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Abstract—This paper proposes a multilevel Green’s function
interpolation method (MLGFIM) to solve electromagnetic scattering
from objects comprising both conductor and bi-isotropic objects
using volume/surface integral equation (VSIE). Based on equivalence
principle, the volume integral equation (VIE) in terms of volume
electric and magnetic flux densities and surface integral equation
(SIE) in terms of surface electric current density are first formulated
for inhomogeneous bi-isotropic and conducting objects, respectively,
and then are discretized using the method of moments (MoM). The
MLGFIM is adopted to speed up the iterative solution of the resultant
equation and reduces the memory requirement. Numerical examples
are presented to show good accuracy and versatility of the proposed
algorithm in dealing with a wide array of scattering problems.

1. INTRODUCTION

With the rapid development of material technology, complex media
with a variety of constitutive relationships have attracted increasing
attention, and therefore a need for accurate and efficient analysis
of electromagnetic wave propagation and scattering properties in
those media has been promoted. Among these new materials, bi-
isotropic medium [1] has emerged as one of the most promising topics
in electromagnetic community. Many potential applications of bi-
isotropic materials in microwave and millimeter devices have been
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proposed such as polarization rotators, electromagnetic interference
shielding and radar absorbers [2]. Analysis of electromagnetic
properties of bi-isotropic materials is challenging due of its constitutive
relationships enforcing an additional coupling between the electric
and magnetic fields. In recent years, several efforts have been made
to develop various numerical techniques to study their scattering
properties [3–10]. However these methods suffer from tremendously
high computational cost.

Recent developments in fast algorithms have alleviated this
problem to some extent. Multilevel fast multipole algorithm
(MLFMA) [11–14], adaptive integral method (AIM) [15–17], sparse
matrix canonical grid method (SMCG) [18, 19] and pre-corrected fast
Fourier transform (PFFT) [20, 21] etc., have been proposed to fast
calculate the field interaction with inhomogeneous isotropic media.
More recently, a kernel independent approach, i.e., multilevel Green’s
function interpolation method (MLGFIM) [22–27] has been proposed
to solve complex EM problems. It inherits the tree structure of the
kernel dependent MLFMA and combines interpolation ideas of PFFT.
To date, the MLGFIM has been successfully implemented for the
solution to low-frequency and large-scale full-wave EM problems with
computational complexities of O (N) and O (N log N), respectively and
all of memory complexities of O (N).

In this paper, the MLGFIM is applied to accelerate the solution
of the volume/surface integral equation (VSIE) for the composite
conducting and bi-isotropic objects. The volume integral equation
(VIE) and surface integral equation (SIE) are formulated to describe
the inhomogeneous bi-isotropic and conducting objects, respectively.
The resultant equations are converted into matrix equations by using
the method of moments (MoM). The MLGFIM is utilized to reduce the
memory requirement for matrix storage and to speed up the matrix-
vector multiplication in iterative solution process. Numerical examples
demonstrate the accuracy and versatility of the proposed approach.

2. FORMULATION

2.1. Volume/Surface Integral Equation

Consider an arbitrary structure that contains conducting and
inhomogeneous bi-isotropic objects embedded in a homogeneous
background medium of infinite extent with permittivity ε0 and
permeability µ0, as shown in Fig. 1. The constitutive relationship
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Figure 1. Geometry including mixed bi-isotropic and conducting
objects.

in bi-isotropic media can be expressed as follows [1]:
⇀

D = ε0εr

⇀

E + ξ
√

ε0µ0

⇀

H
⇀

B = µ0µr

⇀

H + τ
√

ε0µ0

⇀

E
(1)

where the relative permittivity εr, the relative permeability µr and the
bi-isotropic parameters ξ and τ are position dependent. If ξ = τ = 0,
(1) will reduce to the isotropic case. According to (1), we can get

⇀
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Substituting (2) into two curl equations of Maxwell’s equations in
sourceless region, we can obtain
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Assuming
⇀
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(4) can be rewritten as
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⇀
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From a microscopic viewpoint,
⇀

JV and
⇀

MV can be seen as equivalent
volume electric and magnetic current densities [6]. In this scenario,
using the equivalent principle scattered electric and magnetic fields
⇀
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In bi-isotropic objects, the total electric and magnetic fields
⇀

E
t
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r ) and

⇀

H
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r ) are equal to the sum of the incident fields and scattered fields.

Hence, the volume integral equations can be written as
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On conducting surfaces, the tangential components of total electric
fields vanish, i.e.,
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in which n̂ is the unit normal vector that points toward the exterior of
conductor.

In order to solve VSIE (18)–(20), the scatterer is first
approximately represented by a set of mesh cells of one-tenth
of a wavelength. The zeroth order divergence conforming basis
functions [28] defined on curvilinear hexahedral and quadrilateral
elements are adopted as volume and surface basis functions,
respectively. Substituting (2), (5) and (7)–(17) into (18)–(20) and
applying Galerkin method, a linear system can be obtained as follows:
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2.2. Multilevel Green’s Function Interpolation Method

The memory requirement and computational complexity are O
(
N2

)
,

where N is the number of unknowns, when (21) is solved by using
an iterative solver, for example generalized minimal residual method
(GMRES) [29]. Hence, in order to improve computational efficiency
and memory requirement, the MLGFIM will be implemented in
this paper. We first enclose the entire object in a large cube,
and then partition the large cube into eight smaller cubes. Each
subcube is recursively subdivided into smaller cubes until the finest
cubes satisfy the termination criterion. For two elements in same
or adjacent finest cubes, their interaction is directly calculated;
while the interaction between two elements in non-adjacent cubes is
approximately calculated using multilevel interpolation technique [22–
27].

By observing (22)–(26), we can find that matrix elements are
composed of a general integral expression:
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r ,
⇀
r
′
) can be approximated using interpolation

techniques as

Ψ
(

⇀
r ,

⇀
r
′)

=
K∑

p=1

K∑

q=1

wp
Gu

(⇀
r
)
wq

Gv

(
⇀
r
′)

Ψ
(

⇀
rGu,p,

⇀
r
′
Gv ,q

)
(30)

in which wp
Gu

and ⇀
rGu,p is the pth interpolation function and

interpolation point in field cube Gu, respectively. Here K is the number
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of interpolation points. Substituting (30) into (29), we can obtain
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K∑

p=1

K∑
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∫
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According to (31), we can see that the MLGFIM converts the direct
interaction between field cube Gu and source cube Gv into three
parts to fast calculate matrix-vector multiplication in the iterative
solver. By handling the same or adjacent finest cubes and non-
adjacent cubes separately as shown above, the MLGFIM can achieve its
memory saving and CPU reduction [22–27]. The near interactions are
directly calculated and saved in a sparse matrix, and therefore require
O (N) memory requirement; the far interactions are approximately
computed using multilevel interpolation techniques with the storage
also of O (N). On the other hand, the computational complexity
of near interactions is O (N) while that of far interaction achieves
O (N log N). All in all, memory requirement and computational
complexity of MLGFIM are O (N) and O (N log N), respectively.
Detailed complexities analysis and interpolation techniques about the
MLGFIM may refer to [22–27].

3. NUMERICAL RESULTS AND DISCUSSION

In this section, we present some numerical examples to demonstrate
the accuracy and versatility of the proposed method. All calculations
are performed on a computer with 3.0 GHz processor and 2.0GB
RAM. Here the QR factorization technique [30] is used to compress
the Green’s function matrix with low rank and the GMRES iteration
method with a relative error norm of 0.001 is adopted for all
simulations. Moreover, the sparse approximate inverse (SAI) [31]
preconditioner is used to accelerate the convergence of iteration.

The first example considers a plane wave scattering from a
homogeneous bi-isotropic cube with side length of 0.2λ0 where λ0 is the
wavelength in free space. The relative permittivity εr and permeability
µr are 9 and 1, respectively and ξ = τ∗ = 0.5 + i0.5. Here, we use
1000 hexahedrons to discretize the cube and the resultant number
of unknowns is 3300. A θ-polarized plane wave in the direction of
θ = 180◦ is incident on the cube and the co-polarized and cross-
polarized bistatic RCS in the observation plane of φ = 0◦ are calculated
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as shown in Fig. 2. The results are in very good agreement with results
in [6].

In the second example, we consider a plane wave scattering from
an isotropic dielectric cube with 8 embedded bi-isotropic blocks. Both
the isotropic cube with the side length of 1λ0 and bi-isotropic blocks
with the side length of 0.2λ0 are with εr = 2 and µr = 1. The
center distance between two adjacent bi-isotropic blocks is 0.4λ0. Here
whole structure is discretized into 8000 hexahedrons which give 27120
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Figure 2. Plane wave scattering from homogeneous bi-isotropic cube.
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Figure 3. Plane wave scattering from an isotropic dielectric cube
with 8 embedded bi-isotropic blocks: (a) co-polarized bistatic RCS;
(b) cross-polarized bistatic RCS.
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unknowns. The co-polarized and cross-polarized bistatic RCS for
normally incident plane wave are calculated, as shown in Figs. 3(a)
and (b). According to Figs. 3(a) and (b), it can be seen that the
co-polarized bistatic RCS almost remains unchanged and the cross-
polarized one increases with the growth of ξ and τ .

In the following, we consider an object consisting of the alternating
isotropic and bi-isotropic slabs, as shown in Fig. 4(a). Both height and
width of the object are 0.5λ0 and the length of each slab is 0.2λ0. The
isotropic and bi-isotropic media are with εr = 2 and µr = 1. In order
to model the whole structure, 2000 hexahedrons are used and therefore
9260 unknowns are produced. The MLGFIM is used to calculate the
co-polarized and cross-polarized bistatic RCS for different bi-isotropic
media, as shown in Figs. 4(b) and (c). Similarly, the co-polarized
bistatic RCS approximately keeps unchanged and the cross-polarized
one becomes increasingly large with the growth of ξ and τ .
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Figure 4. Plane wave scattering from an alternating isotropic
dielectric and bi-isotropic structure: (a) geometry, (b) bistatic RCS
with θθ polarization; (c) bistatic RCS with θφ polarization.
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Figure 5. Plane wave scattering from a bi-isotropic cylinder shell
with a PEC inner surface: (a) bistatic RCS with θθ polarization; (b)
bistatic RCS with θφ polarization.

Finally, a plane wave is normally incident on a bi-isotropic cylinder
shell with a PEC inner surface. The outer and inner radius of cylinder
shell are 0.75λ0 and 0.25λ0, respectively and its height is 0.5λ0.
Here, 6410 hexahedrons and 320 patches are used to discretize the
cylinder shell and PEC surface, respectively and the resultant number
of unknowns is 41630. The bi-isotropic medium is with εr = 2 and
µr = 1. Figs. 5(a) and (b) show the co-polarized and cross-polarized
bistatic RCS for different bi-isotropic media. According to Figs. 5(a)
and (b), the co-polarized and cross-polarized bistatic RCS increase
with the growth of ξ and τ .

4. CONCLUSION

In this paper, the MLGFIM is proposed to solve electromagnetic
scattering from arbitrary objects comprised of both conducting and
bi-isotropic objects. The problem is formulated using volume integral
equation (VIE) in terms of volume electric and magnetic flux densities
for inhomogeneous bi-isotropic objects and surface integral equation
(SIE) in terms of surface electric current density for conducting
bodies. The application of MLGFIM significantly reduces the
memory requirement and the computational complexity to O (N)
and O (N log N), respectively. Numerical examples were presented to
illustrate the accuracy and versatility of the proposed method.
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