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Abstract—In order to enhance the accuracy of the complex
permittivity data employed in Ground Penetrating Radar (GPR)
techniques, an adaptive cavity setup is presented. The use of moveable
walls permits to relax the mechanical constraints on the sample
dimensions so that it can be employed also in complicate measurement
condition as, for example, in the case of wet samples. Moreover,
exploiting the cavity resonance phenomenon, low loss materials, such
as some type of marbles, can be accurately evaluated. The numerical
characterization, the parametric analyses and the L-band measurement
results show the validity and the reliability of this configuration.

1. INTRODUCTION

Among the geophysical methods employed at microwave frequencies,
the ground penetrating radar (GPR) technique represents an
interesting and cheap approach for a not invasive analysis of
a variety of media including rock, soil, ice and water [1, 2].
Engineering applications of the GPR include non destructive testing of
structures and pavements, locating buried structures and analyzing the
preservation state of historical buildings. The analysis and processing
of GPR data require an accurate estimation of the complex dielectric
permittivity of the material under test (MUT) over a broad frequency
range (typically GPR frequencies range from 0.5 GHz to 2.5 GHz). The
use, for this purpose, of an open ended coaxial probe presents various
advantages in terms of simplicity and flexibility of the measurement.
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However, this system presents several drawbacks in the case of solid
materials with low losses, such as some kind of marbles [3–10]. The
measurement is indeed sensitive to the MUT surface roughness and the
presence of local defects, such as voids or grains, has a strong influence
on the measurement accuracy.

To enhance the accuracy of this setup in sub-bands of the GPR
frequency span, in this work we propose a characterization obtained
by measurements of the transmission coefficient S21 under resonance
conditions [11, 12] and [13]. We will focus on the L-band, i.e., 1–
2 GHz. However, a similar system can be employed in the other sub-
bands. A first waveguide setup was described in a previous paper,
where a cavity was constructed by means of two rectangular irises
in a standard WR650 waveguide [14]. The MUT was placed in the
cavity and was supposed to fill completely the cross section. This
setup permits to obtain good levels of accuracy but is limited by
very stringent requirements on the MUT dimensions. Although the
standard sample manufacture procedure can indeed guarantee the
required brick-shape, i.e., planar parallel surface, the usual tolerances
on the dimensions are larger than 2 millimeters. The insertion and
extraction of the samples are therefore quite problematic and require
particular care and long time. This fact is a clear drawback when wet
samples are analyzed. On the other hand, smaller samples produce air
gaps which can lead to more complicate electromagnetic phenomena
such as multiple peaks in the transmission coefficient curve. All these
drawbacks have been overcome by means of a new measurement setup
based on an adaptive cavity whose preliminary theoretical study was
presented in [15]. The numerical characterization and the experimental
validation of the setup and of the measurement technique are presented
in the following section.

2. MEASUREMENT SETUP

2.1. Description

The main idea of this new setup is to employ a waveguide whose cross
section fits that of the MUT. In this way, the constraints on the MUT
dimensions are relaxed. This goal is obtained by means of a rectangular
waveguide with two moveable walls (see Figure 1). One is the top
wall which can be completely removed in order to place accurately the
sample. The other is a sliding lateral wall, which runs along rails. The
sample is inserted in the waveguide from the top and then is pressed by
the sliding wall in order to fix its position (see Figures 2 and 3). In this
way, the actual position of the MUT is well controlled and the coaxial
cables of the network analyzer are not moved during the insertion of
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Figure 1. Schematic representation of the insertion and locking of the
MUT in the cavity.

Figure 2. Picture of the open
adaptive cavity with the sample
inside. The top wall has been
removed.

Figure 3. Picture of the closed
measurement setup.

the samples to guarantee the stability of the calibrated setup. Note
that the air gap along the broad waveguide wall (that is perpendicular
to the electric field) is completely removed in this configuration. Even
a small air gap in this direction has indeed a strong influence on the
frequency response of the cavity. This statement is confirmed by the
plots shown in Figure 4, where the S21 curve as a function of frequency
is reported in the case of an air gap equal to zero and 2 mm. The effects
of the gap parallel to the electric field, still present in this configuration,
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are less significant and are discussed in the Section 3.

1.5 1.55 1.6 1.65 1.7
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency [GHz]

M
a
g
n
it
u
d
e
 [
d
B

]

 

 

gap=0 mm

gap= 2mm

Figure 4. Influence on the transmission curve of an air gap
perpendicular to the electric field. Note the appearance of multiple
peaks with a gap of only 2mm. The sample has εr = 8.5, ρ = 0.9 kΩm
and length Ls = 70 mm.

The overall cavity is composed by this adaptive waveguide and two
rectangular irises. Their position with respect the sample is shown in
Figures 6. The setup has been designed for samples with width w in
the range [64, 93]mm and height c lower than 165.1mm, i.e., the width
of the WR650 waveguide. Note that the value of w fixes the narrow
side of the rectangular waveguide. The cavity length is L = 156mm
and the rectangular apertures of the 1 mm-thick irises (wi = 63 mm,
hi = 33.09mm) have been chosen so that the resonance frequency of
the unloaded cavity is equal to 1.3GHz.

2.2. Numerical Characterization of the Setup

The electromagnetic model of the setup can be constructed by means
of the generalized scattering matrices (GSM) of the single blocks. The
TE10 mode incident on the rectangular aperture of the 1 mm-thick
irises (hi = 63.1mm, wi = 33.09 mm) excites the modes TEm,n and
TMm,n with odd m. Moreover, the partially filled waveguide (PFW)
couples the modes of the rectangular waveguide, therefore a complete
multimode description of the irises is necessary. The relevant GSM has
been obtained by the coupled integral equation technique (CIET) [16].
The metal losses are introduced in the model by means of an equivalent
metal resistivity equal to 0.1µΩm. This value has been determined
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Figure 5. Magnitude of S22 direct and cross terms of the rectangular
aperture iris for the case of hi = 63.1mm (top figure) and hi = 82.5mm
(bottom figure).

experimentally by measuring the unloaded cavity and is much greater
than the usual copper bulk resistivity (0.017 µΩm), since it takes into
account also the roughness of the metallic surfaces. As an example,
Figure 5 shows the magnitude, in dB, of the S22 matrix direct and cross
terms for the first waveguide modes for the cases of hi = 63.1mm and
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Figure 6. Sketch of the adaptive cavity. The analysis is carried out
by looking at the z axis.

hi = 82.5mm.
Under the assumption of homogenous, perfect brick and isotropic

MUT, the waveguide cross section is filled only partially, leaving an
air gap parallel to the electric field, as it can be observed in Figure 1.
Let a and c be the broad side of the waveguide and the MUT height,
respectively. The GSM of the cavity can be computed by means of
the Mode-Matching technique, which requires the knowledge of the
modal spectrum of the PFW [17, 18]. The modes of this structure can
be computed by applying the resonance condition at the air-dielectric
interface, but this procedure leads to a complex transcendental
equation whose solution is not straightforward. Although complex
function theory can be used to simplify this task [19, 20], we opted for
a more automatic and rapidly convergent numerical technique which
we describe in detail. With reference to the geometry of Figure 6,
it can be shown that the z-dependance of the TEz and TMz mode
functions of the loaded waveguide can be derived from the solution of
the following boundary-value problem:





d2

dz2
VTE +

(
k2

0εe,d −
(nπ

w

)2
)

VTE = β2
TEVTE

V (0) = V (a) = 0

V (c−) = V (c+)

(1)
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

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d2

dz2
ITM +

(
k2

0εe,d −
(nπ

w

)2
)

ITM = β2
TMVTM

I(c−) = I(c+)

dI

dz
(z = 0) =

dI

dz
(z = a) = 0

(2)

In (1) and (2), n is the modal index pertaining to the y direction,
β is the modal propagation constant and εe,d are the dielectric
permittivities of the air and the MUT, respectively. Moreover, V
is proportional to Ey and I to Hy. As usual, the mode functions
are determined by neglecting the limited wall conductivity, which is
accounted for perturbatively in the propagation constant. In any
case, the losses due to the dielectric are much higher than those due
to the metallic walls. Let us consider in detail the TE case. The
differential eigenvalue problem (1) is solved by a spectral method based
on orthogonal polynomials, [21, 22]. The eigenfunctions Ve,d(z) are C∞

everywhere apart from the interface, where they are only C1 (C0 in
the TM case). For this reason, if a single-domain method is applied,
a very large number of polynomials is required in order to obtain a
good approximation of the solution. However, it is well-known that
exponential convergence rate of spectral methods can be reestablished
by applying an appropriate domain decomposition. For the structure
under analysis, it is sufficient to define two separate sets of Legendre
polynomials in the air gap and in the dielectric region. If Ne and Nd

are the number of polynomials used in the two subregions, the modal
voltages are written as:

Ve(z) =
Ne∑

n=0

enPn(ξe)

Vd(z) =
Ne∑

n=0

dnPn(ξe)

where ξe,d(z) are linear functions which map the two domains 0 ≤ z ≤ c
and c ≤ z ≤ a onto [−1, 1]. The second derivative term in (1) can be
written as:

d2

dz2
Ve(z) =

2
c

Ne−2∑

k=0

fkPk(ξe)

d2

dz2
Vd(z) =

2
a− c

Nd−2∑

k=0

gkPk(ξd)
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where

fk =
(

k +
1
2

) Ne∑

m=k+2,k+4

(k + m + 1)(m− k)em

gk =
(

k +
1
2

) Nd∑

m=k+2,k+4

(k + m + 1)(m− k)dm

By substituting the previous relations into (1) and by projecting onto
the two sets of polynomials (Galerkin procedure) one obtains the
following equivalent algebraic eigenvalue problem:

A x = β2x (3)

where x = [e0 e1 . . . eNe−2 d0 d1 . . . dNd−2]T . It has to be noted
that the unknowns [eNe−1 eNe dNd−1 dNd

] can be computed as a linear
combination of the x elements because of the boundary conditions.
The code is very fast since the matrix elements are known analytically,
of course. It has been numerically proved that the optimum ratio
between the number Ne and Nd of polynomials, to be used in the two
subregions, is

Ne

Nd
≈ c

(a− c)
√

εrd
(4)

As a rule of thumb, only half of the computed eigenvalues proved to
be a good estimate of the desired propagation constants. Usually 40
polynomials guarantee a very accurate computation of the field in the
PFW. At this stage of the numerical characterization of the setup, the
scattering matrix of the dielectric block can be obtained by solving a
junction-problem between the empty waveguide and the PFW.

2.3. Parametric Analysis

The simulation model has been used to analyze the effect of the air gap
parallel to the E-field. Figure 7 shows the plots of the transmission
coefficient versus the frequency for various values of the air gap. The
sample data are: permittivity εr = 8.5, resistivity ρ = 0.9 kΩm, width
w = 79.9 mm and length Ls = 70.2mm. The height changes so that
the air gap thickness varies between 0 and 35 mm. It can be noticed
that the resonance frequency has a weak dependence on the air gap
thickness for values lower than 40 mm. Nevertheless, its effect is taken
into account in the parameters extraction procedure.

Figure 8 shows the iso-level curves of the resonance frequency
and of the maximum transmission coefficient in the (εr, ρ) plane. The
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curves refer to an air gap of 30 mm and a sample with w = 82.55mm
and length Ls = 50 mm. The figure shows that the mapping Π:
(εr, ρ) 7→ (fr, |S21|max) is invertible since the two families of curves are
almost orthogonal. Moreover, as it could be expected, the resonance
frequency depends essentially on the permittivity εr whereas the peak
transmission |S21|max depends primarily on the resistivity ρ. This fact
was discussed in [14] only for c = a. In the extraction procedure,
the determination of the pair (εr, ρ) is carried out by a least square
optimization technique based on the minimization of the difference
between the measured |S(m)

21 | and computed |S(c)
21 | amplitude of the

transmission coefficient. In particular, the objective function to be
minimized is defined as

F (εr, ρ) =
∑

f∈B

||S(c)
21 (f)| − |S(m)

21 (f)||2 (5)

where B is a set of frequency points in the measurement band.
According to the previous discussion it can be shown that the objective
function F (εr, ρ) does not have local minima, therefore this extraction
procedure is fast and reliable.
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Figure 7. Computed transmission coefficient curves for various sizes
of the air gap parallel to the electric field. The fixed sample dimensions
are w = 79.9mm and Ls = 70.2 mm, while the permittivity is εr = 8.5
and the resistivity ρ = 0.9 kΩm.
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Figure 8. Iso-level curves of the resonance frequency and peak
transmission coefficient as a function of the permittivity εr and
resistivity ρ. An air gap of 30 mm is assumed. The MUT dimensions
are w = 82.5mm and Ls = 50mm.
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Figure 9. Comparison between measured and computed transmission
coefficient for a Carrara marble sample of dimensions w = 79.9mm,
c = 120.6 mm and Ls = 70.2mm.
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Figure 10. Comparison between measured and computed
transmission coefficient for the same sample of Figure 9, rotated so that
its dimensions are w = 70.2mm, c = 120.6 mm and Ls = 79.9mm.
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Figure 11. Comparison between measured and computed
transmission coefficient for another Carrara marble sample whose
dimensions are w = 79.9 mm, c = 70 mm and Ls = 73mm.
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3. MEASUREMENT RESULTS

Figure 9 shows a comparison between the measured and computed
transmission coefficients for a Carrara marble sample. The dimensions
are w = 79.9mm, c = 120.6mm and Ls = 70.2mm. The computed
curve has been obtained with estimated permittivity εr = 8.52 and
resistivity ρ = 0.84 kΩm. It is important to point out that a very
good agreement has been achieved both close to the resonance and in
the entire measurement band. It means that the complex permittivity
of the MUT does not change significantly in the considered frequency
band. In Figure 10, the same comparison is shown for the same sample
but with a different orientation (90-deg rotation around the z axis,
i.e., w = 70.2mm and Ls = 79.9mm). In this case the extracted
parameters are: εr = 8.45 and ρ = 0.91 kΩm. The small differences
can be related to the not perfect homogeneity of the sample. This
assumption is confirmed by the data shown in Figure 11, which refer
to another Carrara marble sample cut from the same block. The MUT
dimensions are: w = 79.9mm, c = 70 mm and Ls = 73.3mm. In this
case the extracted parameters are: εr = 8.50 and ρ = 0.91 kΩm. The
presence of spurious peaks and the double resonances in the curves are
related to the multimode propagation condition in the partially filled
waveguide with the MUT. An extensive measurement campaign has
shown the reliability and repeatability of the measurements and has
permitted to estimate the uncertainty associated with the permittivity
εr and resistivity ρ. The accuracy of these parameters is of the order
of 1% for εr and 7% for ρ. The relevant measurements with an open
ended coaxial probe show a dispersion of the order of 30% [23] and are
quite sensitive to the pressure of the probe on the surface. Then the
adaptive cavity setup presented in this work can be considered as a
reliable reference.

4. CONCLUSIONS

A measurement setup based on an adaptive cavity has been presented.
This setup has been designed to validate, in the L-band, the accuracy
of broad band measurements of the dielectric properties of low loss
rock material. The main advantage of the proposed configuration is
that the waveguide walls can be moved to fit the sample dimension.
In this way the problems related to the manufacture tolerances of
the sample dimensions have been overcome. Similar setups can be
built to cover other frequency bands. Future work will concern the
generalization of the electromagnetic model for the measurements of
anisotropic samples. The presented setup has been recently employed
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for the electromagnetic characterization of other materials such as
metallurgic powders and liquids. In this case, a suitable dielectric
container has been employed and the relevant homogeneous dielectric
layers have been considered in the electromagnetic model. Thanks to
the flexibility of the adaptive cavity, the container dimensions can be
properly designed in order to enhance the measurement sensitivity.
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