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Abstract—The absorption and dispersion properties of a Kobrak-Rice
5-level quantum system are investigated. It is shown that the dressed
states of such a system are phase-dependent. It is also demonstrated
that the absorption, dispersion and group index can be controlled
by either the intensity or relative phase of driving fields. Moreover,
we have shown that by applying an incoherent pumping field the
absorption doublet switches to gain doublet, and the absorption free
superluminal light propagation appears which can be used in the
transfer of information process.

1. INTRODUCTION

The optical properties of an atomic or molecular system may be
controlled by the coherent or incoherent fields [1]. Atomic coherence
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and quantum interference are the basic mechanisms for controlling
these properties. Coherent control of atomic systems can be used
in numerous applications in optical physics, such as lasing without
inversion [2], enhanced index of refraction [3], electromagnetically
induced transparency [4, 5], optical bistability [6] and superluminal
light propagation [7]. It is well known that the optical properties
of a closed atomic system interacting with laser fields are completely
phase dependent [8–12]. Recently, it has been shown that the phase-
dependent behavior, in a closed-loop system, is only valid in the
multi-photon resonance condition, so the phase-dependent process
contributing to the probe field susceptibility only occurs at a specific
frequency [13]. The effect of the relative phase on transient and
steady state behavior of a four-level atomic medium in a closed-loop
configuration has been discussed [14–16]. In view of many proposals,
we note that the two-photon resonance condition has been employed
to obtain the phase dependent behavior of the systems.

In this paper, we investigate the quantum coherence and optical
properties of a Kobrak-Rice 5-level (KR5) atomic system (Fig. 1).
This system was introduced by Kobrak and Rice to establish complete
population transfer to a single target of a degenerate pair of states [17].
In this system, a four-level diamond-shape atomic system in closed-
loop condition is coupled to lower ground state via a laser field. The
quantum coherence effects in a four-level diamond-shape atomic system
have been studied, and it has been shown that the system contains rich
quantum interference features [18]. The Kobrak-Rice 5-level (KR5)
system was also employed to show the advantages of the measurement
in coherent control of atomic or molecular processes [19]. Moreover, a
new quantum control scheme using intense laser fields together with
quantum measurement has been applied to the (KR5) system [20].
It has been found that one can control the stationary population
distribution by varying the intensity of laser fields. In particular, we
study the absorption, dispersion and group index in the (KR5) system
and explain the obtained results via a dressed basis. We show that
the optical properties of such system can be controlled by either the
intensity or the relative phase of the applied fields. In addition, we
show that the dressed states of the system are also phase-dependent.
If, however, an incoherent pumping field is applied to the system, we
find that, around zero detuning, subluminal and superluminal light
propagation as well as negative group velocity is available without
absorption or gain. So, the group velocity of the probe field as well as
the speed of information transfer can be controlled by either intensity
or relative phase of the applied fields.

One interesting application of quantum coherence is the
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modification of light pulse propagation in an atomic medium which
depends on its dispersive properties. The original study on the
light propagation was presented by Lord Rayleigh [21] at the end
of 19th century. He has remarked that a pulse of light inside a
medium travels at the group velocity. In a dispersive medium, the
frequency components of a light pulse experience different refractive
indices and the group velocity of a light pulse in such a material can
exceed the speed of light in vacuum which leads to the superluminal
light propagation [22]. This process can be described in terms of
superposition and interference of different frequency components of
the traveling plane waves to form a narrow-band light pulse [23, 24].

2. MODEL AND EQUATIONS

Consider a (KR5) quantum system as depicted in Fig. 1. The scheme
consists of an excited state |4〉, two non-degenerate metastable lower
states |3〉 and |5〉 as well as two intermediate degenerate states |1〉
and |2〉. The transitions |1〉–|3〉, |2〉–|3〉, |1〉–|4〉 and |2〉–|4〉 are driven
by four coherent laser fields with Rabi frequencies g13, g23, g14 and
g24, respectively, to establish a diamond-shape closed-loop system. A
tunable coherent probe field with Rabi frequency gp = g35 is applied
to the dipole-allowed transition |3〉–|5〉 that couples diamond-shape
system to the metastable state |5〉. The spontaneous decay rates from
the upper level |i〉 to the lower level |j〉 are denoted by 2γij . The
spontaneous emission from the excited state |4〉 to the lower states |3〉,
|5〉 are ignored.

The total Hamiltonian in bare state basis and in interaction
picture is given as

H5 =




0 0 |g13| eiφ13 |g14| eiφ14 0
0 0 |g23| eiφ23 |g24| eiφ24 0

|g13| e−iφ13 |g23| e−iφ23 0 0 g35

|g14| e−iφ14 |g24| e−iφ24 0 0 0
0 0 g35 0 0




, (1)

where φij shows the initial phase of the laser field which is applied
to the transition |i〉–|j〉. It is assumed that all of the applied fields
are in exact resonance with the corresponding transitions. The master
equation of the motion for the density operator in an arbitrary multi-
level atomic system can be written as:

∂ρ

∂t
=

1
i~

[H, ρ] + Lρ, (2)

where Lρ represents decay part of the system. By expanding Eq. (2),
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we can easily arrive at the density matrix equation of the motions:

ρ̇11 = 2γ41ρ44 − 2γ13ρ11 + ig13ρ31 − ig∗13ρ13 + ig∗14ρ41 − ig14ρ14,

ρ̇22 = 2γ42ρ44 − 2γ23ρ22 + ig23e
−i(∆t+δφ)ρ32 − ig∗23e

i(∆t+δφ)ρ23

+ ig∗24ρ42 − ig24ρ24,

ρ̇33 = 2γ13ρ11 + 2γ23ρ22 − 2γ35ρ33 − ig13ρ31 + ig∗13ρ13

− ig23e
−i(∆t+δφ)ρ32 + ig∗23e

i(∆t+δφ)ρ23 − ig∗pρ35 + igpρ53,

ρ̇44 = −2(γ41 + γ42)ρ44 + ig14ρ14 − ig∗14ρ41 − ig∗24ρ42 + ig24ρ24,

ρ̇12 = (i(∆42 −∆41)− (γ13 + γ23))ρ12 + ig13ρ32 + ig∗14ρ42

− ig∗23e
i(∆t+δφ)ρ13 − ig24ρ14,

ρ̇13 = (i∆13 − γ13 − γ35)ρ13 + ig13(ρ33 − ρ11) + ig∗14ρ43

− ig23e
−i(∆t+δφ)ρ12 − ig∗pρ15,

ρ̇14 = −(i∆41 + (γ13 + γ41 + γ42))ρ14 + ig13ρ34

+ ig∗14(ρ44 − ρ11)− ig∗24ρ12,

ρ̇15 = −(i(∆13 + ∆p)− γ13)ρ15 + ig13ρ35 + ig∗14ρ45 − igpρ13,

ρ̇23 = (i(∆42 −∆)− γ23)ρ23 + ig23e
−i(∆t+δφ)ρ33

− ig∗23e
i(∆t+δφ)ρ22 + ig∗24ρ43 − ig13ρ21 − ig∗pρ25,

ρ̇24 = −(i∆42 + (γ23 + γ41 + γ42))ρ24 + ig23e
−i(∆t+δφ)ρ34

+ ig∗24(ρ44 − ρ22)− ig∗14ρ21,

ρ̇25 = (i(∆23 −∆ + ∆p)− γ23)ρ25 + ig23e
−i(∆t+δφ)ρ35

+ ig∗24ρ45 − igpρ23,

ρ̇34 = −(i(∆41 + ∆13) + (γ41 + γ42))ρ34 + ig∗23e
i(∆t+δφ)ρ24

+ ig∗13ρ14 + igpρ54 − ig∗14ρ31 − ig∗24ρ32,

ρ̇35 = −(γ35 − i∆p)ρ35 + ig∗23e
i(∆t+δφ)ρ25 + ig∗13ρ15

+ igp(ρ55 − ρ33),
ρ̇45 = (i(∆41 + ∆13 + ∆p)− (γ41 + γ42))ρ45 + ig14ρ15

+ ig24ρ25 − igpρ43,

(3)

where ∆13 = ω1−ω13, ∆23 = ω2−ω23, ∆41 = ω3−ω41, ∆42 = ω4−ω42,
∆p = ωp − ω35 are the one-photon resonance detuning transitions |1〉–
|3〉, |2〉–|3〉, |1〉–|4〉, |2〉–|4〉 and |3〉–|5〉, respectively. The parameters
δφ = φ24 − φ14 + φ23 − φ13 and ∆ = ∆42 −∆41 + ∆23 −∆13 show the
relative phase and multi-photon detuning, respectively In this notation
ωi shows the central frequency of the corresponding laser field.

The response of the atomic system to the applied fields is
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Figure 1. A schematic diagram of the Kobrak-Rice 5-level (KR5)
quantum system. The solid arrows show the coupling fields and the
dashed one shows the probe field.

determined by the susceptibility χ, which is defined as [25]:

χ(ωp) =
2Nd35

ε0Ep
ρ35(ωp), (4)

where N is the atom number density in the medium. The real and
imaginary parts of χ correspond to the dispersion and the absorption
of a weak probe field, respectively. For further discussion, we introduce
the group index ng = c

vg
where c is the speed of light in the vacuum

and the group velocity vg is given by

vg =
c

1 + 2πχ′(ωp) + 2πωp
∂

∂ωp
χ′(ωp)

. (5)

The group velocity of a light pulse can be determined by the slope
of the dispersion. In our notation the negative (positive) slope of
dispersion corresponds to superluminal (subluminal) light propagation.
In addition, negative (positive) values in the imaginary part of the
susceptibility show the gain (absorption) for the probe field.

3. DRESSED STATES ANALYSIS

We assume that all of the applied fields are in exact resonance with the
corresponding transitions. Then the multi-photon resonance condition,
i.e., ∆ = 0, is fulfilled. So, the coefficients of the Eq. (3) do not have



338 Mahmoudi, Sahrai, and Allahyari

an explicitly time dependent terms. First, we assume the probe field
is switched off (or weak), then the phase dependent dressed states |Di〉
(i = 1–4) for δϕ = 0 are given by [18]

|D1〉 =

√
y −√z(x +

√
z)√

2(w − g14
√

z)
|1〉 −

√
2(g13g23 + g14g24)

√
y −√z

(w − g14
√

z)
|2〉

+
(v − g13

√
z)

(w − g14
√

z)
|3〉+ |4〉 ,

|D2〉 = −
√

y −√z(x +
√

z)√
2(w − g14

√
z)

|1〉+
√

2(g13g23 + g14g24)
√

y −√z

(w − g14
√

z)
|2〉

+
(v − g13

√
z)

(w − g14
√

z)
|3〉+ |4〉 ,

|D3〉 =

√
y +

√
z(x +

√
z)√

2(w + g14
√

z)
|1〉 −

√
2(g13g23 + g14g24)

√
y −√z

(w + g14
√

z)
|2〉

+
(v + g13

√
z)

(w + g14
√

z)
|3〉+ |4〉 ,

|D4〉 =

√
y +

√
z(x +

√
z)√

2(w + g14
√

z)
|1〉+

√
2(g13g23 + g14g24)

√
y −√z

(w + g14
√

z)
|2〉

+
(v + g13

√
z)

(w + g14
√

z)
|3〉+ |4〉 ,

and the corresponding eigenvalues are

Λ1 =−
√

y−√z√
2

, Λ2 =

√
y−√z√

2
, Λ3 =−

√
y+

√
z√

2
, Λ4 =

√
y+

√
z√

2
, (6)

where

x = g2
13 + g2

14 − g2
23 − g2

24,

y = g2
13 + g2

14 + g2
23 + g2

24,

z = −4(g14g23 − g13g24)2 + y2,

w = g2
13g14 + g3

14 − g14g
2
23 + 2g13g23g24 + g14g

2
24,

v = g3
13 + g13g

2
14 + g13g

2
23 + 2g14g23g24 − g34g

2
24.

We have not considered the normalization coefficient for simplicity. All
four dressed states contain all four bare states |1〉, |2〉, |3〉 and |4〉 and
all eigenvalues are non-zero. But, if the Rabi frequency of the applied
fields satisfy the following relation,

g14g23 = g13g24, (7)
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two dark states are established. Then the eigenvectors and eigenvalues
of the system are given by

|d1〉 =
g24

g23
|3〉+ |4〉 ,

|d2〉 = −g23

g13
|1〉+ |2〉 ,

|d3〉 = − g13g23G

g24

(
g2
13 + g2

23

) |1〉+
g2
23 + g2

24

g24G
|2〉+

g23

g24
|3〉+ |4〉 ,

|d4〉 =
g13g23G

g24

(
g2
13 + g2

23

) |1〉 − g2
23 + g2

24

g24G
|2〉+

g23

g24
|3〉+ |4〉 ,

λ1 = 0, λ2 = 0, λ3 = −G, λ4 = G,

(8)

where

G =

√(
g2
13 + g2

23

) (
g2
23 + g2

24

)

g2
23

.

Note that the dressed states and eigenvalues of a diamond shaped
closed-loop atomic system are phase-dependent, then by changing
the relative phase of the applied fields, the dressed states and the
eigenvalues of the system will dramatically be changed.

The interesting situation are obtained for δφ = π when the
following condition is satisfied by the applied fields,

g23 = g13, g24 = g14. (9)

In this case, the eigenvectors and eigenvalues can be written as

|d1〉 =
1√
2
|1〉 − 1√

2
|2〉+ |3〉 ,

|d1〉 = − 1√
2
|1〉+

1√
2
|2〉+ |3〉 ,

|d1〉 = − 1√
2
|1〉 − 1√

2
|2〉+ |4〉 ,

|d1〉 =
1√
2
|1〉+

1√
2
|2〉+ |4〉 ,

λ1 = −
√

2g13, λ2 =
√

2g13, λ3 = −
√

2g14, λ4 =
√

2g14.

(10)

Second, we switch on the probe field and the Kobrak-Rice system is
established. The phase dependent atom field dressed states and the
corresponding eigenvalues of such system for g13 = g23 = g14 = g24 = g,
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g35 = gp, and δφ = 0 are given by

|D1〉 = − |1〉+ |2〉 ,

|D2〉 =
gA−

gpB− |1〉+
gA−

gpB− |2〉 −
√

B−
√

2gp

|3〉+
C+

√
2gp

√
B− |4〉+ |5〉 ,

|D3〉 =
gA−

gpB− |1〉+
gA−

gpB− |2〉+

√
B−

√
2gp

|3〉 − C+

√
2gp

√
B− |4〉+ |5〉 ,

|D4〉 =
gA+

gpB+
|1〉+

gA+

gpB+
|2〉 −

√
B+

√
2gp

|3〉+
C−

√
2gp

√
B+

|4〉+ |5〉 ,

|D5〉 =
gA+

gpB+
|1〉+

gA+

gpB+
|2〉+

√
B+

√
2gp

|3〉 − C−
√

2gp

√
B+

|4〉+ |5〉 ,

Λ1 =0.0, Λ2 =−
√

B−

2
, Λ3 =

√
B−

2
, Λ4 =−

√
B+

2
, Λ5 =

√
B+

2
,

(11)

where,

A± = 8g2 ± 2
√

16g4 + g4
p B± =

(
4g2 + g2

p ±
√

16g4 + g4
p

)

C± = −4g2 + g2
p ±

√
16g4 + g4

p.

Note that a null eigenvalue appears, but for a small probe Rabi
frequency, above eigenvalues can be written as

Λ1 = 0.0, Λ2 = − gp√
2
≈ 0, Λ3 =

gp√
2
≈ 0,

Λ4 = −
√

8g2 + g2
p

2
≈ −2g, Λ5 =

√
8g2 + g2

p

2
≈ 2g.

(12)

Now the system is ready to show the double-dark resonance structure.
A characteristic feature of this phenomenon is the appearance of a
very narrow structure, due to the multi-photon resonances in optical
spectra. It is shown that the resonance associated with the double-
dark states can make the medium absorptive or transparent [26].
The double dark resonance, in a four level system, has been
theoretically studied [27] and experimentally observed [28]. It has been
demonstrated that the double-dark resonance is a powerful mechanism
for establishing the high efficiency four-wave mixing [29], high
resolution spectroscopy [30], sub-wavelength atom localization [31],
and controlling the group velocity of a light pulse in a dispersive
medium [32]. Recently, we have employed the double-dark resonance
for controlling the optical bistability in a four-level mercury atom [33].
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It is worthwhile to note that for δφ 6= 0 the system does not show
a double-dark resonance structure. For example, if δφ = π, the dressed
states and the eigenvalues of the system are given by

|D1〉 = − gp

2g
|1〉 − gp

2g
|2〉+ |5〉 ,

|D2〉 = − 1√
2
|1〉 − 1√

2
|2〉+ |4〉 ,

|D3〉 =
1√
2
|1〉+

1√
2
|2〉+ |4〉 ,

|D4〉 = − g

gp
|1〉+

g

gp
|2〉 −

√
2g2 + g2

p

gp
|3〉+ |5〉 ,

|D5〉 = − g

gp
|1〉+

g

gp
|2〉+

√
2g2 + g2

p

gp
|3〉+ |5〉 ,

Λ1 =0, Λ2 =−
√

2g, Λ3 =
√

2g, Λ4 =−
√

2g2+g2
p, Λ5 =

√
2g2+g2

p.

(13)

Even for a weak probe field Rabi frequency, the double-dark resonance
structure is not established and just two side peaks in the absorption
spectrum are expected.

4. RESULTS AND DISCUSSION

We now summarize our results for the steady state behavior of the
system by using Eq. (3). For simplicity, all parameters are reduced to
dimensionless units through scaling by γ1 = γ2 = γ and all figures are
plotted in the unit of γ. It is difficult to solve analytically, Eq. (3),
then we are trying to solve, numerically, to obtain our interesting
results shown in Figs. 2–6. We assume that all of coupling fields are
in exact resonance with the corresponding transitions to establish the
multi-photon resonance condition. First, we are interested in studying
the effect of the intensity of the coupling fields on the dispersion and
absorption spectrum when δφ = 0. In Fig. 2, we show the absorption
(solid) and dispersion (dashed) of a weak probe field for different values
of the intensity of the applied fields. The selected parameters are
(a), (b) g1 = g23 = g14 = g24 = g = 2γ, (c), (d) g13 = g23 = 2γ,
g14 = g24 = γ and (e), (f) g13 = g24 = 3γ, g23 = 2γ, g14 = γ for all of
which, we have γ13 = γ23 = γ, γ41 = γ42 = 0.1γ, γ35 = 0.01, ∆13 =
∆23 = ∆41 = ∆42 = 0, gp = 0.01γ. In Figs. 2(a)–(d) the condition (7)
is satisfied and an interacting dark states resonance is expected. The
central peak in these figures shows a double-dark resonance structure,
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while two side peaks located at ±2g show a one-photon transition due
to the usual dynamical Stark effect. By decreasing the Rabi frequency
of two upper diamond closed-loop transitions, the central absorption
peak is decreased. Moreover the slope of the dispersion around zero
detuning is steep negative, corresponding to the superluminal light
propagation while in the electromagnetically induced transparency
(EIT) windows the slope of dispersion is positive which shows the
normal dispersion.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Real (left column) and imaginary (right column) part of
susceptibility are plotted versus probe field detuning for δφ = 0. The
selected parameters are 2γ13 = 2γ23 = 2γ, 2γ41 = 2γ42 = 0.2γ,
2γ35 = 0.02, ∆13 = ∆23 = ∆41 = ∆42 = 0, gp = 0.01γ (a),
(b) g1 = g23 = g14 = g24 = g = 2γ, (c), (d) g13 = g23 = 2γ,
g14 = g24 = γ and (e), (f) g13 = g24 = 3γ, g23 = 2γ, g14 = γ.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Real (left column) and imaginary (right column) part of
susceptibility are plotted versus probe field detuning for δφ = π. The
other parameters are same as in Fig. 2.

In Fig. 2(e) and Fig. 2(f) the Rabi frequency of the applied fields
exceed the condition (7) and the central double-dark resonance peak
disappears Four peaks in the absorption spectrum can be explained by
Eq. (6).

The other interesting aspect of this system is the phasedependent
dressed states. In Fig. 3, similar plots are shown for δφ = π. An
investigation of Fig. 3 shows that the double dark resonance structure
does not establish. Generally, two peaks observed in the absorption
spectrum located at ±√2g can be explained by Eq. (13). Similarly,
the slope of dispersion around the absorption peaks is negative, while
in EIT regions the slope of dispersion is positive. Note that Fig. 3(c)
and Fig. 3(d) are similar to the Fig. 3(a) and Fig. 3(b), respectively.
This point can be explained by Eq. (10). When the applied fields
satisfy the condition (9), the eigenvectors are not depending on the
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Rabi frequency of the applied fields. On the other hand, the atomic
bare state |3〉 can be written versus first two eigenvectors |d1〉 and |d2〉.
Then the probe field excites two |5〉–|d1〉 and |5〉–|d2〉 transitions and
two absorption peaks are established at ∆p = ±√2g13 which do not
depend on the parameter g14.

Now we are interested in the dynamical behavior of the population
distribution of each level and the probe field absorption. In Fig. 4,
we plot the dynamical behavior of the population and the absorption
for δφ = 0 and δφ = π. We assume all five lasers satisfy the
exact resonance condition. The other used parameters are same as
in Fig. 2(a). An investigation on the Fig. 4 shows that the population
distribution of levels as well as the optical properties of the system is
completely phase-dependent. For δφ = 0, all of the levels are populated

(a) (b)

(c) (d)

(e) (f)

Figure 4. The dynamical behavior of populations (a)–(e) and
absorption (f) of probe field are shown for δφ = 0, π. The other
parameters are same as in Fig. 2(a).
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while by switching the relative phase of the applied fields to δφ = π, the
population distribution is changed and the excited state depopulated
(Fig. 4(d)) Moreover, by comparing the population difference in probe
transition (Fig. 4(e)) and the probe field absorption (Fig. 4(f)), it is
shown that for δφ = 0, the population of the lower level is larger than
upper level, so the probe field will beabsorbed Note that for δφ = π,the
ground level |5〉 is populated, and the system becomes transparent, so
the probe field does not attenuate as it passes through the medium.
This is the result of destructive quantum interference of two |5〉–|D4〉
and |5〉–|D5〉 transitions defined in Eq. (13).

Now we are interested in studying the effect of the incoherent
pumping field on the optical properties of the system. An incoherent
pumping field, i.e., E(t), has a broad spectrum with effective δ-like
correlation, i.e., 〈

E∗(t)E(t′)
〉

= Γδ(t− t′). (14)

We apply such incoherent pumping field with the pump rate r =
2p2/~2Γ to the transition |4〉–|5〉 where p shows the dipole moments of
corresponding atomic transition.

In Fig. 5, we display the probe dispersion and probe absorption
for δφ = 0 and different values of the incoherent pump rate. The other
parameters are same as in Fig. 2(a). Fig. 5 shows that for r = 0.01γ
the central peak, which is corresponding to the double dark resonance
structure, switches to the gain dip, while the other two side peaks
are still absorption peaks. Moreover, the slope of dispersion around
the central dip is switched from negative to positive. By increasing
the incoherent pumping rate to r = 0.05γ, two side peaks are also
switched to gain dips. In Fig. 6, we plot the absorption (left column)
and group index (right column) of the probe field. The parameters
are g1 = g23 = g14 = g24 = 0.5γ, δφ = 0 (a), (b), π (c)–(f),
r = 0.0 (a–d) and 0.03γ (e), (f). The other parameters are same as
in Fig. 2. Fig. 6(a) shows the negative group index corresponding to
the superluminal light propagation. However, according to Fig. 6(b),
it is accompanied by strong absorption, so the pulse light will be
attenuated. By changing the relative phase to δφ = π, the two
absorption peaks appear in the absorption spectrum as shown in
Fig. 6(c). Similar to previous case, the superluminal light propagation
is accompanied by strong absorption peak which is not an interesting
case for light pulse propagation. In Fig. 6(e) and Fig. 6(f), we
apply a weak incoherent pumping field to the transition |4〉–|5〉 so
the doublet absorption peak changes to a doublet gain. Moreover,
the slope of dispersion switches from positive to negative around zero
detuning and then the group index becomes negative(see Fig. 6(f)).
For used parameters, the absorption or gain around zero detuning is
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Real (left column) and imaginary (right column) part of
susceptibility are plotted versus probe field detuning forδφ = 0. The
pump strength is (a), (b) Λ = 0.0, (c), (d) 0.01γ, (e), (f) 0.05γ. The
other parameters are same as in Fig. 2(a).

negligible and the superluminal light propagation is also occurred in
this region. Then, by applying an incoherent pumping field to our
suggested system, the absorption-free superluminal light propagation
is established. Note that the interesting region of the light propagation
is a region that the system does not show the absorption or gain. This
is due to the fact that a large absorption in the system does not permit
the pulse propagation inside the medium. On the other hand, the gain
also may add some noise to the system.

Although the group velocity of a light pulse can be propagated
with a speed faster than the speed of light in vacuum c, i.e.,
superluminal, no information can be transmitted faster than the c.
In fact, all the information encoded on the waveform is available to be
detected at the pulse front (The waveform has a front, the moment
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of time when the intensity first becomes non-zero). When such a
waveform passes through an anomalous dispersion medium, the peak
of the pulse can move forward with respect to the front, but can never
exceed the front. So the speed of the transmission of information is
limited by the encoding/decoding method.

On the other hand, in many practical situations, we can perform
reliable measurements of the information content only near peak of the

(a) (b)

(c) (d)

(e) (f)

Figure 6. Absorption spectrum (left column) and corresponding
group index (right column) of probe field are plotted versus probe
field detuning for (a), (b) δφ = 0, (c)–(f) π. The pump strength is
(a)–(d) Λ = 0.0, (e), (f) 0.03γ. The coupling Rabi frequencies are
g1 = g23 = g14 = g24 = 0.5γ. The other parameters are same as in
Fig. 2.
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pulse. In this sense, useful information often propagates at the group
velocity, but it always limited by traveling less than or equal to the
speed of light in vacuum [34].

It is worthwhile to understand that the phase-dependent behavior
of the system is obtained even in the absence of an incoherent pumping
field. However, by applying an incoherent pumping field, a gain-
assisted superluminal light propagation is established.

5. CONCLUSION

The absorption and dispersion properties of a Kobrak-Rice 5-level
quantum system interacting with laser fields were investigated. It
was shown that the dressed states of such a system are phase-
dependent, and the optical properties of the system can be controlled
by either intensity or the relative phase of the applied fields. Moreover,
by applying a weak incoherent pumping field, the absorption-free
superluminal light propagation is obtained.
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