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Abstract—In this paper, we apply the parallel method of moments
(MOM) to solve the Electric and Magnetic Current Combined Field
Integral Equation (JMCFIE) for scattering by large, three-dimensional
(3-D), arbitrarily shaped, homogeneous dielectric objects. We first
derive the JMCFIE formulation which produces well-conditioned
matrix equation when the MOM with Galerkin’s type testing and Rao-
Wilton-Glisson (RWG) functions is applied. We then develop a parallel
conjugate gradient (CG) method on personal computer (PC) clusters
using message passing interface (MPI) for solving the matrix equation
obtained with JMCFIE. The matrix is decomposed by the row and
stored in distributed memory of the node. Several numerical results are
presented to demonstrate the accuracy and capability of the proposed
method.

1. INTRODUCTION

The electromagnetic scattering of arbitrarily shaped 3-D homogeneous
dielectric objects has been extensively studied because of its
importance in the area of wireless communication and radar.
Analytical solutions are available for only very limited geometries such
as a sphere and a spheroid. For dielectric objects having an arbitrary
shape, one has to resort to some approximate numerical techniques.
The surface integral equation (SIE) approach is often preferred because
it limits the discretization of the unknown quantity to the surface of
the object. In order to formulate the surface integral equation, several
ways have been proposed, including the PMCHW formulation [1],
the TENENH formulation [2] and the JMCFIE formulation [3–5] and
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so on. In this paper, we will describe the JMCFIE formulation
in detail, which is a combination of two CFIEs [6], denoted by
JCFIE (CFIE for the electric surface current J) and MCFIE (CFIE
for the magnetic surface current M). This formulation leads to a
better conditioned matrix equation than the TENENH formulation
and PMCHW formulation [7] and hence, gives more rapidly converging
iterative solutions when the matrix equation is solved with the CG
method [8]. However, the matrix equation obtained with JMCFIE is
solved by CG method requiring O

(
N2

)
memory space and O

(
N2

)
operations for the matrix-vector multiplications in each iteration,
where N is the number of unknowns. This significantly limits the size
of the object to be handled. One solution to this problem is to employ
fast numerical algorithms to reduce the memory requirement and
computational complexity of the matrix equation solution. The Fast
Multipole Method (FMM) [9] can reduce the memory requirement and
computational complexity to O

(
N1.5

)
. The memory requirement and

computational complexity can be further reduced to O (N1ogN) using
the multilevel fast multipole algorithm (MLFMA) [10, 11]. Contrary
to these fast numerical algorithms, the parallel MOM based on MPI
of PC clusters is investigated to solve electromagnetic scattering from
3-D electrically large dielectric objects in this paper. Compared with
the fast multipole algorithm the parallel MOM [12–15] based on PC
clusters has its merits such as easier programming, smaller investment,
more flexible architecture and so on.

This paper is organized as follows. The MOM solution of JMCFIE
for scattering by 3-D homogeneous dielectric objects is described in
detail. According to the properties of MPI, the CG method for
solving the matrix equation obtained with JMCFIE is parallelized.
The numerical results for the radar cross section (RCS) of a sphere
and a Cone-Column are presented to demonstrate the accuracy and
capability of the proposed method.

2. JMCFIE FORMULATION AND ITS
DISCRETIZATION

Consider the problem of electromagnetic scattering by an arbitrarily
shaped and homogeneous body D characterized by a permittivity
ε2 and a permeability µ2 which is surrounded by an infinite and
homogeneous medium having permittivity ε1 and permeability µ1.
Introducing equivalent electric and magnetic currents JS and MS on
the surface of D which are related to the surface fields by JS = n̂1×H
and MS = E× n̂1, respectively, as shown in Fig. 1. Where n̂1 denotes
the outer unit normal of D. Applying the equivalence principle to the
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exterior fields [2], we obtain
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Figure 1. Surface equivalence theorem.

The electric field integral equation (EFIE) and magnetic field
integral equation (MFIE) outside D

EFIE (1)
∣∣Z1L1 (JS)−K1 (MS) = −Einc

∣∣
tan

(1)

MFIE (1)
∣∣L1 (MS) + Z1K1 (JS) = −Z1Hinc

∣∣
tan

(2)

where Z1 =
√

µ1/ε1,
(
Einc,Hinc

)
denote the incident fields, and the

operators L1 and K1 are defined as

L1(X) = −jk1

∫

s

[
X

(
r′

)
+

1
k2

1

∇ (∇′ ·X (
r′

))]
G1

(
r, r′

)
dS′ (3)

K1(X) = −0.5X (r)× n̂1 + P · V ·
∫

s
∇G1

(
r, r′

)×X
(
r′

)
dS′ (4)

where S denotes the surface D, P · V · is used to denote the principal
value, G1 (r, r′) = e−jk1R

/
(4πR), with R = |r− r′|, k1 = ω

√
ε1µ1.

By applying the equivalence principle to the inner fields, the
corresponding EFIE and MFIE inside D can be written in the following
equations

EFIE (2) |Z2L2 (Js)−K2 (Ms) = 0|tan (5)
MFIE (2) |L2 (Ms) + Z2K2 (Js) = 0|tan (6)

where Z2 =
√

µ2/ε2 and the operators L2 and K2 are defined similarly
to L1 and K1, provided that all the subscripts are changed from “1”
to “2”.

The idea of JMCFIE is to consider two CFIEs, called here as
an electric current CFIE (JCFIE), and a magnetic current CFIE
(MCFIE). These equations can be written as

JCFIE (l) αEFIE (l) + βZ1n̂l ×MFIE (l) (7)
MCFIE (l) αZ1MFIE (l)− βn̂l × EFIE (l) (8)
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where α and β are the coupling coefficients of the equations, 0 < α < 1
and β = 1 − α, l = 1 stands for outside D and l = 2 stands for
inside D. The JMCFIE formulation is obtained by combining these
equations in a similar fashion as the EFIEs and MFIEs are combined
in the PMCHW formulation, as follows

JCFIE (1) + JCFIE (2) (9)
MCFIE (1) + MCFIE (2) (10)

For numerical solutions, JMCFIE is discretized with the RWG
functions using a Galerkin scheme. Discretization of JMCFIE leads to
2N × 2N dense matrix equation in the form of[

[Z11]N×N [Z12]N×N
[Z21]N×N [Z22]N×N

]{
J
M

}
=

{
b1

b2

}
(11)

where N denotes the total number of edges on S, J and M are
vectors of N elements involving the coefficients of the electric and
magnetic currents, respectively. It should be pointed out that all
the coefficients of the magnetic currents are divided by Z1 in order
to improve the conditioning of the discretized matrix equation The
matrix and excitation vector elements are given by [16]

[Z11] = α
(
Z1P

TE
1 + Z2P

TE
2

)
+ β

(
Z1Q

NE
1 + Z1Q

NE
2

)
(12)

[Z12] = α
(−Z1Q

TE
1 − Z1Q

TE
2

)
+ β

(
Z2

1

Z1
PNE

1 +
Z2

1

Z2
PNE

2

)
(13)

[Z21] = α
(
Z1Q

TE
1 + Z1Q

TE
2

)
+ β

(−Z1P
NE
1 − Z2P

NE
2

)
(14)

[Z22] = α

(
Z2

1

Z1
P TE

1 +
Z2

1

Z2
P TE

2

)
+ β

(
Z1Q

NE
1 + Z1Q

NE
2

)
(15)

b1i = α

[
−

∫∫

S
gi ·EincdS

]
− β

[
−Z1

∫∫

S
n̂1 × gi ·HincdS

]
(16)

b2i = α

[
−Z1

∫∫

S
gi ·HincdS

]
+ β

[
−

∫∫

S
n̂1 × gi ·EincdS

]
(17)

where

P TE
lij =

∫∫

S
gi · Ll (gj) dS (18)

QTE
lij =

∫∫

S
gi ·Kl (gj) dS (19)

PNE
lij = −

∫∫

S
n̂l × gi · Ll (gj) dS (20)

QNE
lij = −

∫∫

S
n̂l × gi ·Kl (gj) dS (21)

where gi and gj denotes the RWG [17] vector basis functions.
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3. CONJUGATE GRADIENT METHOD AND ITS
PARALLELIZATION

In this paper, we apply the CG method to solve the matrix equation
obtained with JMCFIE. In order to handle large problems, we
parallelize the CG method on PC Clusters using MPI [18]. The main
Clusters configuration is as follows: 1) System composed of: 8 PCs;
2) For each PC CPU: Intel Pentium4, 2.4 GHz; Memory: 1 GB; 3)
Switch: TP-Link TL-R402M 1000M; 4) Operating system: Windows
XP; 5) Programming environment: Visual Fortran 6.5.

We first present a CG algorithm [19] for solving Equation (11), as
follows:

Given an initial guess J (1) and M (1), we have

rJ (1) = b1 − (Z11 · J (1) + Z12 ·M (1))
rM (1) = b2 − (Z21 · J (1) + Z22 ·M (1))

pJ (1) = ZH
11 · rJ (1) + ZH

21 · rM (1)

pM (1) = ZH
12 · rJ (1) + ZH

22 · rM (1)

Iterate for i = 1, 2, . . . until convergence

α (i) = [〈rJ (i) , rJ (i)〉+ 〈rM (i) , rM (i)〉]/
[〈pJ (i) , pJ (i)〉+ 〈pM (i) , pM (i)〉]

J (i + 1) = J (i) + α (i) · pJ (i)
M (i + 1) = M (i) + α (i) · pM (i)
rJ (i + 1) = rJ (i)− α (i) · (Z11 · pJ (i) + Z12 · pM (i))
rM (i + 1) = rM (i)− α (i) · (Z21 · pJ (i) + Z22 · pM (i))

β (i) = [〈rJ (i + 1) , rJ (i + 1)〉+ 〈rM (i + 1) , rM (i + 1)〉]/
[〈pJ (i + 1) , pJ (i + 1)〉+ 〈pM (i + 1) , pM (i + 1)〉]

pJ (i + 1) = ZH
11 · rJ (i + 1) + ZH

21 · rM (i + 1) + β (i) · pJ (i)

pM (i + 1) = ZH
12 · rJ (i + 1) + ZH

22 · rM (i + 1) + β (i) · pM (i)

Terminate when√
〈rJ (i + 1) , rJ (i + 1)〉+ 〈rM (i + 1) , rM (i + 1)〉

〈b1, b1〉+ 〈b2, b2〉 < ε

where, the rJ and rM are residual vectors, the pJ and pM are
search vectors, 〈, 〉 stand for the inner space product for two vectors

x = [x1, x2, . . . , xn], y = [y1, y2, . . . , yn], 〈x,y〉 =
n∑

i=1
xiy

∗
i , superscript

“H” denotes transpose conjugate, superscript “∗” denotes conjugate
ε = 0.001 is the residual.
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In the implementation of the CG method presented above,
one iteration contains eight complex matrix vector products. So
the distribution of matrix and solving are the keys of the parallel
computation. In this paper, the impedance matrix is decomposed by
the row and stored in distributed memory of the nodes. Here, we take
the 4 × 4 matrix shown in Fig. 2(a) and Fig. 2(b) as an example to
demonstrate the procedure of the parallelized method to calculate the
product of the matrix and the vector [12]. The first subscript of the
matrix’s and vector’s elements denotes the number of the processes
where the elements are stored. In Fig. 2(a), the subscript “(0-3)”
correspond to the process j.

The product of the matrix and the vector:
Process 0:

∑4
i=1 a0i × xoi = b0

Process j:
∑4

i=1 aji × xji = bj (j = 1, 2, 3), then send bj to
process 0, the final product y = [b0, b1, b2, b3]

The product of the transpose conjugate matrix and the vector:
Process 0: b0i = a∗0ix01 (i = 1, 2, 3, 4), enables to obtain the vector

[b01, b02, b03, b04]
Process j: bji = a∗jixj(j+1) (i = 1, 2, 3, 4), enables to obtain

the vector [bj1, bj2, bj3, bj4] (j = 1, 2, 3), then send the vector to
process 0, the final product y = [y1, y2, y3, y4], where ym =∑3

k=0 bkm (m = 1, 2, 3, 4).

01 02 03 04

11 12 13 14

21 22 23 24

31 32 33 34

a a a a

a a a a

a a a a

a a a a

23

0101 11 21 31

1202 12 22 32

03 13 23 33

3404 14 24 34

xa a a a

xa a a a

xa a a a

xa a a a

∗ ∗ ∗ ∗

           (a) (b) 

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

(0-3)3

(0-3)1

(0-3)2

(0-3)4

x

x

x

x

Figure 2. (a) The product of the matrix and the vector. (b) The
product of the transpose conjugate matrix and the vector.

4. NUMERICAL RESULTS AND DISCUSSIONS

The parallel MOM (PMOM) described above is implemented for the
solution of the JMCFIE formulation. In all considered cases the
coupling coefficient is α = 0.5. Firstly, we consider the problem
of plane-wave scattering by a dielectric sphere. The sphere has a
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diameter of 2λ0 and a relative permittivity εr = 4.0, where λ0 is the
free space wavelength. The surface is discretized with about λ0/15
mesh size. The number of triangles and unknowns are 3788 and 11364,
respectively. Fig. 3 shows the bistatic radar cross section (RCS) of
the sphere, obtained using the JMCFIE formulation and the exact
Mie series. The two results are in good agreement. Fig. 4 displays
the residual norm versus the number of iterations from which we
see clearly that JMCFIE formulation gives more rapidly converging
iterative solutions than PMCHW and TENENH.

Figure 3. Bistatic RCS of a dielectric sphere in the E plane.

Figure 4. The normalized residual norm versus the number of
iterations.
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Figure 5. Bistatic RCS of a large dielectric sphere.

Table 1. The comparison of computing time for a same surface
realization on different numbers of the processors.

number of

the processors
filling times/s solving times/s total times/s speedup

1 processors 2173 675 2848 1.0

2 processors 1152 363 1515 1.87

4 processors 576 183 759 3.75

8 processors 294 89 383 7.43

The comparison of computing time for the above problem on
different numbers of the processes are presented in Table 1. From the
table, it is easily found that the acceleration ratio is almost in direct
proportion to the numbers of processes involved on the computing
parallel system. This indicates that the proposed method can solve
the problem of scattering by 3-D electrically large dielectric objects.

Then, we use the parallel MOM to calculate the RCS of a relatively
large dielectric sphere, which has a diameter of 6λ0 and a relative
permittivity εr = 4.0. Discretization of the surface with about
λ0/12 mesh size leads to a matrix equation with 125922 unknowns
The numerical result is complemented with 8 processes and the
computation time is 8426 s. Fig. 5 depicts the bistatic RCS as a
function of the observation angle in the E plane. We observe that
the computational result is in agreement with the analytical result
obtained by a Mie-series solution.
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Figure 6. Geometry for Cone-Column object.

Figure 7. Bistatic RCS of Cone-Column dielectric object.

Finally, we consider the electromagnetic scattering from a Cone-
Column dielectric object as shown in Fig. 6, where d1 = 2λ0, d2 = 1λ0,
h1 = 5λ0, h2 = 2λ0, the relative permittivity εr = 2.0, the total
of unknowns is 52176. The object is illuminated by a plane wave
propagating in the −x direction with the electric field polarized in the y
direction. Fig. 7 shows the bistatic RCS in xoy plane based on PMOM.
The calculated result of MLFMA is also given for comparison. The two
results agree well to each other. Where, the parallel MOM program is
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performed on PC clusters with 8 processes, the computation times is
3942 s. The MLFMA code is performed on an IBM server xSeries 366,
Xeon MP 3.66GHz, 16GB memory, the computation times is 4136 s.

5. CONCLUSION

In this paper, we derive the JMCFIE formulation for scattering by
3-D homogeneous dielectric objects using the RWG functions as both
the expansion and testing functions. The numerical results suggest
that the JMCFIE formulation leads to a better conditioned matrix
equation than the traditional CFIE and PMCHW formulations. In
order to calculate electrically large dielectric objects, we build a PC
cluster and develop a parallel MOM program based on MPI. The
numerical results indicated that the proposed method is a powerful
and efficient scheme for solving scattering from 3-D electrically large
dielectric objects. It should be pointed out that the parallel MOM
is a sufficiently straightforward way to solve relatively large scattering
problems. Our future work is to parallelize the multilevel fast multipole
algorithm in order to handle very large problems.
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