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Abstract—The problem of imaging three-dimensional strong scatter-
ers by means of a two-dimensional sliced tomographic reconstruction
algorithm is dealt with. In particular, the focus of the paper is on the
experimental validation of the involved inversion algorithm thanks to
measurements collected in a controlled environment. A simple strategy
exploiting reconstructions obtained at different time instants in order
to detect slowly moving scatterers is also experimentally validated.

1. INTRODUCTION

Microwave imaging is a research field which finds application in many
contexts such as radar and ground penetrating radar imaging [1], non-
destructive testing or evaluation of materials [2], medical imaging [3],
just to mention a few examples.

From a mathematical point of view the problem consists of
inverting the scattering equations for an object function which
describes the scatterers in terms of their dielectric and conductivity
properties and/or their spatial supports or shapes. In any case, it is
well known that the problem is nonlinear and ill-posed [4].

Many inversion methods are widespread in the literature that
tackle the problem trying to dominate the nonlinearity. They results
in iterative optimization inversion schemes which suffer from the false
solutions [5] and generally require a high computational cost. Also
stochastic optimization methods [6] are still time consuming when the
number of unknowns is high.

Inversion schemes based on approximated linear models allow
to drastically simplify the problem and to overcome the drawbacks
mentioned above but they work for a very limited class of scatterers [7].
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However, in many applications, the primary concern is to detect
and localize the scatterers. Within this framework, linear inversion
schemes are worth adopting as it has been shown that they work well
beyond the limits of the linear model upon which they are based [8].

In this contribution, we consider the case of strong scatterers.
Accordingly, the linear distributional approach founded on the
Kirchhoff approximation is adopted [8, 9]. However, even under linear
models dealing with three-dimensional (3D) geometry could require a
high computational cost. Therefore, here we exploit a slice method
where the scene is retrieved as an interpolation of two-dimensional
(2D) reconstructions.

It is well known that, as diffraction and scattering phenomena
at microwave frequencies are relevant, the sliced approach does not
permit to obtain quantitative reconstructions [10, 11]. However, it has
been also shown, by numerical examples, that it allows to localize and
to roughly retrieve the silhouette of elongated scatterers [12]. But
this is just the aim pointed out before. In particular, here we want
to find a further confirmation of the approach validity by employing
experimental data.

To this end, measurements are collected in a free-space controlled
environment at the Electromagnetic Diagnostics Laboratory of the
Second University of Naples.

Note that preliminary experimental results have been already
obtained in [13, 14]. However, they are concerned with two-dimensional
(single-slice) reconstructions.

A reflection-mode multi-bistatic/multifrequency configuration is
exploited and an anthropomorphic mannequin covered by aluminium
foils is used as a scatterer. Moreover, the possibility of taking
measurements over a limited set of spatial points is considered. This
is of particular interest because it affects time required to collect data,
particularly when scanning is achieved through a moving system, and
also impacts on the system complexity when a measurement array is
employed.

Finally, a simple procedure to track slowly moving scatterers,
presented in [15], based on the incoherent difference between two
different images of the same scene retrieved at different times, is also
validated for the 3D case.

The plan of the paper is the following. In Section 2, we describe
the geometry of the problem and briefly recall the inversion scheme.
In Section 3, we present the measurement set up and in Section 4 the
experimental reconstructions. Conclusions end the paper.
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2. MATHEMATICAL FORMULATION AND INVERSION
ALGORITHM

A pictorial view of the experimental set up, where three-dimensional
scatterers are embedded in free-space whose dielectric permittivity and
magnetic permeability are denoted as ε0 and µ0, respectively, is shown
in Fig. 1.

Scatterers are illuminated by an y-polarized source whose position
rS = (xS , yS , 0) changes within a planar measurement aperture Σ =
[XM min, XM max] × [YM min, YM max] at z = 0. The source radiates
in the frequency band ω ∈ [ωmin, ωmax] and the scattered field is
collected at positions standing at a fixed offset from the source,
rO = (xS + ∆x, yS , 0), while the source moves.

For imaging purposes, we assume that the scatterers reside within
an a priori known spatial region D = [XI min, XI max]× [YI min, YI max]×
[ZI min, ZI max], addressed as investigation domain.

Starting from scattered field measurements the 3D inverse
scattering problem is tackled by a 2D sliced inversion algorithm. That
is, the scattered field collected over each observation line at different
heights (i.e., at different y-coordinates) of the observation domain
Σ is exploited to obtain a 2D slice (i.e., in the x-z plane) of the
investigated scene in correspondence to the same height. More in
detail, we assume to collect only the y-component of the scattered field
and the slice reconstruction is treated as a two-dimensional and scalar
inverse problem. Hence, the 3D reconstruction is obtained by solving
a collection of 2D problems at different heights yi ∈ (y1, . . . , yM ).
Moreover, as we are interested in highly contrasted objects (i.e., objects
whose electromagnetic features are very different from those of the

Figure 1. Experimental set up pictorial view.
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free-space), we assume the limit-case of perfect electric conductors
to schematize them. Accordingly, the Kirchhoff approximation is
employed to linearize the inverse problem [9].

By assuming that the objects are some wavelengths far from the
measurement line (so that the asymptotic expression for the Green’s
functions applies [16]), the problem of reconstructing the 2D slices
amounts to solving the following integral equation

E(m)
s (xO, xS ; ω) = −jωµ0

4π

∫

Γill(ym)

exp {−jk [RO(`) + RS(`)]}√
RO(`)RS(`)

× [n̂(`) · r̂(`)] d`, (1)

where E
(m)
s indicates the scattered field at the height ym, k = ω

√
ε0µ0

is the wavenumber of the host medium, ` is the curvilinear abscissa
on the scatterer’s contour Γ(ym), RS (RO) is the distance between the
source (the receiving) point from the generic point [x(`), ym, z(`)] ∈
Γill(ym), Γill(ym) is the illuminated side of the object’s contour (at
the height ym), n̂ is the outward directed normal to the scatterers’
contours and r̂ is the unitary vector indicating the direction from the
source point towards the current contour’s point.

It is worth remarking that, in Eq. (1), we considered a two-
dimensional dipole as source [17]. Therefore, in the following
experiments the actual antennas plane-wave spectrum is not accounted
for.

We note that both the scalar product n̂ · r̂ and Γill depend on the
source position. However, by invoking stationary phase arguments,
and if the offset ∆x between the source and the observation is small
with respect to RO and RS , then the point of Γill(ym) that gives
significant contribution to the integral in (1) is the geometrical optics
(GO) reflection point. Accordingly, n̂ · r̂ ' −1. Moreover, we can
extend the integral to the union of the different Γill(ym) (corresponding
to different xS), let us call it Γ̃(ym). This way, neither the unknown
nor the mathematical relationship linking the unknown to the scattered
field depend on the source position [17] and the problem can now be
stated as the inversion of the following linear integral operator

E(m)
s (xO, xS ;ω) =

jωµ0

4π

∫

DT

exp [−jk (RO + RS)]√
RORS

×δΓ̃(ym)(x, z)dxdz, (2)

where the actual unknown of the problem is the single-layer
distribution δΓ̃(ym)(x, z) just supported over the curve Γ̃(ym) and DT

is the investigation domain cross section in the x-z plane, that is
DT = [XI min, XI max]× [ZI min, ZI max].
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The inversion of Eq. (2) is achieved first by means of a truncated
singular values decomposition (TSVD) schemes [18], that is

RδΓ̃(ym) =
NT∑

n=1

< E
(m)
s , vn >

σn
un, (3)

where {un, vn, σn}∞n=1 is the singular system of (2), NT is the
truncation index and RδΓ̃(ym) is the regularized reconstruction. Then
a thresholding procedure is exploited to curtail spurious artifacts and
noise nonsense as described in [12]. Note that the singular system can
be calculated once, because it does not depend on the height ym.

Once the two-dimensional slice reconstructions have been
obtained, the three-dimensional representation of the scatterer is
obtained by superimposing the two-dimensional reconstructions

RδΓ̃(x, y, z) =




RδΓ̃(y1)(x, z)
. . .

RδΓ̃(yM )(x, z)


 . (4)

Finally, an interpolation along y follows [12].

3. MEASUREMENT SYSTEM

The measurement set-up consists of a positioning system and of a
vectorial network analyzer (VNA) which are remotely controlled and
synchronized by a PC thanks to a customized LabView software.

Figure 2. Picture of the planar scanner placed in the anechoic
chamber.
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The positioning system is placed into a shielded anechoic chamber
(with internal dimensions of 2.4m in depth, 3.4m in length and
2.6m in height) and is made of two vertical towers which can move
independently over a horizontal linear positioner. As a multi-bistatic
configuration is of concern, here only a single vertical tower, where two
antennas are mounted at a fixed offset between each other, is used (see
Fig. 2). The antennas are two wide band ridged horns (Schwarzbeck
Mess-Elektronik), suitably aligned so that they scan the same plane
(see Fig. 2), working in the 0.8–5.2 GHz band.

The VNA is an Anritsu model MS4624D working in the band
[10MHz–9GHz]. The measured parameter is the transmission
coefficient S21 between the ports 1 and 2 of the VNA.

In order to make measurements suitable for the inversion
algorithm, first a standard “frequency transmission response”
calibration is performed at the end of the cable chain, that is at the
antenna input sections. Then, as the inversion algorithm exploits the
scattered field measurements, free-space measurements are needed so
that the scattered field is obtained by difference. This also allows to
mitigate the direct coupling between the antennas as long as it remains
the same over the two measurements.

4. RECONSTRUCTION RESULTS

This section is devoted to showing some reconstructions based on
experimentally collected data in order to assess the reconstruction
capabilities of the inversion algorithm.

The experimental data are collected in the frequency band [0.8,
3.2]GHz by employing a measurement aperture Σ = [35, 235] cm ×
[60, 200] cm, with the transmitting and the receiving antennas
separated by an offset ∆x = 30 cm (measured between the two
aperture centers). The investigation domain is D = [35, 235] cm ×
[60, 200] cm×[100, 170] cm (the quota along z is measured starting from
the antenna aperture). A plastic mannequin 180 cm in height covered
by aluminium foils is considered as the scatterer. The mannequin has
been placed over a dielectric pedestal 10 cm in height so that it covers
the investigation domain from y = 60 cm to y = 190 cm (see Fig. 3).

The following 3D reconstructions are given in terms of isosurface
representations and report the modulus of the regularized retrieved
unknown, |RδΓ̃|, which in turn is obtained by retaining in the
TSVD expansion the singular functions corresponding to the singular
values not below −20 dB (this truncation roughly corresponds to the
beginning of abrupt decay of the singular values). A picture of the
mannequin is superimposed to each reconstruction for comparison
purposes.
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Figure 3. Picture of the mannequin within the anechoic chamber.

Figure 4. Slice reconstructions of the mannequin: 11 uniformly
spaced frequencies and 51 measurements points along the x-axis have
been used.
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Figure 5. Frontal view of the 3D reconstruction (blue) along with
the mannequin picture (grey) at its actual position and dimension.
Reconstruction obtained by sampling each measurement line with 51
(left panel) and 26 (right panel) points.

The first experimental result is shown in Fig. 4 and in the left
panel of Fig. 5. It refers to the case where the mannequin center
is roughly located at x = 195 cm and z = 145 cm. For such a
case, 21 equally spaced slices have been considered and for each slice
the measurement line has been uniformly sampled at a step of 4 cm,
so that 51 measurements have been taken. Moreover, 11 uniformly
spaced frequencies, within the band reported above, have been used.
Fig. 4 shows the different slice reconstructions from which it can be
appreciated that the scatterer is detected and correctly localized. After
obtaining the 2D slices, each of them is first normalized to the “global”
maximum (i.e., the maximum over all the slices) and then thresholded
as described in [19]. In the left panel of Fig. 5 the corresponding 3D
(frontal view) isosurface representation is reported. As can be seen,
the phantom is not only very well localized but also its silhouette is
retrieved.

A critical point towards a fast imaging process (i.e., data
acquisition plus image formation) is the number of data to be used
which affects data and process time as well as the needed memory
storage.

To cope with this question the evaluation of the so-called number
of degrees of freedom (NDF) plays a central role [20].

Therefore, in order to make the imaging computationally more
effective results concerning the NDF reported in [21] have been
adopted. In particular, for the measurement configuration exploited
above, it was found that at the highest adopted frequency 26
measurement points (for each slice) are enough (this number has been
also maintained for the lower frequencies). As to the frequencies,
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we still adopt 11 frequencies, which are slightly beyond the optimal
number derived in [22], because time required for frequency sweeping
is negligible with respect to spatial scanning. The reconstruction of
the same scatterer by employing the new measurement parameters is
reported in the right panel of Fig. 5. As can be seen, the quality of
the reconstruction is practically the same as the previous case. This is
also a remarkable result if one looks at other imaging methods present
in the literature which have shown to work for a finer data collection
grid [23, 24].

In view of the reduced number of data the imaging algorithm
takes few seconds to achieve the images. Instead, the time needed
to acquire the data is still a critical figure for sliding systems as
the one at hand. However, if the measurements were taken quasi-
instantaneously, for example by employing an antenna array, changes
of the scene during data acquirement could be neglected (so avoiding
image focusing degradation). In this case, a simple procedure able to
counteract the clutter due to static scatterers could be employed. For
example, a procedure based on the incoherent difference between two
reconstructions obtained at two different instants of time in principle
allows to discern a moving target from static objects [15].

In order to verify experimentally the principle of the method
proposed in [15], we turn to consider two different situations where a
static scatter is present in the scene whereas the mannequin is located
at two different positions. The static scatterer is a metallic coat hanger
1.7m in height whose main part is a 5 cm diameter cylinder 1.5 m

Figure 6. Frontal view of 3D reconstructions (blue) for two different
scatterers, the mannequin and a coat hanger, whose pictures are shown
in grey at their actual positions and dimensions. The panel on the left
is referred as the case 1 and the panel on the right as the case 2,
where the two scatterers are closer each to the other. Reconstructions
obtained by sampling each measurement line with 26 points.
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in height. The reconstructions corresponding to these two cases are
reported in Fig. 6: in both the images all the objects in the scene
are well localized even though in the second case the scatterer on the
left is reconstructed worse than in the first case. This is because the
mannequin is more strongly (in amplitude) reconstructed when it is
located in the middle of the scene. Therefore, while applying the
threshold (which is set up according to the maximum of the overall
reconstruction) some parts of the reconstruction of the scatterer on
the left are discarded as well.

The presence of a moving scatterer can be evidenced by
representing the positive values of the pixel by pixel difference between
reconstructions related to data taken at different instants of time. As
an example, let us consider the two scenes reported in Fig. 6, indicated
as 1 (left) and 2 (right) respectively, as a time sequence where the
mannequin plays the role of the “moving” scatterer. In order to localize
it, we represent the quantities

∆δΓ̃2 =

{ |RδΓ̃|2 − |RδΓ̃|1 if |RδΓ̃|2 − |RδΓ̃|1 > 0

0 if |RδΓ̃|2 − |RδΓ̃|1 < 0
(5)

and

∆δΓ̃1 =

{ |RδΓ̃|1 − |RδΓ̃|2 if |RδΓ̃|1 − |RδΓ̃|2 > 0

0 if |RδΓ̃|1 − |RδΓ̃|2 < 0
(6)

Figure 7. “Difference” 3D reconstructions (blue) and picture of the
“moving” mannequin (grey). The panel on the left reports 4δΓ̃1 (the
mannequin “moved” from the left to the right) whereas the panel on
the right reports 4δΓ̃2 (the mannequin “moved” from the right to the
left). Reconstructions obtained by sampling each measurement line
with 26 points.



Progress In Electromagnetics Research, Vol. 105, 2010 11

where |RδΓ̃|1 and |RδΓ̃|2 are the reconstruction reported in the left and
right panel of Fig. 6, respectively, and ∆δΓ̃1 (∆δΓ̃2) is the difference
image actually employed to localized the moving scatterer when the
time-sequence is scene 2-scene 1 (scene 1-scene 2). The result of this
procedure is reported in Fig. 7. As can be seen, the procedure works
very well and the results are quite remarkable if one thinks that it
does not require a reference background image as is the case of other
difference image procedures [25].

5. CONCLUSIONS

We have checked experimentally the linear slice based inversion scheme
for reconstructing 3D strong scattering objects resembling in shape the
human body. The experiments have been conducted for a free-space
situation within a controlled environment. However, the measurement
parameters have been chosen with TWI applications in mind (i.e.,
choice of the frequency band, reflection mode set-up). Therefore, this
contribution can be meant as preliminary to such a kind of applications.
Despite the simplicity of the inversion algorithm, the analysis has
shown that it allows to localize and to roughly determine the shape
of the scatterers dealing with large (in terms of the wavelength)
investigation domains. Moreover, by selecting the measurement points
and the frequencies according to the degrees of freedom of the scattered
field, the reconstruction algorithm becomes very quickly. This opens
the way to the possibility of detecting moving targets in order to
discern a human being from static background clutter. In this regard,
a simple procedure based on the incoherent difference between two
reconstructions (not requiring a reference background image) to detect
changes in the imaging scenario has been presented and validated. Of
course, the results presented herein have to be meant as a proof of
the principle. Indeed, we have used a sliding system to synthesize
the measurement aperture which requires a non negligible time to
acquire the data, even though data are collected according to the
NDF. Antenna arrays would be a more suitable choice to make the
change detection technique useful for practical real time moving target
tracking.
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