = s2 = s3 = s4 = 1;
single negative metamaterial (SN) is defined by values s1 = s2 = 1,
s3 = s4 = −1 or s1 = s2 = −1, s3 = s4 = 1. Each metamaterial is
intended for use in a specific frequency range and has a specific value
of the effective permittivity and permeability at each frequency. For
this reason we took the absolute values of real and imaginary parts of
permittivity and permeability constant at all frequencies. In this article
we have focused our attention on choosing one type of metamaterials
among DN (double negative) or DP (double positive) or SN (single
negative) materials. We were guided only by the implementation
of the correct electrodynamical solution when we select the signs of
permittivity and permeability.

2. SCATTERING PROBLEM FORMULATION

Let us have an endless cylinder in the z-axis direction divided by
surfaces ρ = Rj , j = 1, . . . , N in concentric regions. The j-th region
(Rj+1 < ρ < Rj , j = 1, . . . , N) is filled with a material having the
scalar permittivity εj and scalar permeability µj . Numbering of the
layers is going from outside layer to the inner one. Thus R1 is the
outside radius of the cylinder and for j > N the radius RN+1 = 0
(Fig. 1). The cylinder, put in medium with the permittivity ε and
permeability µ, scatters a plane monochromatic EM wave. The electric
field of the wave at the point ~r is ~Ein(~r) = ~E0e

iωt−i~k~r
√

εµ. Here ~E0

is the electric field vector of incident plane monochromatic EM wave
that defines the wave polarization. ω is the EM wave frequency, and ~k

Figure 1. The simplest layered metamaterial cylinder model.
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is the wave vector.

3. EXPRESSIONS OF MICROWAVE ELECTRIC FIELD
IN LOSSY MEDIA

For harmonic waves the Maxwell’s equations:

∇× ~H = iωε0ε ~E, ∇× ~E = −iωµ0µ ~H (1)

have solutions expressed by the transverse electric (TE) and magnetic
(TM) waves in the cylinder coordinate system. After scalarization
we get that TE and TM waves’ potentials VTE and VTM satisfy the
Helmholtz equations:

1
ρ

∂

∂ρ
ρ
∂VTM

∂ρ
+

1
ρ2

∂2VTM

∂ϕ2
+

∂2VTM

∂z2
+ k2εµVTM = 0, (2)

1
ρ

∂

∂ρ
ρ
∂VTE

∂ρ
+

1
ρ2

∂2VTE

∂ϕ2
+

∂2VTE

∂z2
+ k2εµVTE = 0, (3)

where ρ, ϕ, z are the radial, azimuthal and longitudinal coordinates.
Here the value k = ω/c is the wavenumber of EM wave, and c is the
speed of light in free space.

Their solutions are

VTM =
∞∑

n=−∞

(
A(1)

n H(1)
n

(√
k2εµ− h2ρ

)

+A(2)
n H(2)

n

(√
k2εµ− h2ρ

))
einϕe−ihz, (4)

VTE =
∞∑

n=−∞

(
B(1)

n H(1)
n

(√
k2εµ− h2ρ

)

+B(2)
n H(2)

n

(√
k2εµ− h2ρ

))
einϕe−ihz. (5)

Here H
(1)
n (w) is the Hankel function of the n-th order and the first

kind, and H
(2)
n (w) is the Hankel function of the n-th order and the

second kind. w is the argument
(√

k2εµ− h2ρ
)

of functions, and h is

the longitudinal propagation constant. A
(1)
n , A

(2)
n , B

(1)
n , B

(2)
n are the

unknown coefficients which must be determined. Outside the cylinder
only the second kind Hankel function satisfies the radiation condition.
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Thus for the scattering field we have

VTM =
∞∑

n=−∞
As

nH(2)
n (w) einϕe−ihz,

VTE =
∞∑

n=−∞
Bs

nH(2)
n (w) einϕe−ihz. (6)

In the regions Rj+1 < ρ < Rj (j = 1, . . . , N) there are inward an
outward waves.

We can write schematically

VTMj = V
(1)
TMj + V

(2)
TMj , VTEj = V

(1)
TEj + V

(2)
TEj . (7)

Here the upper index shows the kind of the Hankel function. For
the N -th region the solutions should be finite in the points ρ = 0.
Therefore, one has to take Bessel function as radial functions. The
EM field components are

Eρ =
∂2VTM

∂z∂ρ
− iωµ0µ

ρ

∂VTE

∂ϕ
, Eϕ =

1
ρ

∂2VTM

∂z∂ϕ
+ iωµ0µ

∂VTE

∂ρ
, (8)

Ez = −1
ρ

{
∂

∂ρ
ρ
∂VTM

∂ρ
+

∂

∂ϕ

1
ρ

∂VTM

∂ϕ

}
, (9)

Hρ =
iωε0ε

ρ

∂VTM

∂ϕ
+

∂2VTE

∂z∂ρ
, Hϕ = −iωε0ε

∂VTM

∂ρ
+

1
ρ

∂2VTE

∂z∂ϕ
, (10)

Hz = −1
ρ

{
∂

∂ρ
ρ
∂VTE

∂ρ
+

∂

∂ϕ

1
ρ

∂VTE

∂ϕ

}
. (11)

Here the constants ε0 and µ0 are the permittivity and permeability of
free space.

The EM field in a cylinder layer is created by inward (the upper
index (1)) and outward (the upper index (2)) waves. The whole field
is made by some vector sums of these fields. In the j-th cylinder layer
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(Rj+1 ≤ ρ ≤ Rj) Fourier-components with respect to z-coordinate are:
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To solve the scattering problem we use the standard boundary
conditions, i.e., equality of the tangential EM field components. For
the outside surface ρ = R1 we have the expressions:{

Es
z + Ein

z − Etr
1,z

}∣∣
ρ=R1

= 0,
{
Es

ϕ + Ein
ϕ − Etr

1,ϕ

}∣∣
ρ=R1

= 0, (18)
{
Hs
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1,z

}
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1,ϕ
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where Ein
z , Ein

ϕ , H in
z , H in

ϕ are the electric and magnetic tangential
components of incident wave EM field, and Es

z , Es
ϕ, Hs

z , Hs
ϕ are the
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electric and magnetic tangential components of scattered wave EM
field. Etr

z , Etr
ϕ , and Htr

z , Htr
ϕ are the electric and magnetic tangential

components of transmitted wave EM field.
For the inner surfaces ρ = Rj , j = 2, . . . , N the boundary

conditions are:

{Ej,z − Ej−1,z}|ρ=Rj
= 0, {Ej,ϕ − Ej−1,ϕ}|ρ=Rj

= 0, (20)

{Hj,z −Hj−1,z}ρ=Rj
= 0, {Hj,ϕ −Hj−1,ϕ}ρ=Rj

= 0. (21)

The system of the boundary conditions on the outside surface ρ = R1

for cylinder with N layers is:
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Here β2
j = k2εjµj − h2, βj is the transversal wave number in the layer

j, and β2 = k2εµ− h2, β is the transversal wave number in a cylinder
surrounding media space. The values of

√
β2 are chosen in standard

way. We write β2 = |β|2 exp(iα), −π Â α ≺ π. If −π Â α ≺ 0
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then β = |β| exp (iα/2). The function H(2)(βρ) at infinity ρ → ∞
disappears. If π Â α Â 0 one has to take for the root another value
β = − |β| exp(iα/2). Then the function H(2)(βρ) disappears at infinity
ρ → ∞ again. The value ~H0 =

√
ε0ε
µ0µ

[
~k0, ~E0

]
, here the vectors ~H0

are the magnetic fields of the plane monochromatic incident EM wave
(microwave), ~E0 = E0x~nx + E0y~ny + E0z~nz, where magnitudes E0x,
E0y, E0z are components of electric field ~E0, and the magnitudes H0x,
H0y, H0z are components of magnetic field ~H0. ~k0 = ~k/k is the unit
vector, and the wave vector ~k = kx~nx + kz~nz. ~nx, ~ny, ~nz are the
Cartesian coordinate system orts, and Jm(βρ) is the cylindrical Bessel
function of the m-th order. The index m are also from −∞ to +∞,
and δ(h + kz

√
εµ) is the Dirac delta function.

We can write the boundary conditions in the analogical way for
the case when ρ = RN and ρ = Rj , j = 2, . . . , N − 1. We obtain the
final system of equations from all the boundary conditions. From this
equation system one gets the unknown coefficients as A

(1)
jm, B

(1)
jm, A

(2)
jm,

B
(2)
jm. The Poynting vector describes energy flux, and it is equal to

~P =
[
~E, ~H∗

]
. (26)

Bearing in mind the EM fields’ harmonic dependence on time after
taking mean of (26) one obtains the factor 0.5. In Formulas (12)–(17)
one has to use amplitudes of the fields. Integrating over surface of unit
length cylinder with radius ρ we find the scattered or absorbed powers:

W =
1
2

2π∫

0

(
~P~nρ

)
ρdϕ, (27)

here ~nρ is the cylindrical coordinate system ort.
After having done some algebra one gets the power absorbed and
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scattered by the cylinder:

W = π

∞∑
m=−∞
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−hm

(
B(1)

m H(1)
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m H(2)
m

)

+iωµ0µρ
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∂ρ
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m

∂H
(2)
m

∂ρ
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β2∗
(
A(1)∗

m H(1)∗
m + A(2)∗

m H(2)∗
m

)
− β2

(
B(1)

m H(1)
m + B(2)

m H(2)
m

)

[
iωε0ερ

(
B(1)∗

m

∂H
(1)∗
m

∂ρ
+ B(2)∗

m

∂H
(2)∗
m

∂ρ

)

−h∗m
(
A(1)∗

m H(1)∗
m + A(2)∗

m H(2)∗
m

)]}
,

(28)

when we calculate the scattered power by Formula (28) then coefficients
A

(1)
m , A

(1)∗
m , B

(1)
m , B

(1)∗
m became equal to zero, and asterisks near

magnitudes mean the conjugate values of these magnitudes. The
argument of radial functions is βρ when ρ ≥ R1 and βjρ when
Rj+1 < ρ ≤ Rj .

4. NUMERICAL ANALYSIS OF THE REFLACTON AND
ABSORBTION MICROWAVE POWER OF LAYERED
METAMATERIAL-GLASS CYLINDER

In this section, we investigate the scattered and absorbed powers of
the incident microwave by the layered metamaterial-glass cylinder in
the frequency range from 1 till 120 GHz. The maximum number of
members m in the sums of formulae was taken equal to 24 in our
calculations. The metamaterial core of the layered cylinder is coated
with some acrylic-glass. The external cylinder radius is R1 = 0.002m,
and the cylinder core has radius R2 = 0.0018 m, so the thickness of
the glass layer is 0.0002m. The acrylic-glass complex permittivity is
εg = ε′g− iε′′g = 3.8− i0.0005, εg = |εg| exp(−iδg

ε ), i.e., the phase of the
complex glass permittivity is δg

ε = arctan
(
ε′′g

/
ε′g

) ≈ 1.3 · 10−4 [rad],
and the glass permeability is equal to µg = 1.

Nowadays, there is great interest in the composite materials
with untraditional values of the complex permittivity εmet and
complex permeability µmet. We analyze here the scattered (reflected)
and absorbed powers for four versions of hypothetic metamaterial
parameter signs. The complex metamaterial permittivity εmet =
s1 |εmet| exp(−s2iδ

met
ε ) was taken for two combinations of signs, when

s1 = s2 = ±1. The complex metamaterial permeability µmet =
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s3 |µmet| exp(−s4iδ
met
µ ) was also taken for two combinations of signs,

viz. s3 = s4 = ±1. The magnitude δmet
ε is a phase of the

complex permittivity εmet, and the magnitude δmet
µ is a phase of the

complex permeability µmet. Values of our hypothetic metamaterial
permittivity and permeability components were taken |εmet| = 20,
δmet
ε = 0.7068 [rad] and |µmet| = 2 δmet

µ = 0.6283 [rad]. These
components were constant at all frequencies for reason mentioned in
the end of the first section.

How the signs of the complex metamaterial permittivity and
permeability influence the scattered and absorbed powers, when the
plane perpendicularly ~Ein

0 ⊥~nz or parallel ~Ein
0 ‖~nz polarized microwave

impinges on the layered metamaterial-glass cylinder (Fig. 1), is
analyzed in Figs. 2–7. The normalized scattered or absorbed power
values per oscillation period for the unit length of the two-layered
metamaterial-glass cylinder are presented in these figures.

The absorbed and scattered power calculations were fulfilled using
formula (28). The integral (28) has a positive sign when we calculate
the scattered power. And this integral (28) has a negative sign when
we calculate the absorbed power. For this reason, the scattered power
has a positive value, and the absorbed power has a negative one (see
Figs. 2–7). In our calculations the value is | ~E0| = 1. Designations in
Figs. 2–7 correspond: curve 1 is for a DP material when s1 = s2 =
s3 = s4 = +1 (line with black squares); curve 2 is for a SN material
when s1 = s2 = +1, s3 = s4 = −1 (line with empty squares); curve 3
is for a SN material when s1 = s2 = −1, s3 = s4 = +1 (line with black
triangulars); curve 4 is for a DN material when s1 = s2 = s3 = s4 = −1
(line with empty triangulars).

The diffraction dependence of the layered metamaterial-glass

Figure 2. Scattered power de-
pendencies on the frequency of in-
cident perpendicularly polarized
microwave.

Figure 3. Dependencies of ab-
sorbed by glass layer power on the
frequency of incident perpendicu-
larly polarized microwave.
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waveguide when the incident microwave has a perpendicular
polarization ~Ein

0 ⊥~nz is shown in Figs. 2–4. The dependence of
scattered power W s on the microwave frequency f is presented in
Fig. 2. We see that the character of the curves for all metamaterial
sign versions (curves 1–4) is the same. A comparison of curves 1–4
shows that only curve 3 that describes the metamaterial permittivity
and permeability signs s1 = s2 = −1, s3 = s4 = +1 is the most
different one compared with the other three cases. At the beginning,
the scattered power grows till the maximum value, after that decreases
till the minimum and later increases again with increasing frequency.
So the dependence of magnitude W s = W s(|f |) has a strong wave
behavior. The scattered power maximums of all curves are in the
frequency range about 44–52 GHz. Curves 1 and 4 practically coincide
with each other. The lowest scattered power is for curve 3 at the
frequencies about 1–35 GHz, and the scattered power minimum exists
for curve 2 approximately at frequency 80 GHz.

Fig. 3 presents the absorbed microwave power W a
1 by the coated

glass layer. The behavior of the microwave power absorption strongly
depends on the permittivity and permeability signs s1, s2, s3, s4.
The absorption is especially different at the higher frequencies. The
absorption power of the glass layer is larger at higher frequencies.

The absorbed power W a
1 is the lowest when the metamaterial

permittivity has some positive values of real part, and the permeability
has some negative value (curve 2). The behavior of W a

1 (|f |) is
especially different for the third case when s1 = s2 = −1, s3 = s4 = +1
(Fig. 3). The absorption by the coated glass layer is the largest, when
the SN metamaterial permittivity has some negative values, and the
permeability has some positive ones (curve 3). In Fig. 3 curves 1 and
4 practically coincide.

Fig. 4 gives the absorbed power by the metamaterial core of
the cylinder. We see that the W a

2 magnitudes have the pronounced
wave-like nature dependent on the frequency. The metamaterial core
absorption is the largest when the metamaterial permittivity has
some negative values, and the permeability has some positive values
(curve 3).

The diffraction dependence of the layered metamaterial-glass
waveguide when the incident microwave has a parallel polarization
~Ein

0 ||~nz is shown in Figs. 5–7. Fig. 5 presents the scattered power
dependence on the frequency.

The scattered power dependence of the incident perpendicularly
polarized wave (Fig. 2) and incident parallel polarized microwave
(Fig. 5) are different. The scattered microwave power curves for
the incident parallel polarized microwave have two maximums in the
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Figure 4. Dependencies of
absorbed by metamaterial core
power on the frequency of in-
cident perpendicularly polarized
microwave.

Figure 5. Scattered power de-
pendencies on the frequency of
incident parallel polarized mi-
crowave.

Figure 6. Dependencies of
absorbed by coated glass layer
power on the frequency of incident
parallel polarized microwave.

Figure 7. Dependencies of
absorbed by metamaterial core
power on the frequency of incident
parallel polarized microwave.

frequency range 1–120 GHz. While the scattered power curves for the
incident perpendicularly polarized microwave have only one maximum
in the same frequency range (Fig. 2).

The first and second maximums of W s in Fig. 5 are approximately
in frequency intervals 10–20GHz and 85–100 GHz. The largest
scattering is at the lower frequencies. The maximum scattering is
higher for the incident parallel polarized microwave in comparison
with the incident perpendicularly polarized one. Fig. 6 presents the
absorbed power by the coated glass layer for the incident parallel
polarized microwave.

There are some small distortion “hooks” of the absorbed power at
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the low frequencies. The absorbed power by glass layer increases with
increasing frequencies (curves 1, 3, 4) for frequencies that are larger
than 20 GHz. The absorbed power W a

1 (|f |) is approximately constant
when the SN metamaterial core permittivity and permeability have
signs s1 = s2 = +1, s3 = s4 = −1.

Fig. 7 gives the metamaterial core absorbed power W a
2 for the

incident parallel polarized microwave. We see that the absorbed-
powers have the maximum values at about 5 GHz, and their values
vary slightly after 20 GHz with increasing frequency. The absorption
by the metamaterial is the largest at low frequencies (curves 1 and 2)
when the metamaterial has the positive permittivity. The comparison
of absorbed powers in Figs. 4 and 7 shows that dependencies are
absolutely different.

We see that curves 1 and 4 in Figs. 2–7 are located very
close to each other. The signs of the permittivity and permeability
corresponding to these curves are opposite. Since the permittivity and
permeability are located in unequal terms of boundary conditions (for
example, see Equations (24), (25)). For this reason, the coincidence of
curves 1 and 4 at some frequencies is not mandatory.

One of our numerical research goals was comparing diffraction
characteristics when the cylinder core has the permittivity and
permeability as some DN, SN or DP materials. We see that at some
frequencies the characteristics can be different.

5. CONCLUSIONS

• We present here the simple effective algorithm that let us analyze
diffraction characteristics of the multilayered cylinder of different
strongly lossy or lossless isotropic materials. The number and size
of cylinder layers are not limited.

• We presents here numerical calculations of the scattered power,
absorbed powers by coated acrylic-glass layer and by the
metamaterial core, their dependencies on wave polarization, on
the signs of metamaterial complex permittivity and permeability
components (Figs. 2–7).

• We found that the scattered power’s dependence has wave
behaviors. The minimal scattering from the metamaterial-glass
cylinder is observed for the every metamaterial with some sign
combinations of the permittivity and permeability at the special
frequency range (Figs. 2 and 5).

• We found that the largest absorbed power by the coated acrylic-
glass layer is observed for the case when the metamaterial is a
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single negative material with the negative permittivity. The ab-
sorbed power of the glass layer increases with increasing frequency
in the range 1–120GHz for both microwave polarizations (Figs. 3
and 6).

• The metamaterial core absorbed power of the parallel polarized
incident microwave has the minimum value at low frequencies
and slightly dependent on the frequency at the range 20–120 GHz
(Fig. 7).
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