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Abstract—Ultra wideband (UWB) Microwave imaging is one of
the most promising emerging imaging technologies for breast cancer
detection, and is based on the dielectric contrast between normal
and cancerous tissues at microwave frequencies. UWB radar imaging
involves illuminating the breast with a microwave pulse and reflected
signals are used to determine the presence and location of significant
dielectric scatterers, which may be representative of cancerous tissue
within the breast. Beamformers are used to spatially focus the reflected
signals and to compensate for path dependent attenuation and phase
effects. While these beamforming algorithms have often been evaluated
in isolation, variations in experimental conditions and metrics prompts
the assessment of the beamformers on common anatomically and
dielectrically representative breast models in order to effectively
compare the performance of each. This paper seeks to investigate the
following beamforming algorithms: Monostatic and Multistatic Delay-
And-Sum (DAS), Delay-Multiply-And-Sum (DMAS) and Improved
Delay-And-Sum (IDAS). The performance of each beamformer is
evaluated across a range of appropriate metrics.

1. INTRODUCTION

In 2009, there were approximately 1.5 million new cases of breast
cancer documented in the US alone [1], while the estimated mortality
rate in Europe was over 1.7 million [2]. The current de facto
breast cancer screening method is X-Ray mammography, and despite
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success in detecting early stage breast cancer, there are a number
of well documented limitations with the technology [3, 4]. MRI
offers improved image quality compared to X-Ray and although non-
ionizing and non-invasive, high operating costs make it unsuitable
for mass screening. Ultrasound imaging, although less expensive, is
limited by resolution and issues of speckle in the resultant images.
Such limitations have prompted the investigation of improved breast
imaging technologies, in order to accurately diagnose breast cancer at
minimum risk and discomfort to the patient.

One such promising modality is microwave breast imaging,
which uses backscattered radar signals to identify cancerous
tissue within the breast. Microwave imaging of the breast
can be categorized by three distinct approaches: UWB radar
imaging [5–10], Microwave Tomography [11, 12] and Hybrid imaging
techniques [13, 14]. Microwave Tomography attempts to reconstruct
the entire dielectric profile of the breast from the solution of an
inverse scattering problem. Hybrid techniques like Microwave-Induced
Thermoacoustic Tomography [13] is based on the principle that
electromagnetic (EM) energy absorbed by malignant tissue will induce
sonic reverberations, which can be detected by a transducer.

Finally, UWB radar imaging involves illuminating the breast with
a sub-nanosecond microwave pulse. The dielectric contrast between
tissue types, notably malignant and normal breast tissues, generate
EM reflections within the breast. These reflections are recorded and
a time-domain image-formation algorithm (beamformer) is applied to
determine the spatial location of any dielectric scatterer present. Data-
Independent (DI) beamformers use an assumed propagation model to
compensate for path dependent attenuation and dispersion [5–8].

Several factors make it difficult to directly compare the
performance of beamforming algorithms:
• The use of very different numerical breast phantoms, with 2D and

3D beamformer evaluations [7, 8, 15, 16] and significant variations
in the level of modeled heterogeneity [17–20].

• The use of different radar configurations (Monostatic [6, 7] and
Multistatic [10, 15]).

• Variations in antenna array geometry [21].
This paper attempts to examine the performance of several DI
beamforming algorithms using common anatomically-accurate breast
models. The paper is organized as follows: Section 2 details the
various DI beamforming algorithm, while the numerical breast model
model is documented in Section 3. Performance metrics are described
in Section 4 and results are presented and discussed in Section 5.
Concluding remarks are outlined in the final section.
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2. DATA-INDEPENDENT METHODS

A DI beamformer uses an assumed propagation model to approximate
a desired response independent of the input signal data. Most
DI beamforming algorithms are based on a classical broadband
beamformer, where the algorithm approximates the propagation delays
of the signals in order to focus the combined response at a specific
location. In this section a detailed description of the Monostatic
and Multistatic Delay-And-Sum (DAS), Delay-Multiply-And-Sum
(DMAS) and Improved-Delay-And-Sum (IDAS) beamformers is
presented. DMAS and IDAS are Multistatic algorithms.

2.1. Delay-And-Sum

The original Monostatic Delay-And-Sum (DAS) beamformer is based
on the Confocal Microwave Imaging approach [5]. In a Monostatic
beamformer, a UWB microwave signal illuminates the breast and
microwave energy scattered by potential tumor sites are recorded
by the transmitting antenna array element. The DAS beamformer
involves time-shifting and summing the backscattered signals from
the breast to create a synthetic focus. If a tumor exists at a
specific focal point, then the returns from the tumor site will add
coherently. Returns from clutter due to variations in tissue types will
add incoherently, and therefore will be suppressed. The energy at this
synthetic focus is measured and stored, and an energy profile of the
breast is created by varying the position of the synthetic focus within
the breast.

Consider M Monostatic antennas and let Sn denote the nth
backscattered signal, then the energy associated with the focal point(
r = [x, y, z]

)
within the breast is defined as:

I(r) =
∫ Twin

0

[
M∑

n=1

Sn

(
t− τn(r)

)]2

dt (1)

with the nth discrete time delay is described as τn(r) = (2dn(r))/(vTs),
where dn(r) = |r − rn| describes the discrete time distance between
the nth transmitting antenna rn and the focal point r, v describes
the average velocity of signal propagation in breast tissue, Twin is the
window length and Ts is the sampling interval.

Li et al. [6] modified the traditional DAS algorithm in order to
compensate for 2D Radial spreading of the UWB pulse. Updating
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(Eq. (1)) to:

I(r) =
∫ Twin

0

[
M∑

n=1

wnSn

(
t− τn(r)

)]2

dt (2)

where wn is the weight component introduced. Furthermore,
Fear et al. [7] compensated for radial spreading of the UWB pulse in a
3D system with the application of a weight (1/(|r− rn|)) for a planar
antenna configuration.

Nilavavan et al. [22] developed the first Multistatic DAS
beamformer, where the breast is illuminated by each antenna
sequentially and the backscatter energy is recorded at all antenna
array elements. The increased number of recorded channels reflected
outwards via various propagation paths through the tissue acquires
more information about scatterers in the breast. M2 signals are
recorded in a Multistatic system but, due to reciprocity, only
M(M + 1)/2 signals are required for the calculation of the energy
profile.

2.2. Improved Delay-And-Sum

Klemm et al. [23] atttempted to improve the traditional DAS
beamformer by introducing an additional weighting factor, called the
Quality Factor (QF), which is a measure of the coherence of UWB
backscattering at a particular focal point within the breast. At the
focal point (r), energy is collected across a window for each Multistatic
signal and stored. The energy from the focal point is then cumulatively
summed and plotted against the number of channels used in the
process. A second order polynomial is fitted to the normalized energy
collection curve (y = ax2 + bx + c) with a assumed to be the Quality
Factor. To re-scale the energy collection curve, normalization is carried
out by the multiplication of

(
1

1+σe

)
, where σe is the standard deviation

of the energy of all Multistatic radar signals. The Improved DAS
(IDAS) energy equation is represented by:

I(r) = QF (r) ·
∫ Twin

0

[
M(M+1)/2∑

n=1

wnSn(t− τn(r))

]2

dt (3)

2.3. Delay-Multiply-And-Sum

Another variant of the DAS beamformer is the Delay-Multiply-and-
Sum (DMAS) beamformer developed by Lim et al. [24]. This algorithm
involves signals being time-shifted (as in DAS), multiplied in pairs and
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their products summed in order to calculate the energy at a focal point.
The energy at (r) can be described as:

I(r) =
∫ Twin

0

[
M−1∑

n=1

M∑

j=(n+1)

Sn

(
t− τn(r)

)
Sj

(
t− τj(r)

)]2

dt (4)

where M describes the number of channels in the system. Lim’s
approach was tested on a homogenous breast model with dielectric
data similar to those used by Fear et al. [7].

3. NUMERICAL MODEL

Finite Difference Time Domain (FDTD) models of the breast were
developed to examine the performance of each DI beamformer. Each
FDTD model is based on an MRI-derived breast model, taken from the
UWCEM breast phantom repository at the University, of Wisconsin,
Madison [25]. The intensity of each voxel in the MRI is estimated and
mapped to appropriate dielectric properties in the resultant FDTD
model [26]. In order to adequately evaluate the beamformers, three
breast tissue distributions were considered:

• A Homogenous model, comprising of 3 types of adipose tissue
(Figures 1(a) and 1(b)).

• A Normal model, comprising of 3 types of adipose tissue
and a single small scattering of medium fibroglandular tissue
(Figures 1(c) and 1(d)).

• A Heterogenous model, comprising of all 3 variations of both
fibroglandular and adipose tissues (Figures 1(e) and 1(f)).

Dimensions within the 3D region of the breast are described
according to each axes. The X axis signifies the depth of the
breast, with 0 cm indicating the anterior position. Y and Z represent
the span and breadth of the breast respectively, with 0 cm centered
at the midpoint of each. A spiculated tumor (to represent a
malignant tumor), is artificially introduced into the FDTD model.
Tumors are placed in (X( cm), Y ( cm), Z( cm)) positions in each
simulation, one at (−8.7, 4.0, 1.0) and another at (−6.2, 2.5,−2.5),
corresponding to tumor 1 and tumor 2 respectively in Tables 2–
4. These tumors are numerically generated from the Gaussian
random spheres method [27, 28] to simulate realistic shapes and surface
textures. The variation of tumor size is simulated by modifying the
inner sphere radius, resulting in tumors of 5 mm, 10 mm and 15mm
diameters.
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Figure 1. Three breast tissue models with a tumor at (−8.7, 4.0, 1.0).
(a) Homogenous model Y -Z slice. (b) Homogenous model X-Y slice.
(c) Normal model Y -Z slice. (d) Normal model X-Y slice. (e)
Heterogenous model Y -Z slice. (f) Heterogenous model X-Y slice.

The dispersive properties of breast tissue are incorporated into
the FDTD model using a single-pole Debye model [29] of the following
form:

ε∗r(ω) = εr +
σ

jωε0
+

χ1

1 + jωt0
(5)
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The dielectric properties for the variations of adipose and fi-
broglandular tissue are based on the results described by Zas-
trow et al. [26]. Skin debye parameters are obtained from published
data by Gabriel et al. [30], while debye values representing malignant

Table 1. Debye parameters for the FDTD model.

Tissue εr χ1 σ t0
Skin 15.63 8.2 0.82 12.6

Tumor 7 47 0.15 7
Adipose (Low) 2.85 1.10 0.025 13

Fibroglandular (Low) 12.85 24.64 0.251 13
Adipose (Medium) 3.12 1.59 0.050 13

Fibroglandular (Medium) 13.81 35.55 0.738 13
Adipose (High) 3.98 3.54 0.080 13

Fibroglandular (High) 14.28 40.52 0.638 13

Table 2. Homogenous tissue distribution metric results.

SMR     (dB) SCR      (dB)

Tumor Radius (mm) D ASM DAS DMAS IDAS DASM DAS DMAS IDAS

1 2.5 8.74 14.67 18.77 17.02 0.45 11.88 22.84 18.49

5.0 10.38 12.88 16.88 13.90 4.41 10.48 18.10 11.93

7.5 12.19 11.81 15.53 13.01 5.54 8.47 17.13 9.31

2 2.5 9.12 14.73 18.27 15.94 2.43 11.78 17.64 15.21

5.0 9.73 13.24 16.94 16.20 2.95 9.90 18.50 13.90

7.5 10.56 11.85 15.40 14.48 4.89 4.24 13.62 10.39

Average 10.12 13.19 16.97 15.09 3.44 9.46 17.97 13.20

Table 3. Normal tissue distribution metric results.

SMR(dB) SCR(dB)

Tumor Radius(mm) DASM DAS DMAS IDAS DASM DAS DMAS IDAS

1 2.5 6.38 9.81 12.88 6.38 −1.27 −1.98 −3.85 −7.31

5.0 8.45 11.91 16.66 13.88 0.65 5.14 10.82 11.55

7.5 8.80 11.00 15.19 12.55 1.87 5.55 11.75 6.29

2 2.5 5.72 7.51 6.20 0.90 −2.28 −5.87 −12.25 −14.45

5.0 7.95 11.08 15.39 10.30 0.57 1.54 2.74 −1.39

7.5 7.51 10.02 14.02 9.05 −0.07 0.91 1.97 −2.67

Average 7.47 10.22 13.39 8.84 −0.09 0.88 1.86 −1.33
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Table 4. Heterogenous tissue distribution metric results.

SMR (dB) SCR(dB)

Tumor Radius(mm) DASM DAS DMAS IDAS DASM DAS DMAS IDAS

1 2.5 2.78 −4.71 −14.24 −18.95 −5.21 −12.23 −24.90 −28.76

5.0 4.99 2.19 0.19 −9.82 −3.21 −4.75 −10.01 −19.66

7.5 5.05 1.92 −0.15 −7.68 −3.03 −4.88 −10.39 −17.75

2 2.5 0.98 −1.96 −8.76 −13.58 −6.30 −9.58 −19.87 −24.88

5.0 2.81 3.55 2.99 −7.55 −4.41 −3.48 −7.73 −18.86

7.5 2.20 2.07 0.66 −8.00 −5.08 −4.74 −9.70 −19.19

Average 3.14 0.51 −3.22 −10.93 −4.54 −6.61 −13.77 −21.52

Figure 2. Antenna configuration.

tissue are taken from Bond et al. [8]. The breast is surrounded by a
synthetic material matching the dielectric properties of skin. All sin-
gle pole debye parameters are described in Table 1. The overall FDTD
grid size is approximately 28.8 million cubic cells, the grid resolution is
(1mm(dx)× 1mm(dy)× 1mm(dz)) and the time step dt is defined as
0.833 ps (dx/2c), where c is the speed of light in a vacuum. The FDTD
grid is terminated on each side by a 12 layer UPML [31] in order to
minimize edge reflections. In total, 18 FDTD simulations were carried
out, based on three distributions of tissue, the two tumor locations and
the three different tumor sizes.

A cylindrical antenna array [7], consisting of half-wavelength
dipole antennas, is placed around the breast. Fifty three antennas
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are arranged on five rings, as illustrated in Figure 2. The antenna
array elements are placed on the skin, with a uniform spacing of
22mm between each ring along the X axis. The UWB input pulse
is a 120 ps differentiated Gaussian pulse, with a center frequency of
7.5GHz and a −3 dB bandwidth of 9 GHz. The wavelength of the
waveguide in breast tissue is approximately 4 cm, dictating the length
of the dipole at 2 cm. An ideal artifact removal algorithm is applied to
the backscattered signals to remove the input signal and any reflection
from the skinbreast interface, as previously used by Xie et al. [10].
Prior to any signal processing, all FDTD signals are downsampled
from 1200 GHz to 50GHz.

4. METRICS

The following metrics are used in order to evaluate each beamformers
performance:

• Signal to Mean ratio (SMR)
• Signal to Clutter ratio (SCR)

The Signal to Mean ratio (SMR) describes the ratio of the tumor
response to the average energy response of all tissue types within the
breast. The Signal to Clutter ratio (SCR) is defined as the ratio of the
tumor response to the maximum clutter response in the same breast.
This response is assumed to be the peak energy outside the area defined
by twice the the physical extent of the tumor, or Full Width Half
Maximum (FWHM) [7]. The FWHM itself is defined as the distance
from the tumor response to where the tumor response energy drops by
half.

5. RESULTS

Resulting images from each beamformer are shown in Figures 3–6 as
a Y -Z and associated X-Y cross-sectional slice (the tumor location is
indicated by a pink circle for clarification in the case of the Normal
and Heterogenous tissue models). Furthermore, the corresponding
performance metrics (SMR and SCR) are shown in Tables 2–4. Each
table corresponds to a particular level of dielectric heterogeneity.

In the Homogenous model, both DMAS and IDAS significantly
outperform the Multistatic and Monostatic DAS beamformer as shown
in Table 2. DMAS and IDAS have an average SMR results of
16.97 dB and 15.09 dB respectively compared to 13.19 dB and 10.12 dB
for Multistatic and Monostatic DAS respectively. On average, the
SCR values for the IDAS and DMAS beamformers are respectively:
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3.74 dB and 8.51 dB greater than for the Multistatic DAS. The weakest
algorithm is the Monostatic DAS with an average SMR of 10.12 dB and
an SCR of 3.44.
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Figure 3. DAS Monostatic beamformed images for a tumor located
at (−8.7, 4.0, 1.0). (a) Homogenous model Y -Z slice. (b) Homogenous
model X-Y slice. (c) Normal model Y -Z slice. (d) Normal model X-Y
slice. (e) Heterogenous model Y -Z slice. (f) Heterogenous model X-Y
slice.
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Examining these results in this simple breast model, the
beamformers assumed propagation model and the actual propagation
channel are very similar, and therefore coherent addition of the
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Figure 4. DAS Multistatic beamformed images for a tumor located
at (−8.7, 4.0, 1.0). (a) Homogenous model Y -Z slice. (b) Homogenous
model X-Y slice. (c) Normal model Y -Z slice. (d) Normal model X-Y
slice. (e) Heterogenous model Y -Z slice. (f) Heterogenous model X-Y
slice.
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backscattered responses is relatively simple. Since the DMAS and
IDAS beamformer reward coherency, they tend to offer considerable
improvement over the DAS beamformer in relatively homogeneous
breast models.
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Figure 5. DMAS beamformed images for a tumor located at
(−8.7, 4.0, 1.0). (a) Homogenous model Y -Z slice. (b) Homogenous
model X-Y slice. (c) Normal model Y -Z slice. (d) Normal model X-
Y slice. (e) Heterogenous model Y -Z slice. (f) Heterogenous model
X-Y slice.
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Figure 6. I-DAS beamformed images for a tumor located at
(−8.7, 4.0, 1.0). (a) Homogenous model Y -Z slice. (b) Homogenous
model X-Y slice. (c) Normal model Y -Z slice. (d) Normal model X-
Y slice. (e) Heterogenous model Y -Z slice. (f) Heterogenous model
X-Y slice.

In the Normal breast model, the performance of the IDAS
beamformer is particularly reduced, with an average SMR of 8.84 dB
and an average SCR of −1.33 dB (compared to 15.09 dB and 13.20 dB
for the homogeneous model). DMAS outperforms Multistatic DAS by
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an average of 3.19 dB and 0.98 dB for SMR and SCR across all tumors.
Monostatic DAS offers a better average SCR than IDAS of 1.24 dB,
but still performs poorly compared the Multistatic DAS beamformer
which gives an improvement of 2.75 dB and 0.97 dB for SMR and SCR
respectively over it’s Monostatic counterpart.

The performance of all beamforming algorithms degrade with
the presence of a small region of fibroglandular tissue compared
to the Homogenous model, as shown in Table 3. The breast can
no-longer be considered homogenous, and the contrast between the
assumed and actual propagation channel affects the performance of
the each beamformer. IDAS performance degrades significantly since
the beamformer is based on the principle of weighting voxels where
coherent addition occurs, and coherent addition is much more difficult
with increasing levels of dielectric heterogeneity.

Based on the results in Table 4, the DAS algorithm is
the most effective beamformer when applied to the dielectrically
heterogenous breast, with Monostatic DAS achieving an average SCR
of −4.54 dB and an average SMR of 3.14 dB. Multistatic DAS offers an
improvement in SMR of 3.73 dB and 11.44 dB over DMAS and IDAS
respectively. Average SCR results for Multistatic DAS (−6.61 dB) are
14.91 dB and 7.16 dB greater than the average IDAS and DMAS SCR
results respectively.

Visibly discerning between tumor and non-tumor locations in the
Heterogenous model becomes very difficult, with the peak energy
response often occurring within the region of fibroglandular tissue.
Results for DMAS and IDAS are markedly reduced when compared
to the normal and homogenous breast results illustrating their
dependence on a dielectrically homogeneous propagation channel.

6. CONCLUSIONS

In this paper, four DI UWB radar breast imaging systems are
evaluated. Beamforming algorithms are tested on signals taken from a
number of realistic and dielectrically accurate electromagnetic breast
models. For test purposes 18 3D FDTD models were created, with a
tumor placed at two different locations within the breast. The DAS,
DMAS and IDAS beamforming algorithms were examined using two
metrics: SCR and SMR.

With a varying contrast in dielectric breast profiles in the breast,
the performance of each DI approach degrades significantly. All DI
beamformers assume a homogenous dielectric breast structure for the
calculation of the propagation delay of the UWB pulse through breast
tissue. In general, the shortcomings of this assumption are evident with
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each beamformer once the level of dielectric heterogeneity increases
within the breast, leading to inaccuracies between the assumed and
actual channel model. The multiplication of time aligned peak
responses become distorted in the case of DMAS and the cumulative
energy summation carried out by the IDAS algorithm is skewed.

DAS was found to be the most robust beamformer in difficult
imaging scenarios with Monostatic DAS offering superior results in a
heterogenetically dense breast. The distortion has less effect on the
time aligned summation of the tumor response than the multiplication
or energy summation employed by DMAS and IDAS respectively.

Future work will involve testing the other approaches to the
microwave imaging problem space, particularly investigating the
performance of Data-Adaptive beamforming algorithms on breast
models with varying levels of dielectric heterogeneity.
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