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Abstract—Statistical characteristics of scattered electromagnetic
waves by turbulent magnetized plasma slab with electron density
and magnetic field fluctuations are considered via the perturbation
method and boundary conditions. Magnetic field fluctuates both in
magnitude and direction. Analytical expressions for the component
of scattered electric field, correlation functions of the amplitude and
phase fluctuations, and also the phase structure function for arbitrary
correlation functions of fluctuating plasma parameters are derived.
The obtained results are valid for near and far zones. Under equal
conditions, at strong magnetic fields, electron density fluctuations
play the important role and in this case the imposed magnetic
field decreases fluctuation intensity of the ordinary and extraordinary
waves. Numerical calculations of statistical characteristics of scattered
radiation were carried out for anisotropic Gaussian correlation function
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for electron density fluctuation and correlation tensor of the second
order for the fluctuation of an external magnetic field. The
phase portraits of correlation functions of the amplitude and phase
fluctuations are constructed.

1. INTRODUCTION

At the present time the features of light propagation in random
media have been rather well studied [1]. Many articles and reviews
are related to statistical characteristics of scattered radiation and
observations in the ionosphere [2–5]. The analysis of the statistical
properties of small-amplitude electromagnetic waves that have passed
through a plane turbulent plasma slab is very important in many
practical applications associated with both natural and laboratory
plasmas [6, 7]. In most papers statistically isotropic irregularities have
been considered. However, in reality, irregularities in the ionosphere
are anisotropic and mainly elongated along the geomagnetic field. The
sizes of small-scale ionospheric irregularities have been obtained by
several techniques, including topside sounding, radio star and radio-
satellite scintillations and direct measurement by satellite probes.
The irregularities have a variety of sizes and usually are elongated
in the magnetic field direction. The dominant sizes observed will
depend not only on the prevailing ionospheric conditions, but also
on the sensitivity of the particular method to detect irregularities of
different sizes. Investigation of statistical characteristics of scattered
radiation in randomly inhomogeneous magnetized plasma is of a great
practical importance. Statistical characteristics of the angular power
spectrum (broadening and displacement of its maximum), scintillation
effects and the angle-of-arrival of scattered electromagnetic waves by
turbulent anisotropic collision magnetized ionospheric plasma layer
for both power-law and anisotropic Gaussian correlation functions
of electron density fluctuations were investigated analytically in the
complex geometrical optics approximation on the basis of stochastic
eikonal equation and numerically by statistical simulation using the
Monte Carlo method [8–10]. The geomagnetic field plays a key role in
the dynamics of the plasma in the ionosphere. The dynamic processes
are accompanied by the regular variations of the geomagnetic field.
Intensive geomagnetic field perturbations are observed during strong
earthquakes, launching of spacecraft and other phenomena. Therefore,
geomagnetic field randomly varies both in magnitude and direction.
Statistical characteristics of the scattered radiation in the ionospheric
plasma at random variations of geomagnetic field magnitude in the
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geometrical optics approximation were considered in [11]. In the
present paper special attention is also paid to the fluctuations of the
external magnetic field directions.

In Section 2, the set of differential equations for electric field
in homogeneous gyrotropic medium and corresponding dispersion
equation are obtained if the angular frequency of an incident wave
exceeds an ionic angular gyrofrequency. Two types of circularly
polarized waves propagate along the direction of homogeneous external
magnetic field. In Section 3 set of stochastic differential equations
for perturbed electric field components has been obtained using the
perturbation method if scattered electromagnetic waves propagate
near the direction of an external magnetic field caused by electron
density and magnetic field fluctuations. Analytical expressions for
two-dimensional spectral components of scattered electric field by
turbulent plasma slab are obtained using the boundary conditions.
Attenuation coefficient for the mean field has been derived on the
bases of energetic consideration. Statistical characteristics-correlation
function of the amplitude and phase fluctuations of scattered radiation
are obtained for arbitrary correlation function of electron density
fluctuations and second-rank tensor of magnetic field fluctuations.
We suppose that electron density and magnetic field fluctuations are
statistically independent. The influence of direction fluctuations of an
external magnetic field on the statistical characteristics of scattered
electromagnetic field are considered for the first time in this paper.
The obtained analytical expressions are valid for near and far zones. In
Section 4, numerical calculations have been carried out for anisotropic
Gaussian correlation function of electron density fluctuations and the
second-rank tensor for magnetic field fluctuations. Conclusion is given
in Section 5.

2. FORMULATION OF THE PROBLEM

Let’s consider electromagnetic waves scattering by plasma slab having
finite thickness L. If frequency of an incident wave satisfies the
condition ω À Ωi = eH0/Mc, the ions can be considered immovable
and only motion of electrons can be taken into account; Ωi is the
ion gyrofrequency, M is the mass of an ion, c is the speed of light
in vacuum, and H0 is the strength of the external magnetic field. If
ω À νeff , νeff is the effective electron collision frequency with the ions
and molecules, then conduction current can be neglected and the total
current in the medium equals to the displacement current j = −eNw,
w — velocity of electrons. If we assume that the fields are time-
harmonic dependence, wave equation for electric field strength E can
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be written as:
rot rotE− k2

0E = −i
4πk0

c
eNw, (1)

where: e — electron charge, N — electron density in magnetized
plasma, k0 = ω/c, ω is the frequency. Taken into account that
iωw = eE/m + e[w ·H0]/mc, the Equation (1) can be written as:

grad div E−∆E− k2
0E

= − ṽk2
0

1− ũ

{
E− ie

mcω
[E ·H0]−

( e

mcω

)2
(E ·H0)H0

}
, (2)

where: ũ = (eH0/mcω)2, ṽ = ω2
p/ω2 are the magneto-ionic parameters,

ωp = (4πNe2/m)1/2 is the plasma frequency. Vector of electric
induction D = E− 4πieN0w/ω is described by the expression:

D =
(

1− ṽ

1− ũ

)
E+ i

ṽ

1− ũ

[
E · ΩH

ω

]
+

ṽ

1− ũ

(
E · ΩH

ω

)
ΩH

ω
, (3)

where ΩH = eH0/mc is the electron gyrofrequency.
For homogeneous gyrotropic medium without fluctuating plasma

parameters the dispersion relation has the following form:

εzzx
4 − [

(εxx + εyy)εzz + ε2
xz + ε2

yz

]
x2

+
(
εxxεyyεzz + ε2

xzεyy + εxxε2
yz + ε2

xyεzz

)
= 0, (4)

where x = kz/k0 is the non-dimensional parameter.
Now we consider statistical characteristics of scattered radiation

by turbulent magnetized plasma slab with electron density and
magnetic field fluctuations if wave propagates along the external
magnetic field. As far as statistically isotropic scalar field not
correlated with solenoidal vector field [12] we suppose that electron
density and magnetic field fluctuations are statistically independent.
When a wave passes through a region containing irregularities of
refractive index both amplitude and phase fluctuations arise in the
wave front. Each of the magnitudes in the Equation (2) can be
presented as the sum of the mean value and small fluctuating terms.
Therefore we will use the small perturbation method:

E = < E > + e, H0 = < H0 > + h0, N = < N > + n. (5)

The fluctuating values are random functions of the spatial coordinates.
The angular brackets indicate the statistical average. We will assume
that the mean values of electron density and magnetic field do not
depend on coordinates. Substitution of (5) into (2) gives linearized
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set of equations for the mean and fluctuating fields. Hence fluctuating
electric field satisfies the following differential equation:

(
∂2

∂xi∂xj
−∆δij − k2

0εij

)
ej = ji. (6)

Current density contains both electron density and magnetic field
fluctuations:

j =
k2

0v

1− u

{
i
√

u [< E > µ] + u(< E > τ )µ + u(< E > µ)τ
}

− k2
0v

1− u

[
n1 +

2u

(1− u)2
(τ · µ)

]

·{< E > −i
√

u [< E > τ ]− u(< E > τ )τ
}

,

v =
ω2

p0

ω2
, ω2

p0 =
4πe2 < N >

mω2
, u =

(
e < H0 >

mcω

)2

,

n1 =
n

< N >
, µ =

h0

| < H0 > | , τ =
< H0 >

| < H0 > | .

If electromagnetic wave propagates along oz axis and the vector τ lies
in the yz coordinate plane (k ‖ z, < H0 > ∈ yz), then components of
the second-rank tensor εij of collisionless magnetized plasma will have
the following form:

εxx = 1− v

1− u
, εyy = 1− v (1− u sin2 θ)

1− u
, εzz = 1− v(1− u cos2 θ)

1− u
,

εxy = −εyx = i
v
√

u cos θ

1− u
, εyz = εzy =

u v sin θ cos θ

1− u
,

εxz = −εzx = − i
v
√

u sin θ

1− u
, (7)

θ is the angle between the vectors k and H0. Below we will use the
designation εxy = i ε̃xy.

We seek the solution of the set of Equation (6) by expansion of
the Fourier integral over x and y coordinates:

e(r) =

∞∫

−∞
dkx

∞∫

−∞
dky ẽ(kx, ky, z) exp [ i (kxx + kyy)],

j(r) =

∞∫

−∞
dkx

∞∫

−∞
dky g̃ (kx, ky, z) exp [ i (kxx + kyy)].
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As a result we obtain the set of differential equations for a perturbed
electric field:

∂2ẽx

∂z2
+ A1

∂ẽz

∂z
+ B1ẽx + C1ẽy + D1ẽz = G1,

∂2ẽy

∂z2
+ A2

∂ẽz

∂z
+ B2ẽx + C2ẽy + D2ẽz = G2,

∂ẽx

∂z
+ A3

∂ẽy

∂z
+ B3ex + C3ey + D3ez = G3, (8)

where coefficients are:

A1 = − i kx, B1 = k2
0εxx − k2

y, C1 = k2
0εxy + kxky, D1 = k2

0εxz,

G1 = − k2
0 gx, A2 = − i ky, B2 = k2

0εyx + kxky, C2 = k2
0εyy − k2

x,

D2 = k2
0εyz, G2 = − k2

0 gy, A3 = ky/kx, B3 = ik2
0 εzx/kx,

C3 = i k2
0 εzy/kx, D3 = −i(k2

x + k2
y − k2

0εzz)/kx, G3 = − i k2
0 gz/kx.

The boundary conditions should be added to these equations. Let
the plane xoy coincides with the lower boundary of slab, which is
located in the half-space z > 0. Then the boundary conditions for the
Equation (8) will be: at z ≥ L the waves propagating in the negative
direction must be absent, and at z ≤ 0 — in the positive direction.
Free space is under and above the plasma slab. Since all functions are
finite in a turbulent slab, 0 ≤ z ≤ L, we solve the set of Equation (8)
via the spectral method:

ẽx(z) =
1
2π

∞∫

−∞
dκ A(κ) exp[− i (L− z)κ],

ẽy(z) =
1
2π

∞∫

−∞
dκ B(κ) exp[− i (L− z)κ],

ẽz(z) =
1
2π

∞∫

−∞
dκ C(κ) exp[− i (L− z)κ],

G1(z) =
1
2π

∞∫

−∞
dκ F1(κ) exp[− i (L− z)κ],

G2(z) =
1
2π

∞∫

−∞
dκ F2(κ) exp[− i (L− z)κ],
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G3(z) =
1
2π

∞∫

−∞
dκ F3(κ) exp[− i (L− z)κ]. (9)

As a result the set of differential Equation (8) will be rewritten in the
form of closed set of algebraic equations:

α1(κ)A(κ) + C1B(κ) + α2(κ)C(κ) = F1(κ),
B2A(κ) + β1(κ)B(κ) + β2(κ)C(κ) = F2(κ),
γ1(κ)A(κ) + γ2(κ)B(κ) + D3C(κ) = F3(κ),

required coefficients A(κ), B(κ) and C(κ) can be easily found via
plasma parameters α1(κ) = B1 − κ2, α2(κ) = D1 + iA1κ, β1(κ) =
C2 − κ2, β2(κ) = D2 + iA2κ, γ1(κ) = B3 + i κ, γ2(κ) = C3 + iA3κ.

At quasi-longitudinal propagation determinant of set of Equa-
tion (8) reduces to the biquadratic equation:

x4 −
{

(εxx + εyy)− 1
εzz

[
(εxx + εzz)γ2

x + (εyy + εzz)γ2
y

]}
x2

+
[
(εxxεyy − ε̃2

xy)−
1

εzz

(
εxxεyy + εxxεzz − ε̃2

xy

) · (γ2
x + γ2

y

)

+
1

εzz
(εxx + εyy) γ2

xγ2
y +

1
εzz

(
εxx γ4

x + εyy γ4
y

)]
= 0, (10)

the roots of which are: x1 = ζ1 − ζ2 (γ2
x + γ2

y), x2 = ζ3 − ζ4 (γ2
x + γ2

y),
x3 = −x1, x4 = −x2; γx = kx/k0, γy = ky/k0, γ2 = γ2

x + γ2
y(γ2 ¿ 1),

ζ1 = (εxx + ε̃xy)1/2, ζ2 = 1
4εzz

εxx+εzz+ε̃xy√
εxx+ε̃xy

, ζ3 = (εxx − ε̃xy)1/2,

ζ4 = 1
4εzz

εxx+εzz−ε̃xy√
εxx−ε̃xy

.

3. FLUCTUATION OF THE PHASE AND THE
AMPLITUDE OF SCATTERED RADIATION BY
MAGNETIZED PLASMA SLAB

Further, we will investigate phase and amplitude fluctuations of
electromagnetic fields, passed through plasma slab with random
inhomogeneities of electron density and magnetic field fluctuations.
In the perturbation theory fluctuations of the phase ϕ1 and relative
amplitude A1 are determined by the expressions:

ϕ1 = Im
( e

< E >

)
, A1 = Re

( e

< E >

)
. (11)

These formulae are valid for the components of the electric field
vector, the mean values of which are nonzero. In this formula, the



128 Jandieri et al.

indices indicating the direction of the components are omitted as
these fluctuating values are the same for all components. Correlation
functions at the points r1 and r2 are determined as:

Wϕ(r1, r2) = < ϕ1(r1) ϕ1(r2) >,

WA(r1, r2) = < A1(r1) A1(r2) > . (12)

It is also necessary to make an assumption concerning to the mean
field. Further we will consider scattering of only plane normal waves
(ordinary and extraordinary) on electron density and magnetic field
fluctuations. Let’s each component of the mean field < Ej > = | <
Ej > | exp(i q0j z) is a slowly varying function of the coordinate z due to
the attenuation of the mean field caused by transition of the mean field
energy to the fluctuating one. We guess that the thickness of plasma
slab is much smaller than the attenuation length (see below) and
< Ej > is a constant. Square of the refractive index [6] corresponding
to the two normal waves propagating in a homogeneous magnetized
plasma (without taking into account thermal motion) is

N2
j =

qoj

k0
=1− 2v(1− v)

2(1−v)− u sin2 θ ∓
√

u2 sin4 θ + 4u(1− v)2 cos2 θ
(13)

minus sign and index j = 1 correspond to the extraordinary wave,
plus sign and index j = 2 — to the ordinary wave. Generally speaking
ordinary and extraordinary waves in collisionless magnetized plasma
are elliptically polarized, moreover the relations of the mean electric
field components are determined with the well-known formulae [6]:

< Ey >1,2

< Ex >1,2
= i Z1,2,

< Ez >1,2

< Ex >1,2
= i P1,2, (14)

were the polarization coefficients are

Z1,2 =
2
√

u(1− v) cos θ

u sin2 θ ±
√

u2 sin4 θ + 4u (1− v)2 cos2 θ
,

P1,2 = −v
√

u sinα + Zj u v sinα cosα

1− u− v + u v cos2 α
,

In the first expression the upper sign is related to the extraordinary
while the lower one — to the ordinary waves. The magnitude Z1,2

characterises relations of ellipse axes, describing by the electric field
in the plane, perpendicular to the direction of the wave vector k, i.e.,
ellipticity of the ordinary waves in plasma; The value P1,2 determines
relative value of the longitudinal component (with respect to the vector
k) of an electric field of normal wave. From (14) follows that at
θ = 0◦ waves become transversal and polarization is circular, having
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clockwise rotation in the extraordinary wave and counterclockwise —
in the ordinary wave (if looking in the direction of wave propagation).
The above mentioned directions of rotation correspond to waves
propagation along H0 (or at an acute angle between the wave vector
k and vector H0). From the formula (14) follows that at θ = 0◦, for
the ordinary wave we have < Ey > = i < Ex >, < Ez > = 0 or
< Ex > = − i < Ey >, < Ez > = 0; for the extraordinary wave
< Ey > = − i < Ex >, < Ez > = 0 or < Ex > = i < Ey >,
< Ez > = 0. Below we will consider only this case.

Unknown functions A(x), B(x) and C(x) are determined by the
expressions:

A(x) =
1

k2
0 εzz

{[
εxxεzz − (εxx + εzz) γ2

x − εxxγ2
y − (εzz − γ2

x) x2
]
F1(x)

+
[−iε̃xyεzz + iε̃xy(γ2

x + γ2
y)− εzzγxγy + γxγyx

2
]
F2(x)

+
[
(i ε̃xy γy − εxx γx)x + γx x3

]
F3(x)

}
,

B(x) =
1

k2
0εzz

{[
i ε̃xyεzz − i ε̃xy(γ2

x + γ2
y)− εzz γxγy + γxγy x2

]
F1(x)

+
[
εxxεzz − εxx(γ2

x + γ2
y)− εzzγ

2
y + (γ2

y − εzz)x2
]
F2(x)

+
[
(εxx γy − i ε̃xy γx)x− γy x3

]
F3(x)

}
,

C(x) =
1

k2
0 εzz

{[−( i ε̃xy γy + εxx γx) x + γx x3
]
F1(x)

+
[
(i ε̃xy γx − εxx γy) x + γy x3

]
F2(x)

+
[
(ε2

xx − ε̃2
xy −−εxx(γ2

x + γ2
y)

+(γ2
x + γ2

y − 2εxx)x2 + x4
]
F3(x)

}
, (15)

These formulae have been obtained at the assumption that k0 lD,M À
1, where lD and lM are characteristic linear scales of random
inhomogeneities of electron density and magnetic field fluctuations,
respectively. This inequality is equivalent to the condition γx, γy ¿ 1
and therefore we kept the small terms of the second-order.

Two-dimensional spectral densities of current density fluctuation
causing electric field strength fluctuations for the ordinary wave at
θ = 0◦ are determined by the expressions:

gx(æ, z) =− v

1− u
< Ex >

[(
1 +

√
u
)
n1(æ, z)

+
(√

u + 2 u
1 +

√
u

1− u

)
µz(æ, z)

]

≡< Ex > Υ0 [ Υ1 n1(æ, z) + Υ2 µz(æ, z) ] ,
gy(æ, z) = i gx(æ, z),
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gz(æ, z) = v
u +

√
u

1− u
< Ex > [µx(æ, z) + i µy(æ, z)]

≡ < Ex > Υ3 [ µx(æ, z) + i µy(æ, z)] , (16)

where æ = {kx, ky}. As a result electric current density fluctuations
in the plane xy are caused by both electron density and magnetic field
fluctuations, while z component of the Fourier transform of current
density contains only magnetic field fluctuations in perpendicular plane
with respect to the external magnetic field, directed along the axis z
in this case.

Substituting coefficients (15) and (16) in (9), applying the residue
theory, two-dimensional spectral densities of electric field scattered by
inhomogeneous plasma slab (with electron density and magnetic field
fluctuations) satisfying the boundary conditions, at z = L have the
following form:

ẽx(æ, L) =
2k0

δ1 εzz
< Ex >

{−Υ0 (a1 − b1 γ2
x + c1 γ2

y + id1 γx γy)

L∫

0

dz′
[
Υ1 n1(æ, z′) + Υ2 µz(æ, z′)

] · sin [
(L− z′) k0 x1

]

+Υ3( i f1 γx − g1 γy)

L∫

0

dz′
[
µx(æ, z′) + i µy(æ, z′)

]

cos
[
(L− z′) k0 x1

]}
+

2 k0

δ2 εzz
< Ex >

{−Υ0 (a2 − b2 γ2
x

+c2 γ2
y + i d2 γx γy)

L∫

0

dz′
[
Υ1 n1(æ, z′) + Υ2 µz(æ, z′)

]

· sin [
(L− z′) k0 x2

]
+ Υ3( i f2 γx − g2 γy)

L∫

0

dz′
[
µx(æ, z′) + i µy(æ, z′)

]
cos

[
(L− z′) k0 x2

]


. (17)

where: a1 = εxxεzz − εzzζ
2
1 + ε̃xyεzz, a2 = εxxεzz − εzzζ

2
3 + ε̃xyεzz,

b1 = ζ2
1 +2 ζ1 ζ2 εzz+εxx+εzz+ε̃xy, b2 = ζ2

3 +2 ζ3 ζ4 εzz+εxx+εzz+ε̃xy,
c1 = εxx + 2 ζ1 ζ2 εzz − ε̃xy, c2 = εxx + 2 ζ3 ζ4 εzz − ε̃xy, d1 = ζ2

1 − εzz,
d2 = ζ2

3 −εzz, f1 = ζ3
1 −εxx ζ1, f2 = ζ3

3 −εxx ζ3, g1 = ε̃xyζ1, g2 = ε̃xy ζ3,
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δ1 = 2x1(x2
1 − x2

2), δ2 = − 2x2(x2
1 − x2

2);

ẽy(æ, L) =
2 k0

δ1 εzz
< Ex >

{−Υ0 (a3 γx γy + i b3 + i c3 γ2
x + i d3 γ2

y)

L∫

0

dz′
[
Υ1 n1(æ, z′) + Υ2 µz(æ, z′)

] · sin [
(L− z′) k0 x1

]

+Υ3( i g3 γy + f3 γx)

L∫

0

dz′
[
µx(æ, z′) + i µy(æ, z′)

]

cos
[
(L− z′) k0 x1

]}
+

2 k0

δ2 εzz
< Ex > {−Υ0(a4 γx γy + i b4

+i c4 γ2
x + i d4 γ2

y)

L∫

0

dz′
[
Υ1 n1(æ, z′) + Υ2 µz(æ, z′)

]

· sin [
(L− z′) k0 x2

]
+ Υ3( i g4 γy + f4 γx)

L∫

0

dz′
[
µx(æ, z′) + i µy(æ, z′)

]
cos

[
(L− z′) k0 x2

]


 , (18)

where: a3 = ζ2
1 − εzz, a4 = ζ2

3 − εzz, b3 = εzz(ε̃xy + εxx − ζ2
1 ), b4 =

εzz(ε̃xy+εxx−ζ2
3 ), c3 = 2 ζ1 ζ2 εzz−ε̃xy−εxx, c4 = 2 ζ3 ζ4 εzz−ε̃xy−εxx,

d3 = 2 ζ1 ζ2 εzz+ζ2
1−ε̃xy−εxx−εzz, d4 = 2 ζ3 ζ4 εzz+ζ2

3−ε̃xy−εxx−εzz,
g3 = εxx − ζ3

1 , g4 = εxx − ζ3
3 , f3 = εxy ζ1, f4 = εxy ζ3;

ẽz(æ, L) =
2 k0

δ1 εzz
< Ex > {Υ0 a5 ( i γx − γy)

L∫

0

dz′
[
Υ1 n1(æ, z′) + Υ2 µz(æ, z′)

]
cos

[
(L− z′) k0 x1

]

−Υ3( c5 + d5 γ2
x + d5 γ2

y)

L∫

0

dz′
[
µx(æ, z′) + i µy(æ, z′)

]

sin
[
(L− z′) k0 x1

]}
+

2 k0

δ2 εzz
< Ex > {Υ0 a6( i γx − γy)

L∫

0

dz′
[
Υ1 n1(æ, z′) + Υ2 µz(æ, z′)

]
cos

[
(L− z′) k0 x2

]
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−Υ3(c6 + d6 γ2
x + d6 γ2

y)

L∫

0

dz′
[
µx(æ, z′) + i µy(æ, z′)

]

sin
[
(L− z′) k0 x1

]}
; (19)

where: a5 = ζ1( ζ2
1 − εxx − ε̃xy), a6 = ζ3( ζ2

3 − εxx − ε̃xy), c5 =
(ζ2

1 − εxx)2 − ε̃2
xy, c6 = (ζ2

3 − εxx)2 − ε̃2
xy, d5 = (4 ζ1 ζ2 − 1)(εxx − ζ2

1 ),
d6 = (4 ζ3 ζ4 − 1)(εxx − ζ2

3 ).
Knowledge of the expressions of scattered fields allows us to

calculate the attenuation coefficient of the mean field on the basis of
energetic point of view. It is known that in the absence of Ohmic
dissipation and external currents we have [6] div Re [E ·H] = 0.
Components of magnetic-field strength can be found from the Maxwell
equations: Hx = − (κ/k0)Ey, Hy = (κ/k0)Ex, Hz = 0, where κ are
the roots of the dispersion equation corresponding to the homogeneous
set of Equation (8). Applying (5) it can be written:

d

dz

(
< Ex >2 + < Ey >2

)
+

d

dz

(
< e2

x > + < e2
y >

)
= 0 . (20)

This expression represents energy conservation law. Integrating this
expression we find < Ex >2 + < Ey >2 + < e2

x > + < e2
y > = const,

where the right-hand part corresponds to the intensity of an incident
radiation on inhomogeneous plasma slab with electron density and
magnetic field fluctuations

[
< Ex >2 + < Ey >2

]
L=0

= I0 = const.
Now let’s integrate (20) by volume enclosed between the z and
z + L planes and then statistically average the obtained expression.
Introducing the notation I(z) ≡ < Ex(z) >2 + < Ey(z) >2 integration
result can be rewritten as:

I(z + L)− I(z) = − (
< e2

x(z + L) > + < e2
y(z + L) >

)
. (21)

Since we are considering a case of large-scale irregularities, we neglect
back scattering of electromagnetic radiation. From the expressions (17)
and (18) taking into account (16) we have ex(z) = (σL)1/2 < Ex >,
here σ is a dumping coefficient much exceeding L). The expression (21)
has a meaning only if (σL) ¿ 1. Substituting < e2

x > and < e2
y >

in (21) and expanding left-hand part into a series with respect to L,
we obtain I(z) = I0 exp(−σ z). For the arbitrary distance integrating
(20) we get < e2

x > + < e2
y >= I0 [1− exp(− σz)]. It is obvious that

the boundary condition is satisfied.
From the expressions (17)–(19) it is not difficult to separate real

and imaginary parts and obtain second-order statistical characteristics
of scattered radiation. Let’s introduce new variables: z′ − z′′ = ρz

and z′ + z′′ = 2η; < n1(æ, z′) n1(æ′, z′′) > = WD(æ, ρz)δ(æ + æ′).
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After integration with respect to variable η for the arbitrary correlation
function of electron density fluctuation WD(æ, ρz), correlation
functions of the amplitude and phase fluctuations of scattered
electromagnetic waves in the direction of the y axis (only this case
will be considered in this paper due to the balkiness of the formulae)
have the following form:

< A1(x + ρx, y + ρy, L)A1(x, y, L) >yD= −2
Υ2

0Υ
2
1 L

ε2
zz k2

0
∞∫

−∞
dkx

∞∫

−∞
dky k2

x k2
y exp(ikxρx + ikyρy) ·

∞∫

−∞
dρzWD(kx, ky, ρz)

{
a2

3

δ2
1

[
sin(2x1k0L)

2x1k0L
− cos(x1k0ρz)

]
+

a2
4

δ2
2

[
sin(2x2k0L)

2x2k0L
− cos(x2k0ρz)

]

+2
a3a4

δ1 δ2

[
sin(qk0L)

qk0L
cos

(
t

2
k0ρz

)
− sin(tk0L)

tk0L
cos

(q

2
k0ρz

)]}
, (22)

< ϕ1(x + ρx, y + ρy, L) ϕ1(x, y, L) >y D = −2 k2
0 L

ε2
zz

Υ2
0 Υ2

1

∞∫

−∞
dkx

∞∫

−∞
dky exp(i kxρx + i kyρy) ·

∞∫

−∞
dρz WD(kx, ky, ρz)

{
d3

δ2
1

[
d3 +

2
k2

0

(c3k2
x + a3k2

y)
] [

sin(2x1k0L)
2x1k0L

− cos(x1k0ρz)
]

+
d4

δ2
2

[
d4 +

2
k2

0

(c4k2
x + a4k2

y)
]
·
[
sin(2x2k0L)

2x2k0L
− cos(x2k0ρz)

]

+
2

δ1δ2

[
d3d4 + (d3 c4 + d4 c3)

k2
x

k2
0

+ (d3a4 + d4a3)
k2

y

k2
0

]

·
[
sin(q k0L)

q k0L
cos

(
t

2
k0 ρz

)
− sin(t k0L)

t k0L
cos

(q

2
k0 ρz

)]}
, (23)

here t = x1 − x2 = t1 − t2 γ2, q = x1 + x2 = q1 − q2 γ2.
In the absence of an external magnetic field, taking into account

γ2
x ¿ 1 and γ2

y ¿ 1, determinant (10) has two doubly degenerate
roots (zero approximation): x1 = x3 =

√
ε, x2 = x4 = − √

ε.
Using the residue theory and Cauchy theorem it can be shown that
at k0L ¿ 1, ρx = ρy = 0, in case of isotropic Gaussian correlation
function for variance of the phase we obtain the well-known result
σ2

ϕ = (
√

π/4)σ2
N k2

0 lD Lv2 [7]. Taking into account that electron
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density and magnetic field fluctuations are statistically independent,
statistical characteristics of scattered electromagnetic waves for the
arbitrary correlation tensor of an external magnetic field fluctuation
Vij(æ, ρz) have the following form:

< A1(x + ρx, y + ρy, L)A1(x, y, L) >y M= 2k2
0 L

Υ2
3

ε2
zz

∞∫

−∞
dæ

∞∫

−∞
dρz exp(i kxρx + i kyρy) ·

(
1
δ2
1

[−f2
1 γ2

x Vxx(æ, ρz)

−g2
1γ

2
yVyy(æ, ρz)+2f1g1γx γyVxx(æ, ρz)

][sin(2x1k0L)
2x1k0L

+cos(k0x1ρz)
]

+
1
δ2
2

[−f2
2 γ2

x Vxx(æ, ρz)− g2
2 γ2

y Vyy(æ, ρz) + 2f2 g2 γx γy Vxx(æ, ρz)
]

[
sin(2x2k0L)

2x2k0L
+ cos(k0x2ρz)

]
+

1
δ1δ2

[−f1 f2 γ2
x Vxx(æ, ρz)

−g1 g2 γ2
y Vyy(æ, ρz) + (f1 g2 + f2 g1) γx γy Vxy(æ, ρz)

]

·
{

1
q k0L

[
sin

(
t

2
k0 ρz + q k0L

)
− sin

(
t

2
k0 ρz − q k0L

)]

+
1

t k0L

[
sin

(q

2
k0 ρz + t k0L

)
− sin

(q

2
k0 ρz − t k0L

) ] })
, (24)

< ϕ1(x + ρx, y + ρy, L) ϕ1(x, y, L) >y M= −2
k2

0 L

ε2
zz

∞∫

−∞
dæ

∞∫

−∞
dρz exp(i kxρx + i kyρy) ·

{
1
δ2
1

[
Υ2

0Υ
2
2(b

2
1 + 2 b1 c1 γ2

x

+2 b1 d1 γ2
y) Vzz(æ, ρz)

] [
sin(2x1k0L)

2x1k0L
− cos(k0x1ρz)

]

+Υ2
3

[
g2
1 γ2

y Vxx(æ, ρz) + f2
1 γ2

x Vyy(æ, ρz) + 2 g1 f1 γx γy Vxy(æ, ρz)
]

[
sin(2x1k0L)

2x1k0L
+ cos(k0x1ρz)

]
+ 2Υ0Υ2Υ3 [b1 g1 γy Vxz(æ, ρz)

+b1 f1 γx Vyz(æ, ρz)] sin(k0x1ρz)}+ ·
{

1
δ2
2

[
Υ2

0 Υ2
2 (b2

2 + 2 b2 c2 γ2
x

+2 b2 d2 γ2
y) Vzz(æ, ρz)

] [
sin(2x2k0L)

2x2k0L
− cos(k0x2ρz)

]
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+Υ2
3

[
g2
2 γ2

y Vxx(æ, ρz) + f2
2 γ2

x Vyy(æ, ρz) + 2 g2 f2 γx γy Vxy(æ, ρz)
]

[
sin(2x2k0L)

2x2k0L
+ cos(k0x2ρz)

]
+ 2Υ0Υ2Υ3 [b2 g2 γy Vxz(æ, ρz)

+b2f2γxVyz(æ, ρz)] sin(k0x2ρz)}− 1
δ1δ2

{
Υ2

0Υ
2
2

[
b1 b2+(b1 c2+b2 c1) γ2

x

+(b1d2 + b2d1) γ2
y

]
Vzz(æ, ρz)

1
qk0L

[
sin

(
t

2
k0ρz − qk0L

)

− sin
(

t

2
k0 ρz + q k0L

)]
+ Υ0Υ2Υ3 [(g1 b2 − g2 b1) γy Vxz(æ, ρz)

+ (f1 b2 − f2 b1) γx Vyz(æ, ρz)]
1

qk0L
·
[
cos

(
t

2
k0 ρz − q k0L

)

− cos
(

t

2
k0 ρz + q k0L

)]
+Υ2

3

[
g1 g2 γ2

y Vxx(æ, ρz)+f1 f2 γ2
x Vyy(æ, ρz)

+ (g1 f2 + g2 f1) γx γy Vxy(æ, ρz)]
1

qk0L

[
sin

(
t

2
k0 ρz − q k0L

)

− sin
(

t

2
k0 ρz + q k0L

)]
+ Υ2

0Υ
2
2

[
b1 b2 + (b1 c2 + b2 c1) γ2

x

+(b1d2 + b2d1) γ2
y

]
Vzz(æ, ρz)

1
t k0L

[
sin

(q

2
k0ρz − t k0L

)

− sin
(q

2
k0 ρz + t k0L

)]
+ Υ0Υ2Υ3 [(g1 b2 − g2 b1) γy Vxz(æ, ρz)

+(f1 b2 − f2 b1) γx Vyz(æ, ρz)]
1

t k0L
·
[
cos

(q

2
k0 ρz − t k0L

)

− cos
(q

2
k0ρz+tk0L

)]
+Υ2

3

[
g1 g2 γ2

y Vxx(æ, ρz) + f1 f2 γ2
x Vyy(æ, ρz)

+ (g1 f2 + g2 f1) γx γy Vxy(æ, ρz)]
1

t k0L[
sin

(q

2
k0 ρz − t k0L

)
− sin

(q

2
k0 ρz + t k0L

)]}
. (25)

It is evident that at L = 0 boundary conditions are satisfied. Taking
into account the inequalities γx, γy ∼ 2π/l ¿ k0 in the exponent of the
integrand (17)–(19) three terms should be retained, since the second
and third terms can essential contribution at great distance z. From
(22)–(25) follow that statistical characteristics for the ordinary wave
tend to zero with increasing of the external magnetic field. Under other
equal conditions fluctuations of plasma density plays the important role
at strong magnetic fields (u > 1) and the imposed magnetic field in this
case reduces fluctuation level of parameters of both waves. If electron
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density in the layer varies so that 0 < v < 1, then reflection area does
not exist for the ordinary wave. If applying the same requirement also
for the extraordinary wave, then it should be 0 < v < 1−√u.

In the previous section statistical characteristics of scattered
radiation by inhomogeneous plasma slab were obtained for the
arbitrary correlation function of electron density and magnetic field
fluctuations. These formulae are valid for near (L/k0 l2) ¿ 1
and far (L/k0 l2) À 1 zones from a plasma slab boundaries. It
is necessary to specify these correlation functions for performing
numerical calculations.

3.1. Correlation Functions of the Fluctuating Parameters of
Turbulent Plasma Slab

The spectral density function which describes the irregularities in
random medium depends on the particular case and may differ from
medium to medium. An irregularity model is conveniently described
by a three-dimensional correlation function of electron density. The
most widely used spectral density function is the Gaussian, which has
certain mathematical advantages. In the theoretical study forward
scattering assumption is valid when < ε2

1 > k0L ¿ 1 ¿ k0 lD, where
< ε2

1 > is the variance of the medium fluctuations. If the single
scattering condition is also fulfilled < ε2

1 > k2
0 lD L ¿ 1 a medium

is characterized by the Gaussian irregularity spectrum. On the lower
boundary of inhomogeneous slab having thickness 100 km, locating at
the altitudes from 300 up to 500 km it is easy to show that the these
conditions are satisfied for the electromagnetic waves with a frequency
of few tens MHz and higher. Therefore in the analytical calculations
we use anisotropic Gaussian correlation function of electron density
fluctuation [13].

WD(kx, ky, ρz) =
< N2

1 >

4π

l2‖
χ Γ0

exp

(
−m2

l2‖
ρ2

z + i n kx ρz

)

exp

(
−

k2
x l2‖

4Γ2
0

−
k2

y l2‖
4χ2

)
, (26)

where: m2 = χ2

Γ2
0
, Γ2

0 = sin2 γ0 + χ2 cos2 γ0, n = χ2−1
Γ2

0
sin γ0 cos γ0.

The average shape of electron density irregularities has the form of
elongate ellipsoid of rotation. The rotation axis is located in the
plane of geomagnetic meridian. The ellipsoid is characterized with
two parameters: the anisotropy factor for the irregularities equaling
to the ratio of ellipsoid axes χ = l‖/l⊥ (ratio of longitudinal and



Progress In Electromagnetics Research B, Vol. 22, 2010 137

transverse linear scales of plasma irregularities with respect to the
external magnetic field) and orientation equaling to the inclination
angle of the rotation axis with respect to the magnetic field (sometimes
with respect to horizon) γ0. Anisotropy of the shape of irregularities is
connected with the difference of diffusion coefficients in the field align
and field perpendicular directions.

For the external magnetic field fluctuation we suggest correlation
tensor of the second rank

< µ′i(r1)µ′j(r2) >= Vij(ρ) =
1
12

< µ′ 2 >

(
∂2

∂ρi∂ρj
− δij

∂2

∂ρs∂ρs

)
Φ(ρ).

(27)
Fourier transform (27) if Φ(ρ) = l2M exp

(−ρ2/l2M
)

(lM is the
characteristic linear scale of an external magnetic field fluctuation,
< µ′2 > the variance of an external magnetic field fluctuation) has
the following form

Vij(k) = < µ′2 >
π3/2

12
l5
M (k2δij − ki kj) exp

(
−k2l2

M

4

)
, (28)

Numerical calculations for the electron density fluctuation are
carried out in Cartesian coordinate system, and polar coordinate
system is applied for the magnetic field fluctuation with application of
so-called Markov assumption, Vij(æ, ρz) ∼ Vij(æ) δ(ρz). This amounts
to assuming that the random medium is “delta-function” correlated
along the direction of propagation. The error in computing the mean-
square fluctuation of the log amplitude of the wave due to the Markov
assumption is proportional to ((λL)1/2/L)1/3, where L is the distance
the wave traveled in the turbulent medium. In the ionosphere, typical
value for L range is from 50 km to a few hundred kilometers. Therefore,
for wave frequency at a few hundred MHz and higher, the Markov
assumption is valid [14].

4. NUMERICAL CALCULATIONS

In our numerical calculations frequency of radiated electromagnetic
wave is 40 MHz. Plasma slab 100 km thick is situated at a height
300 km over the Earth. The small thickness of the irregularity layer
gives rise to pronounced Fresnel oscillations in the amplitude and phase
power spectra. The mean values of turbulent plasma slab in the F
region of the Earth’s ionosphere are u = 0.0012, v = 0.0133.

Figure 1 illustrates the dependence of the phase structure function
Dϕ(ρx, ρy, L) on the normalized distance Y = ρy/l‖ at ξ = 1000
and different values of anisotropy parameter χ of electron density
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fluctuations (irregularities are stretched along the geomagnetic field
lines (γ0 = 0◦)) in the principal plane. Fig. 2 shows dependence of the
function Dϕ(ρx, ρy, L) on the parameter Y at χ = 2 and different values
of the inclination angle γ0 of elongated irregularities with respect to
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Figure 1. The dependence of
the normalized wave structure
function Dϕ(ρx, ρy, L) on normal-
ized distance Y between observa-
tion points at different values of
anisotropy factor of irregularities
χ; ξ = 1000, γ0 = 0◦ and X = 0.
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Figure 2. The dependence of the
normalized wave structure func-
tion Dϕ(ρx, ρy, L) on normalized
distance Y at χ = 2, ξ = 1000
and X = 0.

Figure 3. The dependence of the wave structure function of the
amplitude fluctuations of scattered electromagnetic waves caused by
electron density fluctuations on normalized distance Y in the principle
plane for different values of the parameters χ.
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the external magnetic field. In both cases the phase structure function
tends to saturation [1] with increasing distance between observation
points. Fig. 3 illustrates the dependence of the wave structure functions
of the amplitude of scattered radiation caused by electron density
fluctuations for different values χ of scattered irregularities. Numerical
calculations show that at ξ = 600 wave structure function of the
amplitude caused by electron density fluctuations are more sensitive at
small distances between the receiving antennas in the principal plane
Y < 5 than for phase structure function. They tend to saturation
with removal of receiving antennas. In particular, at χ = 4 saturation
of the wave structure function of the amplitude starts from Y = 8, at
χ = 1.5 — from Y = 25; its magnitude decreases inversely proportional
to the anisotropy coefficient. Wave structure function of the phase
fluctuations fast increases and then tends to saturation: at χ = 4
starting from Y = 7, and at χ = 1.5 — from Y = 21. Figs. 4–7
illustrate phase portraits (the dependence of an integrand (30) on the
polar angle of the cylindrical coordinate system) of scattered radiation
caused by fluctuations of the direction of an external magnetic field
at different relations of characteristic linear scales of considered task:
thickness of plasma layer, characteristic linear scale of an external
magnetic field fluctuation and distance between observation points,
at u = 0.0012, v = 0.0133 (Fig. 4 and 6) and u = 0.22, v = 0.28
(Figs. 5 and 7).

(a) (b)

Figure 4. Phase portraits of correlation function of the amplitude
fluctuations of scattered radiation caused by fluctuations of the
direction of an external magnetic field at v = 0.0133, u = 0.0012,
L/lM = 10; ρx/lM = 0.8 (a), ρx/lM = 1 (b).
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(a) (b)

Figure 5. Phase portraits of correlation function of the amplitude
fluctuations of scattered radiation caused by fluctuations of the
direction of an external magnetic field at v = 0.28, u = 0.22;
L/lM = 0.8, ρx/lM = 0.08 (a) and L/lM = 1.2, ρx/lM = 0.06 (b).

(a) (b)

Figure 6. Phase portraits of correlation function of the phase
fluctuations of scattered radiation caused by fluctuations of the
direction of an external magnetic field at v = 0.28, u = 0.22,
L/lM = 10; ρx/lM = 0.8 (a), ρx/lM = 1 (b).

From these figures follows that fluctuations of the direction of
an external magnetic field substantially influences the behavior of
phase portraits of statistical characteristics of scattered radiation by
magnetized plasma slab in both principle and perpendicular planes.
The dispersion of the external magnetic field fluctuations is very small
(particularly, in Galaxy it is of the order of ∼ 10−8−10−10). Different
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(a) (b)

Figure 7. Phase portraits of correlation function of the phase
fluctuations of scattered radiation caused by fluctuations of the
direction of an external magnetic field at v = 0.28, u = 0.22,
L/lM = 10; ρx/lM = 0.8 (a), ρx/lM = 1 (b).

external factors such as: earthquake, magnetic storms, etc. can
substantially influence the value of < µ′2 >. Therefore, in this case
besides the dispersion of electron density fluctuation, both value and
direction of an external magnetic field fluctuation should be taken into
account.

5. CONCLUSIONS

In this paper, statistical characteristics of the scattered electromagnetic
waves by irregularities plasma slab with electron density and magnetic
field fluctuations were investigated via the perturbation method
if wave propagates along the external magnetic field. Analytical
expressions for the component of fluctuating electric field in principal
and perpendicular planes have been obtained. Second statistical
moments and wave structure functions of the phase and amplitude of
scattered radiation for the arbitrary correlation functions of fluctuating
magnetized plasma parameters have been calculated. Phase portraits
of these statistical characteristics caused by fluctuations of the
direction of an external magnetic field for anisotropic Gaussian
correlation function have been constructed. If a wave propagates at big
angle with respect to the external magnetic field θ 6= 0, unlike the case
discussed in this paper, linear and cubic terms appear additionally in
the determinant, which considerably complicates finding of biquadratic
equation and statistical characteristics of the scattered field. The
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transition from the ordinary to the extraordinary wave is already
nontrivial. In particular, at θ = π/2: for the ordinary wave < Ex >
= 0, < Ez > = 0, and for the extraordinary wave < Ey > = 0,
< Ez > = − (εzx/εzz) < Ex >; besides, unlike the case discussed
above, scattering of the electric field in the principal plane is caused by
both magnetic field and electron density fluctuations, while component
x of current density contains only magnetic field fluctuations. In
separate paper we will investigate statistical characteristics of scattered
radiation at θ = π/2.
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