
Progress In Electromagnetics Research M, Vol. 13, 109–119, 2010

PARAMETER EXTRACTION FOR MICROWAVE COU-
PLED RESONATOR FILTERS USING RATIONAL MODEL
AND OPTIMIZATION

J. Peng, B. Wu, C.-H. Liang, and X.-F. Li

National Key Laboratory of Antennas and Microwave Technology
Xidian University
Xi’an 710071, China

Abstract—A method is presented for the parameter extraction of
microwave coupled resonator filters. The method is based on the
estimation of a rational model of the filters. From these rational
functions, a circuit network having the previously know topology is
optimized. Two simple and efficient error functions are used to reduce
the computational effort of the optimization while improving the
speed and robustness of diagnosis process for lossless and lossy filters,
respectively. Two numerical examples are presented to demonstrate
the efficiency of the proposed technique. One deals with numerical
simulation data from a full-wave electromagnetic simulation and the
other one uses the measured data.

1. INTRODUCTION

The Tuning of filters is the last and important step in filter design
procedures and dominates the performances of filters. Since the
traditional tuning process is nontrivial, time-consuming, and very
expensive, computer-aided tuning (CAT) of a microwave coupled
resonator filter has drawn a great deal of attention in recent years [1–5].

Filter tuning may be carried out in the frequency and/or time
domain. A time-domain filter tuning method is proposed in [1], which
can indicate the inaccurate resonant frequencies of the resonators
and coupling between them. In the frequency domain, a method for
the determination of the individual resonant frequencies and coupling
coefficients of a system consisting of cascaded coupled resonator
was described by Atia and Yao [2]. The technique of computer
diagnosis and tuning of microwave filters using model-based parameter
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estimation and optimization is described by Kahrizi [3]. Recently, an
analytical approach to diagnosis and tuning of lossy microwave coupled
resonator filters is proposed in [5]. The major difficulties that come
with the CAT of microwave filters are 1) it is difficult to deal with cross
coupling; 2) it is difficult to deal with the lossy systems.

In this paper, we present an efficient, robust and systematic
algorithm to determine coupling coefficients, including adjacent and
cross coupling, and individual resonator frequencies for each resonator.
This algorithm consists of three steps. The first step is to convert
the frequency sampled S-parameters, obtained from the simulation or
measurement, into the rational functions given as a ratio of polynomial.
In the second step, we use the rational functions to remove the loading
effect and generate a rational model. In the third step, an efficient
optimization technique is used to extract the parameters of the filter.
For the method in step 1) had been described in detail in [6], we focused
on the discussion of steps 2) and step 3) in this paper.

2. GENERATION OF RATIONAL MODEL

2.1. Filter Modeling and Synthesis

Figure 1 show the equivalent circuit of a multiple-coupled resonator
filter [8]. The circuit consists of N asynchronously tuned resonators.
All the resonators are represented by a LC circuit loop with their losses
modeled by the resistance ri. The coupling between the resonators i
and j are modeled by Mij . Under the assumption that all the coupling
coefficients are frequency-invariant, the loop equations in matrix form
can be written as[

ω′U − jR− jR′ +
∼
M

]
· [I] = [Z] · [I] = −j[E] (1)

where U is the identity matrix, R is a N × N matrix with all
entries zero, except R11 = R1, RNN = RN , R1 and RN are the
normalized input/output resistances of the filter. The diagonal matrix
R′ include the resistors ri. M is the N × N coupling matrix where
∼
M ij = Mij/FBW , and the vectors {I} and {E} represent the loop
current and voltage, respectively. It should be noted here that ω′ in (1)
represents the frequency variable in equivalent low-pass functions.

The scattering parameters for the input and output of the network
are given by

S21 = 2
√

R1R2iN = −2j
√

R1R2

[
Z−1

]
N1

(2)

S11 = 1− 2R1i1 = 1 + 2jR1

[
Z−1

]
11

. (3)
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Figure 1. General equivalent circuit of coupled resonator filters.

In case of a two-port network described by its scattering
parameters S11 and S21, three characteristic polynomials F , P and E
completely define a rational model in the normalized low-pass domain
s [7]

S11(s) =
F (s)
E(s)

=

k=n∑
k=0

fk · sk

k=n∑
k=0

ek · sk

, S21(s) =
P (s)
E(s)

=

k=nz∑
k=0

pk · sk

k=n∑
k=0

ek · sk

(4)

where n is the order of the filter, and nz is the number of transmission
zeros.

From the data samples of the filter responses, the formulation
of the Cauchy method described in [6] can be used to evaluate the
coefficients of polynomials F , P and E.

2.2. Removal of Loading Effect

Basically, the method of model-based parameter estimation is based
on the equivalent-circuit as shown in Fig. 1. However, in a physical
filter model, there is always an unwanted length of transmission line at
the physical reference plane and the port of the corresponding inverter
in the circuit model [5], which results in a constant phase loading.
The modified equivalent-circuit of the physical filter model is shown in
Fig. 2.

Consider the ideal equivalent-circuit, the phase of S11 is near to
zero when the points are far away from the center frequency. Therefore,
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Figure 2. Modified equivalent-circuit with transmission lines.

as Ω → ±∞,

φ(S11) ≈ φ

(
f ′n
e′n

)
≈ 0 (5)

where f ′n and e′n are the highest degree coefficients of ideal equivalent-
circuit.

As to the physical filter model, it is easy to obtain an equation

φ

(
fn

en

)
= 2θ + φ

(
f ′n
e′n

)
= 2θ (6)

where θ is the electrical length of transmission line.
Therefore, θ can be expressed as

θ =
1
2
∗ φ

(
fn

en

)
. (7)

Consequently, it can be removal of the phase loading form S11(s)
and S21(s) by simply multiplying e−j2θ.

3. ERROR FUNCTIONS FOR OPTIMIZATION

3.1. Lossless Filters

We first consider the lossless systems. In this case, all the resistances
ri in Fig. 1 are equal to zero. (1) can be rewritten as

[
ω′U − jR +

∼
M

]
· [I] = [Z] · [I] = −j [E] . (8)

Using (2), (3) and (4),

P (s)
E(s)

= S21 = −2j
√

R1R2

[
Z−1

]
N1

= −2j
√

R1R2 · det(Z ′)
det(Z)

(9)

F (s)− E(s)
E(s)

= S11 − 1 = 2jR1

[
Z−1

]
11

= 2jR1 · det(Z ′′)
det(Z)

(10)
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where Z ′ is the sub-matrix obtained by deleting the last row and first
column of the matrix Z, Z ′′ is the sub-matrix obtained by deleting the
first row and column of matrix Z. From Feldkeller’s equation [7], it is
easy to draw the conclusion that fn = en. Therefore, the number of
roots of F (s)− E(s) is equal to the order of Z ′′.

Using (8), (10) can be rewritten as

F (s)− E(s)
E(s)

= −2jR1 ·
Det

[(
jR′′−

∼
M ′′

)
− ω′U ′′

]

Det
[(

jR− ∼
M

)
− ω′U

] . (11)

Here we set A = (jR − ∼
M), A′′ = (jR′′ −

∼
M ′′). From the above

equation it is seen that roots of polynomial E(s) are eigenvalues of
matrix A, and the roots of polynomial F (s)−E(s) are the eigenvalues
of matrix A′′.

Let us denote the roots of polynomials E(s) and F (s)−E(s) by λe
i

and λt
i, respectively. For the rational functions are uniquely specified

by the location of their poles and zeros, the parameters extraction
problem can be seen as an optimization problem with the error function
defined as

ε
( ∼
M,R1, RN

)
=

n∑

k=1

|λm
k − λe

k|2 +
n−1∑

k=1

∣∣∣λm′′
k − λt

k

∣∣∣
2
+

n∑

k=1

|S11 (ωz
k)|2

+
nz∑

k=1

∣∣S21(ω
p
k)

∣∣2 (12)

where λm
i are the eigenvalues of A, λm′′

i are the eigenvalues of A′′,
ωz

k and ωp
k are the roots of F and P in domain Ω, respectively. The

functions S11 and S21 are evaluated from the current trial matrix M .
The error functions in (12) and (13) ensure the responses of functions
S11 and S21 a good agreement with the rational model.

3.2. Lossy Filters

In the case of lossy filters (ri 6= 0), the highest degree coefficients of
polynomials E(s) and F (s) are not equal. Therefore, the number of
λt

i are not equal to the number of λm′′
i . Take the resistance ri into
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account, we modify the error function as follows

ε
( ∼
M,R1, RN , R′

)
=

n∑

k=1

|λm
k − λe

k|2+
n∑

k=1

|S11 (ωz
k)|2+

nz∑

k=1

∣∣S21

(
ωp

k

)∣∣2

+
m∑

k=1

∣∣S21

(
ωq

k

)−S′21

(
ωq

k

)∣∣ (13)

where m is the number of frequency samples, S′21(ω
q
k) represent the

value of polynomial function S21 in low-pass frequency point ωq
k. Here

we choose ωq = [−1, 0, 1]. The first three terms in (13) specify the
location of zeros and poles of the rational functions, and the losses of
filter is specified by the last term in (13).

The Nelder-Mead optimization algorithm can be used to solve
this problem. This algorithm is one of the best known algorithms for
multidimensional unconstrained optimization without derivatives. It
is widely used to solve parameter estimation and similar statistical
problems. The design values for coupling matrix and input/output
resistances are chosen as the initial points in optimization. The initial
values for the resistance ri in lossy case are zero. It should be noted
here that the undesired cross coupling due to leakage between the
resonators can be modeled through the additional nonzero elements of
coupling matrix. By comparing the final results and the initial design,
the amount of mistuning for all the coupling and the offset frequencies
is obtain and the tuning procedure can be performed.

4. APPLICATION

4.1. EM Design of a Six-pole Cross Coupling Filter

This new formulation discussed above has been applied first to a set of
simulation data samples of a cross-coupled filter response. The filter
structure is shown in Fig. 3, which is designed to have Chebyshev
response having two transmission zeros located at 1.795 GHz and
1.825GHz with a return loss of −22 dB, and the central frequency
at 1.81 GHz with a bandwidth of 18MHz. This device can be seen as
a synchronously tuned filter, and the position of transmission zeros in
low-pass frequency are located at −1.67 and 1.67. The coupling matrix
elements and the normalized input/output resistances of the filter as
obtained from synthesis applying the theory of Cameron [9] are given
in (14).

∼
M12 =

∼
M56 = 0.8703,

∼
M23 =

∼
M45 = 0.6057,

∼
M34 = −0.6756,

∼
M25 = 0.1062, R1 = RN = 1.0775. (14)
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The dot line in Fig. 4 show the narrow-band system response
obtain by a full-wave electromagnetic simulation (CST). However, the
initial response is far from the ideal response.

The formulation of Cauchy method described in [6] then be applied
to a set of simulated data samples. It should be noted, because the
accuracy of the model may be reduce by second order effects such
as the frequency dependence of the coupling and high order poles,
the frequency points should not too much distant from the passband.
So the data set here employ refers to frequency interval 1.79 GHz–
1.83GHz. Table 1 contains the polynomial coefficients of the model
which had been removal of the phase loading. The elements of coupling
matrix M and the normalized input/output resistances are extracted
by applying the optimization algorithm based on the error function in
(12), and are given in (15). It should be noted here that the structure
of the filter is symmetric, and we can reduce the optimized variables

Figure 3. Filter of degree 6 with one cross coupling.

Table 1. Coefficients of polynomials for cross-coupling filter.

k ek fk pk

0 1.3035 + 0.8203i −0.0243 + 0.0000i 0.0000− 1.5588i
1 3.8578 + 2.6415i 0.0000 + 1.1482i 0.1416 + 0.0000i
2 6.2157 + 4.0973i 0.4736 + 0.0001i 0.0000− 0.3189i
3 6.4859 + 4.2197i 0.0000 + 2.3183i
4 5.0743 + 2.4423i 1.7179 + 0.0001i
5 2.5093 + 1.1781i 0.0000 + 1.3007i
6 1.0000 1.0000
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by setting
∼
M12 =

∼
M56,

∼
M23 =

∼
M45, R1 = RN . The S-parameters are

computed from the extracted parameters and the result, in comparison
with the simulated one, is shown in Fig. 4. It is obvious that both the
amplitude and the phase are well matched. By complying the extracted
results and the initial design, the difference between them can guide the
tuning process. The filter can be fine tuned with explicit adjustments,
and the final result is shown in Fig. 5. Apparently, the response of the
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Figure 4. The simulated (dot line) S-parameter and the one
calculated from extracted M (solid line) for the cross coupling filter.
(a) Amplitude. (b) Phase.
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tuned filter is well with the specification.

∼
M =




0.2503 0.8722 0 0 0 0
0.8722 0.0841 0.6237 0 0.0948 0

0 0.6237 0.2011 −0.7227 0 0
0 0 −0.7227 0.2011 0.6237 0
0 0.0948 0 0.6237 0.0841 0.8722
0 0 0 0 0.8722 0.2503




R1 = RN = 1.0778 (15)

4.2. Cascaded Coupled Resonators Filter

As a second example on the application of this new technique, a set of
measured responses of cascaded coupled resonators filter are tested to
validate the proposed approach. This device is a sixth-order Chebyshev
filter with no finite transmission zeros, tuned in the band 157 MHz–
163MHz, with a return loss of −25 dB; the passband losses are −1 dB.
The dot line in Fig. 6 shows the narrow-band system response of the
measured data. The elements of coupling matrix M and the normalized
input/output resistances are extracted by applying the optimization
algorithm based on the error function in (13), and are given in (16). It
should be noted that here we assume r1 = r6 and r2 = r3 = r4 = r5.
The response of the extracted result is also reported in Fig. 6 with
solid line. It can be observed the very good agreement with the
measurements. The detailed comparison of the insertion losses in the
pass band is zoomed in, demonstrating the accuracy of the extracted ri
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Figure 6. The measured (dot line) S-parameter and the one
calculated from extracted M (solid line) for the cascaded coupled
resonators filter. (a) Amplitude. (b) Phase.



118 Peng et al.

values. It should be noted here that, due to the effect of measurement
noise, there is a slight disagreement on the out-band.

M =




−0.0632 0.9179 0 0 0 0
0.9179 −0.0099 0.6303 00 0

0 0.6303 −0.0078 0.6097 0 0
0 0 0.6097 0.0303 0.6586 0
0 0 0 0.6586 0.0525 0.9291
0 0 0 0 0.9291 0.0893




R1 = 1.1972 RN = 1.2245 r1 = r6 = 0.0254
r2 = r3 = r4 = r5 = 0.0321 (16)

5. CONCLUSION

A method of model-based parameter estimation for microwave filters
is proposed in this paper. This technique can be used to estimate
the coupling coefficients, resonant frequencies of the filters. The
relationship between the polynomials coefficients and phase loading has
been analyzed for the first time. This loading effect can be effectively
removed by the proposed method. Optimization based on two novel
error functions adds robustness to the approach for the lossless and
lossy filters. The eigenvalues of M is introduced to the error functions.
As a result, it reduces the steps of iterations and save the computing
time. Finally, two numerical examples, including an electromagnetic
design cross-coupled filter and a measured lossy filter, are provided to
show the validity of this new technology. The extracted result show
good agreement simultaneously with respect to both the amplitude
and the phase.
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