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Abstract—Explicit Green’s tensors for the diffusive electric field in
a configuration with two homogeneous half spaces are of interest for
primary-secondary formulations of frequency domain and time domain
modeling schemes. We derive the explicit expressions for the Green
tensor of the electric field generated by an electric dipole in space
frequency and space time. Both source and receiver can have arbitrary
positions in the vertical transverse isotropic (VTI) half space below a
non conductive half space. Apart from their use in modeling schemes,
the expressions can be used to understand the effect of the interface
between the VTI and the non conducting half space. We show that
the TE-mode refracts against the interface, and its effect in the VTI
half space decays exponentially as a function of depth and is inversely
proportional to horizontal distance cubed for horizontal source receiver
distances larger than three times the source depth. In exploration
geophysics, this part of the field is known as the “airwave”. The
contribution from the “airwave” has a late time behavior that differs
from the other contributions to the electric field. This makes time
domain systems relevant for exploration geophysical applications.

1. INTRODUCTION

Transient and frequency domain electromagnetic methods have
potential for hydrocarbon exploration in marine environments and
on land [1–3]. Solutions for the two half spaces configuration are of
interest in electric field integral equation solutions and approximations
thereof [4–8]. Such solutions are also important for modeling by
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local methods such as finite-difference, finite-element and finite-
volume methods [9–12] as well as for inversion methods based on
local forward-modeling schemes [13–16]. Using a primary-secondary
solution procedure with local numerical methods reduces the necessity
for small grid spacings for the direct field, allows for more accurate
incorporation of the source, and computes the desired target response
at greater accuracy. Explicit expressions for the isotropic half space
response tensor in the frequency domain have been known for 35
years [17]. Here, we make an extension to a conducting VTI lower
half space and we give explicit solutions in the frequency domain as
well as in the time domain.

The configuration consists of two half spaces separated at z = 0
by an interface. The upper half space is an isotropic medium, with
conductivity σ0, and is present for z < 0. We use the diffusive
approximation also in the non conductive upper half space and take
σ0 = 0 S/m. The lower half space, z > 0, is a non-magnetic
VTI medium, characterized by horizontal conductivity σ and vertical
conductivity σv. The electric dipole source is present at depth zS

below the origin, at xS = (0, 0, zS), zS > 0. The receiver can be
anywhere in the VTI half space, at (x, y) ∈ R2, z ≥ 0. The magnetic
permeability is constant throughout the configuration and given by its
free space value, µ0. We use ζ = sµ0, where s denotes the Laplace
transformation parameter. The product of σ and ζ is the squared
vertical wave number of the lower half space, γ =

√
ζσ and γv =

√
ζσv.

We also introduce the geometrical mean conductivity, σ̄ =
√

σσv and
the anisotropy coefficient λ =

√
σ/σv.

Throughout the manuscript, subscript notation is used for
Cartesian tensors wherever convenient, the summation convention is
applied to repeated subscripts, and the lower case Greek subscripts
run over the values (1, 2), while lower case Latin subscripts run over
the values (1, 2, 3). In the domain of the horizontal wave number, the
electric field Green tensor for an electric dipole in the VTI half space
is known. It is obtained from solving the following set of equations for
the electric field

εαβ3ikβH̃3 − εα3ν∂3H̃ν + σẼα = −J̃e
α, (1)

ε3αβikαH̃β + σvẼ3 = −J̃e
3, (2)

εαβ3ikβẼ3 − εα3ν∂3Ẽν − ζH̃α = 0, (3)

ε3αβikαẼβ − ζH̃3 = 0, (4)

where εikr = 1 for ikr = 123, 231, 312, εikr = −1 for
ikr = 132, 321, 213, and it is zero otherwise, and kα denotes
the two components of the horizontal wave number vector. The
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boundary conditions require the horizontal electric and magnetic field
components to be continuous across the interface z = 0. The solution
for the electric field Green function is then found by taking the source
to be a Dirac function, J̃e

k(z) = δkrδ(z− zS), which extends the vector
electric field to a Green tensor. The space frequency domain results
can be written as Fourier-Bessel transformations of these horizontal
wave number domain expressions. The horizontal distance in space
is denoted ρ =

√
x2 + y2. The scaled vertical distances from source

to receiver are denoted h̄± = |z ± zS |λ, whereas the physical vertical
distances from source to receiver are denoted h± = |z ± zS |. In these
expressions, the superscripted minus sign indicates the direct distance,
whereas the superscripted plus sign denotes the vertical distance from
source to receiver via the surface. We need radial distances from source
to receiver given by r̄± =

√
ρ2 + (h̄±)2 and r =

√
ρ2 + (h±)2.

2. THE HORIZONTAL WAVE NUMBER FREQUENCY
DOMAIN ELECTRIC FIELD

Using the formalism of [18], the electric field Green tensor can be
written in components as

G̃αβ = ikαikβ

(
1
σv

+
ζ

κ2

)(
˜̄G− + rTM ˜̄G+

)

−ζ
ikαikβ + κ2δαβ

κ2

(
G̃− − rTEG̃+

)
, (5)

where κ =
√

k2
1 + k2

2 is the radial wave number. The vertical
components are given by

G̃3β = − ikβ∂3

σv

(
˜̄G− + rTM ˜̄G+

)
, (6)

G̃33 =
∂3∂3 − γ2

σv

(
˜̄G− − rTM ˜̄G+

)
. (7)

The TM-mode and TE-mode scalar Green functions are given by

˜̄G± =
exp

(−Γ̄h±
)

2Γ̄
, G̃± =

exp (−Γh±)
2Γ

, (8)

respectively. The vertical plane wave numbers are given by Γ̄ =√
σκ2/σv + γ2 and Γ =

√
κ2 + γ2. In the diffusive approximation the

TM-mode and TE-mode reflection coefficients are given by

rTM = 1, rTE =
κ− Γ
κ + Γ

= −1− 2
κ2

σζ
+ 2

κΓ
σζ

. (9)
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Substituting these results in Equations (5)–(7) yields

G̃αβ = ikαikβ

(
1
σv

+
ζ

κ2

) (
˜̄G−+ ˜̄G+

)

− (
ikαikβ + κ2δαβ

)[ ζ

κ2

(
G̃−+G̃+

)
+

2
σ

(
1+

∂3

κ

)
G̃+

]
. (10)

The vertical components are given by

G̃3β = − ikβ∂3

σv

(
˜̄G−+ ˜̄G+

)
, G̃33 =

∂3∂3 − γ2

σv

(
˜̄G−− ˜̄G+

)
. (11)

These functions can be transformed back to the space frequency
domain in explicit form. The general procedure is to write the
two-dimensional inverse spatial Fourier transformations in cylindrical
coordinates. The transform of a wave number domain scalar Green
function G̃ is given by

Ĝ
(
x, x′, ω

)
=

1
2π

∫ ∞

κ=0
G̃

(
κ, z, zS)J0(κρ

)
κdκ, (12)

and with the known Sommerfeld integral
exp (−γr±)

4πr±
=

1
2π

∫ ∞

κ=0

exp (−Γh±)
2Γ

J0(κρ)κdκ, (13)

and the fact that −ikα transforms to ∂α, all parts containing scalar
Green’s functions can be directly transformed to space frequency
domain. The terms where the Green’s function are divided by κ or
by κ2 must be done separately and are discussed in the next section.

3. THE SPACE FREQUENCY DOMAIN ELECTRIC
FIELD

As shown above, we can write the electric field generated by an electric
dipole in terms of Fourier-Bessel transforms. In view of Equations (10)
and (11) and the result of Equation (13), two Green’s functions can be
defined

ˆ̄G± =
exp (−γv r̄

±)
4πλr̄±

, Ĝ± =
exp (−γr±)

4πr±
. (14)

The expressions containing the factor κ−n, with n = 1, 2 need to be
elaborated on. We observe that ikβG̃+/κ2 leads to the following inverse
spatial Fourier transformation

−∂β

4π

∫ ∞

κ=0

exp(−Γh+)
Γκ

J0(κρ)dκ =
xβ

4πρ

∫ ∞

κ=0

exp(−Γh+)
Γ

J1(κρ)dκ

=
xβ

4πρ
I1/2(ξ

−)K1/2(ξ
+), (15)
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with ξ± = γ(r+ ± h+)/2. This result is found from [19] (p. 1098,
formula 6.637.1). This form contains spherical Bessel functions and
can be written as

I1/2

(
ξ−

)
K1/2(ξ

+) =
exp (−γh+)− exp (−γr+)

γρ
, (16)

see [20]. Similar results are obtained for the other Green functions
containing the factor κ−2. The expression G̃+/κ can directly be
obtained as

1
4π

∫ ∞

κ=0

exp (−Γh+)
Γ

J0(κρ)dκ =
xβ

4πρ
I0

(
ξ−

)
K0

(
ξ+

)
. (17)

With these integrals the whole electromagnetic field can be determined
in the VTI half space. All terms of Equations (10) and (11) can be
transformed back to the space domain using the formulas given above.
The horizontal components of the electric field generated by horizontal
components of an electric dipole source can be written as

Ĝαβ

(
x,x′, s

)
=

∂α∂β

σv

(
ˆ̄G− (

x, x′, s
)
+ ˆ̄G+

(
x,x′, s

))

+
ζ∂α

4πγ

xβ

ρ2

[
exp

(−γv r̄
−)

+exp
(−γv r̄

+
)−exp

(−γr−
)

− exp
(−γr+

)]
+ζδαβ

(
Ĝ−(

x,x′, s
)
+Ĝ+

(
x, x′, s

))

− 2
σ

(∂α∂β−∂ν∂νδαβ)
(
Ĝ+

(
x, x′, s

)
+I0

(
ξ−

)
K0

(
ξ+

))
. (18)

The vertical field components are written as

Ĝ3β

(
x, x′, s

)
=

∂3∂β

σv

(
ˆ̄G− (

x, x′, s
)

+ ˆ̄G+
(
x,x′, s

))
, (19)

Ĝ33

(
x, x′, s

)
=
−γ2 + ∂3∂3

σv

(
ˆ̄G− (

x, x′, s
)− ˆ̄G+

(
x,x′, s

))
. (20)

These expressions can be understood geometrically as follows. All
terms depending on products of polynomial and exponential functions
are direct fields from source to receiver, or specular reflections against
the surface. The direct fields have function arguments depending on
r− or r̄−. The specular reflections have function arguments depending
on r+ or r̄+, which can be understood as fields from an image source
above the actual source location, for which reason they can be seen as
specular reflections against the surface. The parts of the Green tensor
that have one or two vertical components are completely described by
these functions. The parts of the Green tensor that have two horizontal
components have an additional term in the form of the product of two
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Bessel functions. For large arguments, and where (r+ À h+), this
product has an exponential decay as a function of h+ and a polynomial
decay as a function of two terms involving the horizontal distance,
ρ−2n and (h+/ρ2)n, where n is the counter for the expansion terms.
This behavior can be understood physically as the diffusive field that
decays vertically upward, propagates as a wave with infinite speed
along the surface, with only geometrical spreading, and continuously
diffuses down into the subsurface with exponential decay in the vertical
direction. This is found when an asymptotic expansion is carried out
for large arguments of both Bessel functions. The leading term is given
by

lim
γr+→∞

I0

(
ξ−

)
K0

(
ξ+

) ≈ exp (−γh+)
γρ

(
1 +O (

ρ−2
))

. (21)

From the observation that two horizontal derivatives occur in
Equation (18), we can expect that for a single frequency of operation,
the airwave effect in the subsurface has a large horizontal offset
asymptote proportional to ρ−3.

The Green tensor can be written concisely in terms of frequency
independent coefficients and frequency dependent diffusion functions,
given in Equation (A1). Then we obtain

Ĝee
kr

(
x,x′, s

)
= P̂ kr(s, ξ)+

2∑

m=0

(
gm−
kr F̂ (m)(s, τ−)+gm+

kr F̂ (m)(s, τ+)

+ḡm−
kr F̂ (m)(s, τ̄−)+ḡm+

kr F̂ (m)(s, τ̄+)
)

. (22)

The offset dependent diffusion times τ± and τ±v are given by

τ± = σµ0(r±)2/4, τ̄± = σµ0(r̄±)2/4. (23)

The TM-mode coefficients for the horizontal components are given by

ḡ0±
αβ

(
x, xS

)
= λ

3xαxβ − (r̄±)2δαβ

4πσ(r̄±)5
, (24)

ḡ1±
αβ

(
x, xS

)
=

(
3xαxβ − (r̄±)2δαβ

4π(r̄±)4
− 2xαxβ−ρ2δαβ

4πρ4

)√
µ0√
σ

, (25)

ḡ2±
αβ

(
x, xS

)
=

µ0xαxβ

4πλr̄±

(
1

(r̄±)2
− 1

ρ2

)
. (26)

The numerical singularity at zero horizontal offset is avoided by taking
the limit of ρ → 0 for z 6= zS , which results in

ḡ1±
αβ

(
z, zS

)
= −

√
µ0δαβ

4π
√

σ(λh±)2
, ḡ2±

αβ

(
z, zS

)
= − δαβµ0

8πλ2h±
. (27)
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The TE-mode coefficients are given by

g0−
αβ

(
x, xS

)
= 0, g0+

αβ

(
x,xS

)
=

3fαβ − (r+)2δαβ

2πσ(r+)5
, (28)

g1−
αβ

(
x, xS

)
=

xαxβ − fαβ

4πρ4

√
µ0√
σ

, (29)

g1+
αβ

(
x, xS

)
=

(
3fαβ − (r+)2δαβ

2π
√

σ(r+)4
+

xαxβ − fαβ

4πρ4

)√
µ0√
σ

, (30)

g2−
αβ

(
x, xS

)
= − µ0fαβ

4πρ2r−
, (31)

g2+
αβ

(
x, xS

)
=

µ0fαβ

4πr+

(
2

(r+)2
− 1

ρ2

)
, (32)

with fαβ = (ρ2δαβ − xαxβ). In the limit of ρ → 0 for h− 6= 0 the
TE-mode coefficients containing divisions by ρ reduce to

g1−
αβ

(
z, zS

)
= 0, g2−

αβ

(
z, zS

)
=

δαβµ0

8πh+
, (33)

g1+
αβ

(
z, zS

)
= −

√
µ0δαβ

2π
√

σ(h+)2
, g2+

αβ

(
z, zS

)
=

δαβµ0

8πh+
. (34)

Note that in that case τ̄± = τ±. The function P̂ describes the effect of
the airwave in the subsurface, and contains modified Bessel functions
of integer order. It is given by

P̂αβ

(
x,xS , s

)

=
γζfαβh+

16π(r+)3
[
4I1K0−

(
3I0−2I1/ξ++I2

)
K1

]

−
(

3fαβ

(r+)2
− δαβ

)
γ2h+r+(I0K0−I1K1)+2ξ+I0K1+2ξ−I1K0

4πσ(r+)3
, (35)

and all other coefficients are zero. The arguments of the Bessel
functions have been omitted for brevity.

In the numerical implementation, scaled Bessel functions provide
more accurate results. We use

Īn(ξ−) = exp
(−<{ξ−}) In(ξ−), (36)

K̄n(ξ−) = exp(ξ+)Kn(ξ−), (37)

where <{ξ} means the real part of ξ. For any product containing
modified Bessel functions of the first and second kind, we have

In(ξ−)Km(ξ+) = exp
(−<{γ}h+ − i={ξ+}) Īn(ξ−)K̄m(ξ+). (38)
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The coefficients of the vertical Green functions are given by

ḡ0−
3α

(
x, xS

)
=

3xα(z − zS)
4πσv(r̄−)5

, ḡ0+
3α

(
x, xS

)
=

3xαh+

4πσv(r̄+)5
, (39)

ḡ1−
3α

(
x, xS

)
=

√
µ0

σv

3xα(z − zS)
4π(r̄−)4

, ḡ1+
3α

(
x, xS

)
=

√
µ0

σv

3xαh+

4π(r̄+)4
, (40)

ḡ2−
3α

(
x, xS

)
=µ0

xα(z − zS)
4π(r̄−)3

, ḡ2+
3α

(
x, xS

)
=µ0

xαh+

4π(r̄+)3
, (41)

and in view of reciprocity,

ḡm−
α3

(
x, xS

)
= ḡm−

3α

(
x, xS

)
, ḡm+

α3

(
x, xS

)
= −ḡm+

3α

(
x, xS

)
, (42)

for m = 0, 1, 2. The last coefficients are found as

ḡ0±
33

(
x,xS

)
= ∓

[
3λ(h̄±)2 − (r̄±)2

]

4πσv(r̄±)5
, (43)

ḡ1±
33

(
x,xS

)
= ∓

√
µ0

σv

[
3λ(h±)2 − (r̄±)2

]

4π(r̄±)4
, (44)

ḡ2±
33

(
x,xS

)
= ∓µ0λ

[
(h±v )2 − (r̄±)2

]

4π(r̄±)3
. (45)

These coefficients determine the electric field, as there is no TE-
mode in the vertical components and all coefficients gm±

3k are zero for
k = {1, 2, 3} and m = {0, 1, 2}.

4. THE TIME DOMAIN ELECTRIC FIELD

The impulse response function of the electric fields are, with the aid of
the diffusion functions defined in Equations (A3)–(A7), written as

Gee
kr

(
x, xS , t

)
= Pkr(t, τ)+

2∑

m=0

(
g−kr;mF (m)(t, τ−)+g+

kr;mF (m)(t, τ+)

+ḡ−kr;mF (m)(t, τ̄−) + ḡ+
kr;mF (m)(t, τ̄+)

)
. (46)

The horizontal components of the TM-mode coefficients are given in
Equations (24)–(26), and those for the TE-mode in Equations (28)–
(32). The vertical components are described by the TM-mode
coefficients of Equations (39)–(45). The Laplace transform pair exists
for the product of the two Bessel functions of equal order [21], (p. 346),

I0(ξ−)K0(ξ+) L
−1←→ exp

(−τ+
h /t−τρ/t

)
I0(τρ/t)

2t
=

exp
(−τ+

h /t
)
Ī0 (τρ/t)

2t
,
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with
τ+
h = σµ0(h+)2/4, (47)

τρ = σµ0ρ
2/8. (48)

This leads to the space time expression for the subsurface effect of the
airwave given by

Pαβ(t, τ) =
(∂ν∂νδαβ − ∂α∂β)∂z

4πσt
Ī0(τρ/t) exp(−τ+

h /t). (49)

Pαβ(t, τ) =
σµ2

0h
+ exp(−τ+

h /t)
32πt3

{
2

(
δαβ−

xαxβ

ρ2

)
Ī1(τρ/t)

−
(σµ0

2t

(
ρ2δαβ−xαxβ

)−δαβ

) (
Ī0(τρ/t)−Ī1(τρ/t)

)}
. (50)

All other coefficients and function components are zero. The late time
asymptotes of the Bessel functions occurring in Equation (50) are given
by

lim
τρ/t→0

Īn(τρ/t) =
τn
ρ

n!(2t)n
. (51)

From this result and Equation (50) it can be seen that P11 and P22

have a late time asymptote proportional to t−3, whereas P12 and P21

have a late time asymptote proportional to t−4 when both x1 6= 0 and
x2 6= 0, otherwise P12 = P21 = 0.

Sometimes, the impulse response is obtained in transient
electromagnetic methods, but often the source current is switched on
and off and step responses are obtained. For the diffusion functions this
poses no problem, because every function Fm(t, τ) can be replaced by
F (m−2)(t, τ) and they are all known. For the airwave effect no explicit
formula could be found. A quasi analytic result is obtained using the
Gaver-Stehfest [22, 23] method that computes a time function from the
Laplace domain function using a number of time values instead of the
Laplace parameter s. For a step current switch-on source, the airwave
effect can be computed in the time domain as

PH
αβ(t, τ) = t

K∑

k=1

DkP̂αβ(s = k log(2)/t, τ)/(k log(2)), (52)

where P̂αβ(s, τ) is given in Equation (35). The value of K is
determined by the accuracy of the Laplace domain numerical result.
For double precision arithmetic, K = 14 or K = 16 can be used. The
coefficients Dk are given by

Dk =
min(k,K/2)∑

n=(k+1)/2

nK/2(2n)!
n!(n− 1)!(k − n)!(2n− k)!(K/2− n)!

. (53)
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The response to a step current switch-off source can then be obtained
by subtracting the result of the step current switch-on source from the
result of the step current switch-on source computed for a very large
time value.

5. NUMERICAL RESULTS

Here we use (x, y, z) to denote coordinates in space, with x = x1,
y = x2 and z = x3. As an example a homogeneous half space is taken
with σ = 1S/m and σv = 0.2 S/m. Most applications use a single
frequency of the source signal and here f = 0.5Hz is used. The non-
conductive upper half space is bounded by the VTI half space at z = 0
and the z-axis is taken positive downward. The horizontal electric
dipole source is 200 m long, located at (−100 < x < 100, y = 0,
z = 200) m, or at (−100 < x < 100, 0, 1000) m, and the receivers
are located in the (x, z)-plane, (0 < x < 10, 0, 0 < z < 4) km.
The results are shown in Figure 1 for a source depth of 200 m in
(a) and (b) and for a source depth of 1 km in (c) and (d). The
left and right columns of Figure 1, respectively, depict the real and
imaginary parts of the electric field vector. It can be seen that the
shallow source produces a relatively strong field close to the surface,
which is recognized as the effect of the airwave just above the surface
in the non-conductive medium. To see the strengths of the different
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Figure 1. The real (a), (c) and imaginary (b), (d) parts of the electric
field vector in the (x, z)-plane for an x-directed electric dipole located
at a depth of 200 m (a), (b) and at a depth of 1 km (c), (d).
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Figure 2. The amplitudes of the direct field, the specular reflection,
and the contribution from the airwave as a function of horizontal offset
for a vertical distance between source and receivers of 50 m, and a
source at 150m depth (a), and a source at 950m depth (b).
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Figure 3. Total electric field in the frequency domain generated by
a vertical source in a borehole at a depth of 150m. The color scale is
chosen such that all amplitudes higher than 10−8 V/m are saturated
red and all amplitudes below 10−11 V/m are saturated blue. The black
lines on the sides indicate the cuts of the cross sections.

contributions, the direct field from source to receiver can be separated
from the specular reflection and the effect of the airwave. This is shown
in Figure 2, where the x-component of the electric field at 200 m depth
generated by an x-directed electric dipole source of 200 m length at
150 depth as well as the field at 1 km depth for a dipole at 950 m are
shown. In the figure, the direct field is given in solid lines, the specular
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reflection in dash dotted lines and the airwave effect in dashed lines. By
comparing the three contributions it can be observed that the direct
field is dominant in the near offset range and that the contribution
from the airwave becomes dominant for offsets about 3 times the
depth of the source below the surface. The airwave contribution
decays only as a polynomial function of horizontal offset because a
large part of the distance is traveled as a wave in the non-conducting
medium. As expected from the theoretical analysis, the amplitude is
proportional to x−3, as indicated in Figure 2. The polynomial function
is shown with circular marker on a dotted line, uses the field value at
a horizontal offset of 6 km and lies completely on top of the airwave
contribution from a 2 km offset onward for the shallow source receiver
pair (Figure 2(a)) and from a 3.5 km offset onward for the deep source
receiver pair (Figure 2(b)).

For a vertical electric dipole, only the TM-mode field is excited
and therefore no airwave is generated. The amplitude of the total
electric field vector in the frequency domain generated by a vertical
electric dipole is shown in Figure 3 in three planes. The horizontal
plane shows the amplitude at a depth of 200 m below surface, hence
50m below the source, while the vertical planes are along the inline
and crossline and contain the source. The color scale is chosen such
that all amplitudes higher than 10−8 V/m are saturated red and all
amplitudes below 10−11 V/m are saturated blue. It can be observed
that the depth penetration of the field is much less because the ratio
of horizontal and vertical conductivity is a factor five.

In the time domain, the impulse response of the direct field and
the direct reflected field have a time behavior that differs from the
field due to the airwave. The sum of all diffusion functions F (τ, t) in
Equation (46) has a late time asymptote proportional to t−2.5, whereas
the effect of the airwave has a late time asymptote proportional to t−3.
This difference in late time behavior can be seen in Figure 4, where
the two different contributions to the x-component of the electric field
generated by an x-directed electric dipole are shown separately. We
use the same conductivity values as before, but now with single source
receiver pairs: a source at 150 m depth and a receiver 50 m below
the source and at a horizontal offset of 2 km in Figure 4(a), and a
source at 950 m depth and a receiver 50 m below the source and at a
horizontal offset of 4 km in Figure 4(b). For the shallow source and
receiver in Figure 4(a), the airwave effect is dominant at early times,
but looses its influence already when the direct and reflected fields
attain their maximum value. For late times, its contribution vanishes
rapidly. For the deeper source and receiver shown in Figure 4(b), the
subsurface effect of the airwave never dominates but has an appreciable
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contribution in the time window that starts when the total field reaches
its maximum value and continues for about 100 s after that moment.
From the late time behavior of the direct and reflected fields as well as
the subsurface effect of the airwave, it can be expected that the airwave
effect is smallest when the step current switch off time function is used
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as an excitation mechanism. This is illustrated in Figure 5 where
the direct and reflected fields as well as the subsurface effect of the
airwave are plotted separately for a horizontal offset of 2 km and a
vertical distance between source and receiver of 50 m with the source
150m below the surface. The airwave has a very small amplitude at
the moment the source current is switched off, then remains constant
for almost 1ms, after which it starts to decrease in amplitude, first
a little up to 1 s, and then proportional to t−2 when the late time
behavior is reached. The direct and reflected fields remain strong for
almost 100 ms, followed by a decay proportional to t−1.5.

To see how the electric field vector is distributed over the half
space, Figure 6 shows the impulse response electric field vector
generated by an x-directed electric dipole (parallel to the inline
direction) at the surface in three planes. The depth slice is taken
at 200 m below the surface, and the inline and crossline depth sections
contain the source. All slices are shown at 5.7 ms after the source was
excited. The very strong effect of the airwave can be observed at all
horizontal offsets.

Another application is the use of the analytical result in numerical
modeling of the response of a heterogeneous subsurface model. In
marine Controlled-Source Electro-Magnetics, a horizontal current
source is usually towed at some distance above the sea bottom, while
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on the sides indicate the cuts of the cross sections.
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receiver antennas and coils at the sea bottom record the horizontal
components of the electric and magnetic fields. The numerical
simulation of these experiments, for scenario studies [24] or full
blown inversion [14], requires a dense grid around the source for
accurate modeling of the source singularity. In the primary-secondary
formulation, the fields are split into a part that is computed analytically
and a secondary part that involves the full partial differential equations
driven by a source term based in the same equations applied to
the primary field; see [25], for instance. This will not change the
convergence rate of an iterative solution method for the discretized
problem, but generally improves the accuracy of the computed target
response. Also, the grid does not need to be finely sampled around the
source.

As an illustration of this approach, we consider a problem with
air, sea water, sediments, and a hydrocarbon reservoir. The source
is located at the origin in the horizontal coordinates and at a
depth of 100m. Receivers are placed on the sea bottom at 200 m
depth. The conductivity of the water is 3 S/m, the sediments have
0.5 S/m, and the reservoir 20mS/m. The reservoir is a rectangular
box between −2000 and 2000 m in x and y, and between depths
of 600 and 800 m. We computed the electric fields in a range of
frequencies f , on an equidistant logarithmic scale from log10 f = −3
to +3 with an increment of 0.1 and frequencies in Hz, using a
multigrid method [11]. The results were then interpolated by piecewise
cubic Hermite interpolation to a regular frequency grid with 0.001Hz
spacing, followed by a fast Fourier transform to obtain the temporal
response [12]. Although this method is more costly than the use of
a Fourier transform for data on a logarithmic scale [26, 27], the result
tends to be more accurate.

Figure 7 shows the inline electric field component as a function
of frequency for a unit dipole current source in the x-direction. The
receiver is located at x = 400 m, y = 0 m, and z = 200 m on the sea
bottom. The full numerical solution was computed on a grid with
643 cells. The cell width was 100 m in the rectangular region defined
by |x| ≤ 2000m, |y| ≤ 2000m, and 0 ≤ z ≤ 800 m. Grid stretching
was applied outside this box to place the perfectly electric conducting
domain boundaries at a sufficiently large distance. We also computed
the secondary solution on the same grid as well on a finer grid with
2563 cells and spacing of 20m in the interior part. The last one should
be much more accurate and serves as a reference. From Figure 7,
we can conclude that the primary-secondary solution provides a more
accurate result than the full solution. Figure 8 shows the response
after transformation to the time domain. For the primary-secondary



16 Slob, Hunziker, and Mulder

formulation, we transformed only the secondary solution and then
added the primary solution in the time domain. Again, the latter
provides a more accurate result than the full solution, taking the fine
grid primary-secondary solution as a reference.
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6. CONCLUSION

The diffusive electric field Green tensor was found in explicit form
in space frequency and space time domains. This has advantages for
integral equation modeling, because then the Green function is directly
known and does not need to be computed by numerical integration
techniques. Numerical results have shown that the subsurface effects
of the airwave dominates the received signal when the source and
receiver are close to the surface and the source operates at a single
frequency. For transient electromagnetic applications, the step-current
switch-off source function reduces the influence of the airwave in the
whole time window of interest. It is also advantageous for the primary-
secondary field implementations of finite-difference, finite-element, or
finite-volume modeling schemes, because when the source function can
be incorporated exactly, the grid spacings can be relaxed and due to
the fact that the primary field has a very high amplitude relative to
the target response, the solution for the target response is obtained
with higher accuracy.
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APPENDIX A. EXPONENTIAL DIFFUSION
FUNCTIONS

All terms in electromagnetic diffusive fields containing exponential and
polynomial functions in space-frequency domain have explicit time-
domain equivalents. These can be grouped with diffusion functions of
the form

F̂m(s, τ) = sm/2 exp(−2
√

sτ), m ∈ Z, (A1)

that have time-domain equivalents given in recursive form

Fm(t, τ) =
√

τ

t
F (m−1)(t, τ)− m

2t
F (m−2)(t, τ), (A2)

which can all be obtained if the ones for m = −2 and m = −1 are
known. The ones that are needed for impulse and step responses are
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given by

F (−2)(t, τ) = erfc(
√

τ/t), (A3)

F (−1)(t, τ) =

√
1
πt

exp(−τ/t)H(t), (A4)

F (0)(t, τ) =
√

τ

πt3
exp(−τ/t)H(t), (A5)

F (1)(t, τ) =
(

τ

t
− 1

2

)√
τ

πt3
exp(−τ/t)H(t), (A6)

F (2)(t, τ) =
(

τ

t
− 3

2

)√
τ

πt5
exp(−τ/t)H(t). (A7)

The function erfc(χ) is the complementary error function, defined by

erfc(χ) =
2√
π

∫ ∞

u=χ
exp

(−u2
)
du, (A8)

and H(t) denotes the unit step function.
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