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Abstract—A novel robust adaptive beamforming method for
conformal array is proposed. By using interpolation technique,
the cylindrical conformal array with directional antenna elements is
transformed to a virtual uniform linear array with omni-directional
elements. This method can compensate the amplitude and mutual
coupling errors as well as desired signal point errors of the conformal
array efficiently. It is a universal method and can be applied to other
curved conformal arrays. After the transformation, most of the existing
adaptive beamforming algorithms can be applied to conformal array
directly. The efficiency of the proposed scheme is assessed through
numerical simulations.

1. INTRODUCTION

Adaptive beamforming with conformal antenna arrays are of interest
for future communication and defense applications [1, 2]. In ideal case,
adaptive arrays can suppress the interference signals and noise while
efficiently keeping the interest signals. However, in practice, there
are all kinds of errors in the system, such as elements amplitude and
phase errors, elements location errors, mutual coupling errors and
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desired signal point errors, etc. Most traditional adaptive beamforming
algorithms are sensitive to the environment. They often give poor
performance when these errors are taken into consideration [3]. In
past decades, many approaches have been proposed to improve the
robustness. One of the efficient ways among them is to recast the
sample covariance matrix, such as diagonal loading [4, 5]. How to
choose the diagonal loading level based on the information of the
uncertainty of the array steering vector is an open problem. Recently,
many automatic diagonal loading approaches have been developed [6–
10]. These methods have high performance and can be seen as robust
adaptive beamformers.

Compared to uniform linear array (ULA), when conformal array
with a small radius of curvature is used for adaptive signal processing
or beamforming, some important problems must be considered. First,
conformal array has “shadow effect” due to the metallic platforms. It
means that an incident wave comes from a special angle, but not all
of the antenna elements can receive this signal. Second, the radiation
patterns of conformal antennas are always directional. Because each
element has a different normal direction, the maximum radiation point
is different. Hence, for any incident wave, different elements have
different responses. Third, the mutual coupling between the elements
cannot be ignored. It becomes more complex in the situation of
conformal array due to the effects of the platform. It can only be
analyzed by using some numerical methods, such as finite element
method (FEM), finite differential time domain method (FDTD) and
method of moment (MOM). These errors will seriously affect the
performance of traditional beamformers if we do not compensate them.
Unfortunately, most of the existing robust algorithms are based on
the ideal case (i.e., ULA with omni-directional elements, without
mutual coupling). Hence conventional algorithms often have a poor
performance on conformal arrays and can hardly be applied directly.

In order to overcome the problems mentioned above, we propose
a robust, interpolation based adaptive beamforming method to
transform a cylindrical conformal array with directional antenna
elements to a virtual ULA with omni-directional elements. The
transformation can be seen as a procedure of array optimization. In
the process, the mutual coupling effect is taken into consideration.
After the transformation, the conformal array has the character of
ideal ULA. Hence, all of the errors can be suppressed effectively.
Moreover, most existing adaptive beamforming algorithms that can
just be used to ULA can be applied to conformal array after the
transformation. This method is simple and easy for implementation.
It is a universal method and independent of the array configurations.
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Simulation results show that the proposed method achieves a higher
performance in conformal array than conventional methods. This
paper is organized as follows: In Section 2, cylindrical conformal array
beamforming based on interpolation method is proposed in detail. In
Section 3, the performance of the proposed method and conventional
methods are compared by some simulation examples. The new method
is concluded in Section 4.

2. CYLINDRICAL CONFORMAL ARRAY
BEAMFORMING BASED ON INTERPOLATION
METHOD

It has been demonstrated that uniform circular arrays (UCA) have
better performance, especially in azimuth-plane beamforming, than
uniform rectangular arrays (URA). Most UCAs use dipole as the
elements. Dipole antenna has an omni-directional radiation pattern
at φ direction. But for conformal arrays, we cannot use dipole as
the element because of the metallic platform. Microstrip antenna is
a good choice for conformal array elements due to its low profile and
unidirectional radiation characteristics.

2.1. Cylindrical Conformal Array

Consider a cylindrical conformal array with M identical microstrip
antennas. As shown in Fig. 1, these antennas are mounted uniformly
on the surface of the cylinder. The radius of the cylinder is r. At time t,
P (P < M) narrowband signals with azimuth angle φi (i = 1, 2, ..., P )
impinge on the conformal array. The M × 1 receiving data vector of

Figure 1. Cylindrical conformal array with directional antenna
elements.
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the array is given by

x(t) = C[F(φ) ·A(φ)S(t)] + n(t) (1)

where S(t) (including the desired signal and the interferences) is the
P ×1 vector whose ith element denotes the ith signal. A is the M ×P
steering matrix, whose ith (i = 1, 2, . . . , P ) column is the steering
vector of the ith signal.

A = [a(φ1),a(φ2), · · · ,a(φP )] (2)

am(φi) = ejkr cos(φi−βm), (m = 1, 2, . . . , M) (3)

where βm = 2π(m − 1)/M and k is the wave number. The M × 1
vector n(t) represents additive white noise. F is the M × P radiation
pattern matrix whose m, ith elements denote the response of the mth
(m = 1, 2, . . . , M) antenna to the ith (i = 1, 2, . . . , P ) signal.

F = [f(φ1), f(φ2), . . . , f(φP )] (4)

f(φi) = [f(φi − β1), f(φi − β2), ..., f(φi − βM )]T (5)

where f(φi−βm) is the radiation pattern of the antenna element. (·)T

denotes the transpose. If the elements are point sources, f(φi−βm) =
1. From Fig. 1, we can see that for the conformal array, different
elements have different responses to the signal. Assume that the
direction of arrive (DOA) of the signal is φ = 90◦, then element 5
has the strongest response, while elements 1 and 9 can hardly receive
this signal. Of course those elements behind the cylinder (element 10
to M) have zero response. C is the M×M circular symmetrical matrix
[11–14] which represents the mutual coupling of the array

C = ZL(Z + ZLI)−1 (6)

where ZL is the load impedance (usually 50 ohms), and Z is the M×M
mutual impedance matrix. I is the M × M unit matrix. Once Z is
known, the mutual coupling C of the array can be determined by (6).
The impedance matrix is difficult to determine analytically, but easy
to get through S parameter measurement or numerical methods. Also,
the radiation pattern matrix F can be determined in the same way.

The minimum variance distortionless response (MVDR) beam-
former is to maintain the distortionless response to the desired signal
while minimizing the output power

min
w

wHRw subject to wHa(φ0) = 1 (7)

where w is the M × 1 beamformer weight vector, and (·)H denotes
the conjugate transpose. R = E{x(t)x(t)H} is the array covariance
matrix, and E{·} denotes the statistical expectation. a(φ0) is the
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steering vector of desired signal with the form of Equation (3), and φ0

is the desired signal’s DOA. The solution of this problem in the finite
sample case is so called sample matrix inverse (SMI) beamformer and
given by

w = µ−1R̂−1a(φ0) (8)

where µ = a(φ0)HR̂−1a(φ0) is a constant; R̂ =
K∑

j=1
x(t)x(t)H/K is the

sample estimate of R; K is the number of snapshots, respectively. The
output signal of the cylindrical conformal array can be written as

y(t) = wHx(t) (9)

It is clear to see from Equation (8) that the effects of mutual
coupling and directional radiation pattern have been included in
sample covariance matrix R̂ but not in the static steering vector a(φ0).
If we use Equation (8) as the weight vector of conformal array without
any compensation, big errors will be introduced. These errors will
change not only the depth of the nulls but also their locations, which
will result in a poor performance to the beamformer. These errors
can be compensated by recasting Equation (8). Here we propose an
alternative method by using the interpolation technique.

2.2. Interpolation Technique for Robust Adaptive
Beamforming

Interpolation technique has been widely used for DOA estimation [15–
18] but rare for adaptive beamforming [19, 20]. The main idea of
interpolation method is dividing the field of view of the array into
L sectors. The size of the sectors depends on the array geometry and
desired accuracy. For example, there is a signal, whose DOA is in
the sector Φ (Φ ∈ [φ1, φ2]), where φ1 and φ2 are the left and right
boundaries of this sector. Let ∆φ as the interpolation step, then Φ
can be represented as

Φ = [φ1, φ1 + ∆φ, φ1 + 2∆φ, · · · , φ1 + n∆φ, φ2] (10)

the ∆φ is determined by the desired accuracy. In this sector, the real
array manifold is

CF·A = C[f(φ1)·a(φ1), f(φ1+∆φ)·a(φ1+∆φ), · · · , f(φ2)·a(φ2)] (11)

In order to transform the real conformal array to a virtual ULA with
omni-directional elements, we can construct a virtual ULA in the same
sector Φ, whose steering matrix is

Ā = [ā(φ1), ā(φ1 + ∆φ), · · · , ā(φ1 + n∆φ), ā(φ2)] (12)
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where ā(φ) is the steering vector of the virtual ULA, and its mth
element is

ām(φ) = ejk(m−1)d cos φ m = 1, 2, . . . ,M (13)

Here d is the spacing of two adjacent elements. Next, we need to find
a transformation matrix B to transform the real array into the virtual
array, that is

BH [CF ·A(φ)] = Ā(φ), φ ∈ Φ (14)

The size of B is M ×M . It is impossible to find an ideal B to satisfy
Equation (14). The accuracy of the interpolation can be examined by
comparing the ratio of the Frobenius norms

τ =
||Ā−BH(CF ·A)||

||CF ·A|| (15)

where || · || denotes the Frobenius norm. If τ is small enough then
accept B. If this ratio is not sufficiently small, we can reduce ∆φ or
change the configuration of the visual array then recalculate τ . The
interpolation procedure is time consuming if the sector size and the
number of interpolation angles n become very large. Fortunately, it
is an off-line procedure. The matrix B just needs to be calculated
only once for given array then stored in the system. More details
about the interpolation can be found in [18] and references in it.
The interpolation procedure is an optimization process. If τ is small
enough, we can use the virtual ULA to replace the original conformal
array. Note that the beamformer weight vector now is no longer the
one in Equation (8), and it should be

w̄ = µ−1 ˆ̄R
−1

ā(φ0) (16)

where ˆ̄R =
K∑

j=1
x̄(t)x̄(t)H/K, µ̄−1 = āH(φ0) ˆ̄R−1ā(φ0) and

x̄(t) = Bx(t) (17)

The receiving data of the conformal array x(t) are transformed
to the data of the ULA x̄(t) through Equation (17). Hence, the new
covariance matrix ˆ̄R has the characteristics of ULA. Also, ā(φ0) in
Equation (16) is the virtual ULA’s steering vector. Therefore, the
errors of the cylindrical conformal array can be compensated when we
use the weight vector in Equation (16) for beamforming.

2.3. Implementation

The proposed method is summarized in Table 1. It is worth to note
that to find the transformation matrix B, Step 1.1 is necessary. Matrix
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Table 1. Implemetation procedure.

Step 1: Initialization

1.1 Use numerical methods to calculate the matrix F and C of the conformal

array in Equation (1);

1.2 Determine the steering vector ā(φ) of the virtual array in Equation (13);

1.3 Set the interpolation parameters (the left and right boundary of sector Φ,

interpolation step ∆φ, least interpolation error τ , etc.).

Step 2: Interpolation

2.1 Use Equations (11) and (12) to calculate the matrix CF ·A and Ā;

2.2 Use Equation (14) to calculate the matrix B and Equation (15) to

calculate the error τ ;

2.3 If τ is small enough, accept B. If not, go to step 1.2;

Step 3: Calculate the weight vector

3.1 Use Equation (17) to transform x(t) (the receiving date of the conformal

array) to x(t) (the receiving data of the virtual ULA);

3.2 Use Equation (16) to calculate the weight vector w̄.

C and F are determined by the configuration of the array and the
characteristics of antenna elements. They are easy to get by using
numerical methods. Step 1 and Step 2 are off-line processing. They
can be calculated and stored in the system beforehand. The advantage
of this method is that it can do the transformation and calibration at
the same time. Moreover, after the transformation, the array has the
characteristics of ULA. Hence, most beamforming algorithms that can
only be used on ULA (such as spatial smoothing methods for coherent
signals [21]), can be applied directly to conformal array now.

3. SIMULATION RESULTS

In this section, several simulation results are given to evaluate the
proposed approach. Consider a 16 elements cylindrical conformal
array, and the array model is shown in Fig. 1, where M = 16. The
elements of the array are linearly polarized microstrip antennas. The
polarization of the antenna is along z axis. The height of the cylinder
is 3λ, and the radius is 1.28λ. Here λ is the operating wavelength
of the antenna. The radiation pattern of element 5 (φ = 90◦) is
calculated by using the method of moment (MOM) and shown in Fig. 2.
All the antenna elements have identical radiation pattern due to the
symmetrical structure.
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Figure 2. Normalized radiation pattern of element 5.

Without loss of generality, we chose elements 1–9 to do the
transformation. The transformation sector is set to Φ ∈ [60◦, 120◦],
and the step ∆φ is 0.1◦. How to get the “best” virtual array is an
optimization problem. The configuration of the virtual array can be
arbitrary. It could be sparse, with different numbers of elements and
element intervals. To simplify the problem, we use ULA as the virtual
array. The virtual ULA consists of 9 isotropic point sources. The
optimized location of these point sources are on the x axis, and the
spacing is 0.25λ. The interpolation error τ in Equation (15) can be
smaller than 0.003 under these conditions. The desired signal is located
in the direction of φ = 90◦, and the SNR is 0 dB. An interference comes
from φ = 65◦ with the interference in noise ratio (INR) of 20 dB. It
should be noted that elements 8 and 9 cannot receive the interference
due to the cylinder. Both the desired signal and the interference
are narrow band and with the same polarization along z axis. The
number of snapshots is fixed at 512. Traditional SMI algorithm and
robust capon beamformer (RCB) [22] as well as their interpolated
counterparts are used for testing the beamforming performance on this
conformal array.

3.1. Conformal Array with Directional Element and Mutual
Coupling

Figure 3 shows the normalized gain pattern of the four methods.
The ideal case means that antenna elements are point sources, and
mutual coupling is ignored. In the ideal case, both SMI and RCB
algorithms have a −50 dB deep null at φ = 65◦. It can suppress the
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(a) (b)

Figure 3. (Color online) Normalized gain pattern of different
methods. (a) SMI and interpolated-SMI. (b) RCB and interpolated-
RCB. The blue line is the idea case.

interference efficiently. However, once we use the microstrip antennas
with radiation pattern shown in Fig. 2 instead of the point sources
and take into account the mutual coupling, both of the algorithms are
invalid. The null point disappears due to the big errors resulting from
the conformal array.

On the contrary, the proposed method achieves a good
performance in the array. Both the interpolated-SMI and interpolated-
RCB algorithms have a null with −35 dB depth, and all the sidelobe
levels are under −10 dB. It is needed to note that in the ideal case, the
beam pattern has a relatively high sidelobe level. It is due to the omni-
directional elements in UCA. Generally speaking, unlike ULA, the
directional elements in UCA can be seen as amplitude weights. This
can be used to lower the sidelobe level if designed properly. However,
for adaptive beamforming, the ability of interference suppression is
most important. Though the directional elements can lower the
sidelobe level, it will change the depth and location of the null. Hence,
calibration is necessary.

Figure 4 shows the comparison of the mean output signal-
to-interference-plus-noise (SINR) versus input SNR of the four
beamformers. The parameters are the same as aforementioned except
the SNR of desired signal changes from 0 dB to 25 dB. 100 separate
trials are performed. According to the results, we note that the
proposed method achieves a higher performance than conventional
methods. When SNR is low, the output SINR of interpolated-SMI
and interpolated-RCB methods is 2 dB higher than SMI and RCB.
With the SNR increasing, the advantage of the new method becomes



224 Yang et al.

Figure 4. Comparison of beam-
formers mean output SINR versus
input SNR.

Figure 5. Mean SINR for
varying number of snapshots.

more significantly. However, when SNR > 16 dB, the output SINR
of SMI based beamformes begins to decease. This is because for SMI
based algorithms, at high values of SNR, the desired signal will be
regarded as an interference to be suppressed. Since the RCB based
algorithms are adaptive diagonal loading methods, the loading level
can change automatically with changing SNR. Particularly, we can see
that the interpolated-RCB method is insensitive to errors and seems
to perform the best of all.

Figure 5 displays the mean output SINR versus the number of
snapshots. In this experiment, the input SNR is fixed at 15 dB. Other
parameters are the same as before. We find that the interpolated-RCB
method outperforms other methods significantly. We can see from
Fig. 4 and Fig. 5 that even without diagonal loading, the interpolated-
SMI algorithm has a better performance than RCB algorithm if the
value of SNR is not too high (< 18 dB). The simulation results prove
that the interpolated-SMI algorithm can provide a similar performance
to diagonal loading based algorithms.

3.2. Conformal Array with Directional Element, Mutual
Coupling and Desired Signal Point Error

Most of the adaptive beamformers are DOA based methods, which
means that the DOA of desired signal should be estimated before the
beamforming. In practice, due to the system mismatching and the
noise, the DOA of desired signal cannot be estimated accurately. If
the mainlobe of the beamformer points to an error direction, then the
actual desired signal will be regarded as interference and suppressed
by the beamformer [23]. This is the so called the problem of “desired
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signal point error”.
Figure 6 shows the performance of output SINR versus desired

signal point error. Both the errors of conformal array with directional
element and mutual coupling are taken into consideration. The desired
signal has a power of SNR = 15 dB, and other parameters are the same
as above. It can be seen that the proposed interpolation based methods
have a better SINR than conventional methods when the point error
changes between −3◦ ∼ 3◦. Fig. 7 shows the beam patterns with a
2◦ desired signal point error. For the classical SMI algorithm, the
mainlobe begins to split, and the sidelobe levels become very high.
Though the RCB algorithm can maintain the mainlobe close to 90◦,

Figure 6. Output SINR versus
desired signal point error.

Figure 7. (Color online) Nor-
malized gain patterns in the sit-
uation of 2◦ desired signal point
error.

Figure 8. Output SINR versus SNR in the situation of 2◦ desired
signal point error.
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the location of the null changes. However, the interpolated methods
achieve a relatively high performance. Particularly, it can be seen
that the gain pattern of interpolated-RCB is very close to Fig. 3(b)
(without desired signal point error). Hence, the interpolated-RCB has
the strongest robustness. Fig. 8 shows the mean SINR versus input
SNR with 2◦ desired signal point error. Again, the proposed method
shows a better SINR performance.

4. CONCLUSION

In this paper, we propose a novel adaptive beamforming method based
on the interpolation technique. This method gives a robust and high
performance on conformal array compared with conventional methods.
The errors resulting from different maximum radiating directions of the
elements, mutual coupling and desired signal point can be calibrated
by using the virtual array transformation. This method has the merits
of simple, robust and high performance. It is more important that after
the transformation, the conformal array has the characteristics of ideal
ULA. Hence, most of the existing adaptive beamforming algorithms
can be applied directly. This method is a universal method and easy
to extend to other conformal arrays. A number of simulation examples
clearly demonstrate that the proposed method is shown a significantly
improved performance as compared with the conventional methods on
conformal array beamforming.
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