
Progress In Electromagnetics Research, Vol. 107, 187–202, 2010

FAST RCS PREDICTION USING MULTIRESOLUTION
SHOOTING AND BOUNCING RAY METHOD ON THE
GPU

P. C. Gao, Y. B. Tao, and H. Lin

State Key Laboratory of CAD&CG
Zhejiang University
Hangzhou 310058, China

Abstract—This paper presents a GPU-based multiresolution shooting
and bouncing ray (MSBR) method with the kd-tree acceleration
structure for the fast radar cross section (RCS) prediction of electrically
large and complex targets. The multiresolution grid algorithm can
greatly reduce the total number of ray tubes, as it adaptively adjusts
the density of ray tubes for regions with different complexities of their
structures, while the kd-tree acceleration structure can highly decrease
the number of ray-patch intersection tests. The multiresolution grid
technique and kd-tree traversal algorithm are fully implemented on
the GPU to further accelerate the SBR by exploiting the massively
parallel computing ability. Numerical experiments demonstrate
that the proposed GPU-based MSBR can significantly improve the
computational efficiency. It is about 40 times faster than the CPU
MSBR, and at least 4.8 times faster than the GPU-based SBR without
the multiresolution grid algorithm.

1. INTRODUCTION

The high-frequency method has various applications, for instance, the
prediction of radar cross section (RCS), electromagnetic scattering [1],
and automatic target recognition [2], and the shooting and bouncing
ray (SBR) method [3] is one of the most popular and novel high-
frequency methods. The SBR involves two parts: ray tube tracing and
electromagnetic computing. Firstly, dense ray tubes, which represent
an incident plane wave, are shot to the target, and these ray tubes
are recursively traced to obtain the intersection positions. Then, the

Received 18 June 2010, Accepted 22 July 2010, Scheduled 5 August 2010
Corresponding author: H. Lin (lin@cad.zju.edu.cn).

188 Gao, Tao, and Lin

central rays of ray tubes are also launched along the incident direction
to the target, and the reflected fields of ray tubes are calculated
according to the geometric optics (GO) during each reflection. Finally,
the physical optics (PO) integral is carried out on the exit apertures,
which are formed by the exit points of ray tubes, to obtain the scattered
field. The feature of this approach is that it models the physical
procedure clearly and is very simple in concept to implement.

In the SBR, the density of ray tubes on the virtual aperture
perpendicular to the incident direction should be greater than ten rays
per wavelength to ensure the convergence of results. This requirement
makes it very time-consuming for electrically large targets. Many
efforts have been made to develop various acceleration algorithms. One
category is to reduce the number of ray-patch intersection tests. Jin et
al. [4] used the octree, which is constructed by recursively subdividing
the box into eight children boxes, to decrease the number of ray-patch
intersection tests. Tao et al. [5] proposed to apply the kd-tree to reduce
the time needed to trace each ray tube, since the kd-tree has been
publicly known as the best acceleration structure for ray tracing of the
static scenes in computer graphics [6]. The other category is to reduce
the total number of ray tubes involved in the computation. Suk et
al. [7] presented a fast algorithm to accelerate the SBR by applying
the multiresolution grid algorithm. Large-size ray tubes are used to
reduce the total number of ray tubes, and ray tubes are subdivided
only when necessary. Bang et al. [8] combined the multiresolution grid
subdivision algorithm and the octree structure to further improve the
efficiency of the SBR. Recently, the angular division algorithm was
developed to accelerate the SBR [9, 10].

Over the past few years, graphics processing unit (GPU) is
changed from the special graphics hardware to the general computing
resources, a highly parallel manycore processor with tremendous
computational horsepower and very high memory bandwidth. Beside
rendering, the GPU has been successfully applied to other complex
computational problems, which is known as the general purpose
processing on the GPU (GPGPU) [11]. Especially, the compute unified
device architecture (CUDA) [12] developed by NVIDIA provides a
simple and efficient way to leverage the massively parallel resources on
the GPU. Many works on computational electromagnetics have been
reported to use the GPU for acceleration. The Z-buffer was used in
the graphical electromagnetic computing (GRECO) method [13], and
it was improved for fast RCS prediction [14]. Tao et al. [15] accelerated
the GRECO method by moving the electromagnetic computing part to
the graphics hardware and achieved 30 times faster results. Peng and
Nie [16] proposed an approach to speed up the conventional method

Progress In Electromagnetics Research, Vol. 107, 2010 189

of moments on the GPU, which can deal with electrically large targets
by splitting a huge matrix into sub matrixes. The finite-difference
frequency-domain (FDFD) and the unconditionally stable Crank-
Nicolson time-domain finite-difference (CN-FDTD) method were also
implemented on the GPU for acceleration [17, 18].

We combine the kd-tree with the multiresolution grid algorithm
to speed up the SBR, and simultaneously adopt the GPU as hardware
acceleration due to its highly parallel architecture. Tao et al. [19]
proposed a GPU-based SBR technique and achieved an acceleration
ratio about 30. However, only the kd-tree is used in their approach
to improve the efficiency of ray tube tracing. Our GPU-based
MSBR further utilizes the multiresolution grid algorithm to reduce
the number of ray tubes involved in the computation on the GPU.
The rest of this paper is organized as follows. Section 2 introduces the
conventional SBR and two main acceleration techniques which are the
kd-tree acceleration structure and the multiresolution grid algorithm.
Section 3 first gives a short overview of CUDA, and then presents the
implementation detail of the multiresolution SBR (MSBR) with the
kd-tree on the GPU. In Section 4, numerical results are presented with
discussion. At last, Section 5 concludes this proposed approach.

2. SBR AND TWO ACCELERATION ALGORITHMS

Ray tube tracing and electromagnetic computing are two steps of the
SBR. In the first step, a set of dense ray tubes are shot to the target
along the incident direction, and ray tubes are traced to obtain the
intersections with the target. Then, the central rays of ray tubes are
launched, and the reflected fields of them are calculated by the theory
of GO at each intersection as follows:

 Erefl
‖

Erefl
⊥

 =

 Γ‖ 0

0 Γ⊥

 Einc

‖
Einc
⊥

 (1)

where
Einc
‖ = ê‖ ·Einc

Einc
⊥ = ê⊥ ·Einc

ê⊥ = k̂inc × n̂/
∣∣∣k̂inc × n̂

∣∣∣
ê‖ = k̂inc × ê⊥/

∣∣∣k̂inc × ê⊥
∣∣∣

êrefl
⊥ = ê⊥

êrefl
‖ = k̂refl × êrefl

⊥ /
∣∣∣k̂refl × êrefl

⊥
∣∣∣ (2)

190 Gao, Tao, and Lin

The vector k̂inc is the incident direction, k̂refl is the propagation
direction after the reflection, and n̂ is the normal of the patch where the
bounce happens. With the known Einc and the parameters calculated
above, the reflected field is:

Erefl = êrefl
‖ · Erefl

‖ + êrefl
⊥ · Erefl

⊥ (3)

The reflection coefficients are discussed in detail in [3, 20]. In the
step of electromagnetic computing, the final PO integral is carried out
with the exit field of the central ray on the four-sided polygon modeled
by the exit positions of the ray tube. At an observation point (r, θ, φ),
the formula of the scattered field of a ray tube is given:

E(r, θ, φ) ≈ e−jkr

r
(θ̂Eθ + φ̂Eφ) (4)

The PO integral about the aperture field (E, H) on the four-sided
polygon S is expressed as:[

Eθ

Eφ

]
=

(
jk

2π

) ∫∫

S
ejk·r′

{[−φ̂

θ̂

]
×E(r′)fe

+Z0

[
θ̂

φ̂

]
×H(r′)fh

}
· n̂dx′dy′. (5)

Equation (5) corresponds to three formulas with different values
of the coefficients fe and fh. The EH formula (fe = fh = 0.5) gives
the best approximation for the PO induced currents [21].

2.1. Kd-tree Construction and Traversal

The kd-tree, a well-known space-partition data structure, is widely
used to accelerate ray tracing in computer graphics. Recently, it
has been successfully applied in the application of computational
electromagnetics [5]. A kd-tree is constructed by recursively
splitting the target space into uneven boxes. The splitting plane is
perpendicular to one of three coordinate axes, and the greedy surface
area heuristic (SAH) strategy [22] is commonly used to search the
optimal splitting plane. A kd-tree has two kinds of nodes: the interior
node and the leaf node. The interior node has two children nodes
and the leaf node contains patches that overlap the axis-aligned box
of the leaf node. The depth-first kd-tree traversal algorithm needs a
stack to preserve the to-be-visited nodes. Due to the lack of the stack
on the GPU, a stackless kd-tree traversal algorithm was developed by
augmenting the kd-tree with ropes [23]. These ropes link the leaf node
via its six faces directly to the adjacent leaf node, the smallest interior
node or null.

Progress In Electromagnetics Research, Vol. 107, 2010 191

B

Root node A

C

D

E

F

G

0
t

1
t

2
t

3
t

4
t

H

I

(a)

A

B
C

D E

F G

H I

(b)

Figure 1. A 2D kd-tree and its traversal. (a) A ray has two
intersections with the 2D kd-tree, which has the interior nodes (B, C,
E) and the leaf nodes (D, F, G, H, I). (b) The traversal path is marked
with a red bold line. The ray enters the root node A, continues the
traversal through the interior node C. Then an intersection is found in
the leaf node D. With the help of the rope of D, the generated reflected
ray directly moves to the smallest interior node E including the leaf
node F and G. Ray tracing ends with the second reflected ray exiting
the leaf node G.

Figure 1 shows the traversal procedure of a 2D kd-tree with
ropes. When the ray encounters an interior node, one children node of
the interior node is selected to be traversed according to the relative
position of the splitting plane and the position where the ray enters
the node. At the leaf node, the intersection tests between the ray and
patches are performed to find the intersection position. If the ray has
no intersection with patches of the leaf node, it continues the traversal
through the rope efficiently. In this way, the stackless kd-tree traversal
greatly reduces the number of the interior node traversal steps to save
the ray tracing time in the SBR.

2.2. Multiresolution Grid Algorithm

In the SBR, for accurate results, the density of the incident rays on the
virtual plane should be greater than ten rays per wavelength. A large
number of rays will be the computational burden with the growth of the
electrical size of the target. Thus, an adaptive and flexible approach
called the multiresolution grid algorithm was developed to overcome
this problem [7]. The multiresolution grid algorithm first uses large-
size ray tubes, and then each ray tube may be evaluated to obtain the
scattered field, or be subdivided into four children ray tubes according
to the divergence.

192 Gao, Tao, and Lin

(a) (b)

 Minimum

size ray tube

 Initial

ray tube

 1st generation

children ray tube

Figure 2. Ray tube grid on the virtual plane. (a) The fixed resolution
grid. (b) The multiresolution grid.

Figure 2 compares the virtual aperture partition of the SBR and
the multiresolution SBR in predicting the first order scattering. The
target is formed by two patches, and the density of ray tubes is 16×16.
In the SBR, there are 289 corner rays that need to be traced. However,
only 175 rays need to be traced in the multiresolution grid algorithm
with the same accuracy.

3. GPU-BASED MSBR WITH THE KD-TREE

The current GPU architecture is based on a scalable array of streaming
multiprocessors (SMs) and a hierarchy of memory mainly including on-
chip shared memory and global memory located out of the chip. CUDA
is a minimal extension of the C programming language, and the core
of the parallel programming model of CUDA is the abstraction: a
hierarchy of thread groups, which provides a simple and direct way
to access the massively parallel computing resources on the GPU. As
shown in Figure 3, the hierarchy includes three concepts: grid, block,
and thread. A grid that consists of several thread blocks corresponds to
a parallel task. The threads within the same block can access the same
shared memory to cooperate among themselves. The global memory is
used to communicate and share large data sets among different tasks.
More introduction about CUDA can be found in [12].

The procedure of the GPU-based MSBR is shown in Figure 4, and
it executes in the multipass manner. One pass deals with ray tubes
at the fixed size, and includes ray tube tracing, divergent ray tube
recording, and electromagnetic computing of the valid ray tubes. The

Progress In Electromagnetics Research, Vol. 107, 2010 193

Thread

Shared memory

for one block

Global

memory

Grid 1

Block 0 Block 1 Block 2

Block 3 Block 4 Block 5

Grid 0

Block 0 Block 1

Block 2 Block 3

Thread Block

Figure 3. The hierarchic archi-
tecture of CUDA.

Result

Ray tube tracing

Check the validity of ray tubes

and record the tubes need

subdivision

Electromagnetic computing

Is the size of subdivided

ray tubes smaller than the

threshold

Subdivide the recorded

ray tube into four

children ray tubes

Y

N

Start

Figure 4. The procedure of the
GPU-based MSBR.

next pass subdivides divergent ray tubes and continues to process these
generated children ray tubes until the ray tube size is smaller than the
user defined threshold. Figure 5 illustrates ray tube grid on the virtual
plane, and this grid is subdivided into 2D thread blocks. Each thread
of the block traces a corner ray to obtain its intersection information
in parallel. In the first step, the stackless kd-tree traversal algorithm
(Section 2.1) is used to accelerate ray tube tracing. The final step,
electromagnetic computing, employs the GO and PO to evaluate the
scattered fields of ray tubes (Section 2), and these results are summed
up to obtain the scattered field of the target in this pass. The second
step is to check the validity of ray tubes and record divergent ray tubes,
described in detail as follows.

As shown in Figure 6, the validity of ray tubes is checked according
to the four cases of relationships between the ray tube and patches of
the target. We abandon a ray tube belonged to the type A which
misses the target. A ray tube is designated as the type B when four
corner rays all intersect with the same patch. The type C is that four
corner rays bounce from adjacent patches with the similar normal.
A ray tube belongs to the type D when it intersects partially with
the target or bounces from the patches which have largely different
normals. According to the above rules, ray tubes of the type B

194 Gao, Tao, and Lin

d

d dddd

d

d

d

dd

ddddddddddd

Virtual plane

Initial ray

tube

Ray tubes need subdivision

are marked in shared memory

Divergent ray tube buffer (DivRayTubeBuffer)

in global memory

divergent ray tubes

packing

Thread blocks for

tracing ray tubes

Corner ray

Ray tube grid

... ...

Figure 5. The procedure of divergent ray tubes recording on the
GPU.

Ray tube

Patch

B
Patch

D

Patch

C

Patch

A

(a)

Ray tube

Patch

B
Patch

D

Patch

C

Patch

A

(b)

Ray tube

Patch

B
Patch

D

Patch

C

Patch

A

(c)

Ray tube

Patch

B
Patch

D

Patch

C

Patch

A

(d)

Figure 6. Four types ray tubes. (a) Type A. (b) Type B. (c) Type
C. (d) Type D.

and C will be processed in the step of electromagnetic computing to
obtain the scattered fields, while ray tubes of the type D are divergent
ray tubes and should be recorded in the divergent ray tube buffer
(DivRayTubeBuffer) in global memory on the GPU.

The divergent information of each ray tube is first recorded in
the shared memory of the block, as indicated with “d” in Figure 5.
Since divergent ray tubes are located sparsely on the ray tube grid and
global memory is limited on the GPU, it is necessary to pack them in
DivRayTubeBuffer to reduce the total memory usage [24]. The first
thread of each block is chosen to count the number of divergent ray

Progress In Electromagnetics Research, Vol. 107, 2010 195

tubes and write them to DivRayTubeBuffer. Threads of different blocks
may access the same address of global memory causing the write-write
conflict when they perform the write operation. This is due to the
parallel execution of threads in CUDA. Fortunately, the atomic add
function performing a read-modify-write atomic operation provided
by CUDA can solve the write conflicts. It reads an integer in global
memory, adds another integer to it, and writes the result to the same
address. Figure 7 shows the application of the atomic add operation
in the MSBR. The grid keeps an integer which records the current
number of ray tubes in DivRayTubeBuffer, and each block can find its
exact position to write.

...

2 675 8

0 7 12 14 20 28

Block 0 Block 4Block 3Block 2Block 1

The DivRayTubeBuffer in global memory

...

Figure 7. As blocks execute in parallel, the starting position of each
block in DivRayTubeBuffer is random. Here, we assume that blocks
perform the atomic add operation in order 2, 1, 0, 3, 4,

It should be noted that it may seem inefficient for the first thread
to perform the write operation while the others in the same block
are waiting. A possible way is to let each thread corresponding to a
divergent ray tube to write its own content to DivRayTubeBuffer. For
this solution, one thread should sum the number of the divergent ray
tubes before it in shared memory to locate its own position. However,
no performance improvement is shown in this method.

In the next pass, divergent ray tubes in the last pass are
recorded in DivRayTubeBuffer, and each divergent ray tube should
be subdivided into four children ray tubes. Corner rays of children ray
tubes may have been traced in previous passes, and we can trace them
again in this pass or copy and use the existing intersection information
of them. A runtime analysis shows that the copy solution is the better
choice.

In summary, our algorithm performs ray tube tracing, divergent
ray tubes recording, and electromagnetic computing in one pass. Then,
each ray tube in DivRayTubeBuffer is subdivided into four children ray
tubes, and all generated children ray tubes execute the same three steps
in the next pass. The subdivision of ray tubes repeats until the ray
tube size is smaller than the user defined threshold, and then we get
the final scattered field of the target.

196 Gao, Tao, and Lin

4. NUMERICAL RESULTS AND DISCUSSION

Several numerical results are presented to evaluate the proposed GPU-
based MSBR with the kd-tree acceleration structure. All the results
are derived on an Intel Core 2 Duo 3.0GHz CPU and a NVIDIA
GeForce 275 GTX with CUDA Toolkit 2.2. Three different types of the
targets, two ships and an airplane as shown in Figure 8, are tested to
demonstrate the efficiency and accuracy of our approach. The detailed
geometric information of the targets are listed in Table 1.

For all the experiments described in the following, the incident
direction of the ship A and the airplane is rotated around the Y axis
from 0◦ to 360◦ with the interval of 1◦, while the φ is fixed at 0◦. The
incident direction for the ship B is rotated around the Z axis from 0◦
to 360◦ with the interval of 1◦. At most fifth-order is considered for
the ship B and the airplane, while only second-order is used for the
ship A due to its simple structure. The initial size of ray tubes is set
0.8λ, and the threshold is 0.1λ in both the CPU and GPU MSBR. The
GPU-based SBR adopts 0.1λ as the size of ray tubes.

x y

z

(a)

x y

z

φ

(b)

x y

zθ

(c)

θ

Figure 8. Three targets: (a) Ship A. (b) Ship B. (c) Airplane.

Table 1. The geometry size and the number of triangles of the three
targets. The peak memory requirement of the ship A, the ship B and
the airplane at 1THz, 10 GHz and 15 GHz for the GPU-based MSBR.

Target Size(m) Triangle Number
Peak Memory

Usage (M)
Ship A 0.9× 0.2× 0.2 574 101.6
Ship B 43.71× 5.89× 9.144 3237 271.8

Airplane 11.76× 7.4× 3.67 13050 278.9

Progress In Electromagnetics Research, Vol. 107, 2010 197

Table 2. The computation time (second) comparison of our GPU-
based MSBR, the CPU MSBR and the GPU-based SBR [19] for three
targets.

Method Ship A Ship B Airplane

MSBR on the CPU 10575.3 3381.7 3958.2

GPU-based SBR 1209.2 442 463.1

GPU-based MSBR 44.1 79.4 96.2

Acceleration ratio(CPU \ GPU) 239.8 \ 27.4 42.6 \ 5.6 41.1 \ 4.8

The monostatic RCS of the ship A, the ship B and the airplane
were computed at 1 THz, 10GHz, and 15 GHz, respectively. The
computational time of three methods and the acceleration ratio of each
target are shown in Table 2, and the peak memory requirement of the
three targets is listed in Table 1 for the GPU-based MSBR.

The GPU-based MSBR is at least 40 times faster than the CPU
MSBR for the three targets due to the strongly parallel computing
power of the GPU. The proposed technique also greatly improves the
performance of the GPU-based SBR [19] at least 4.8 times. We also
perform other tests to demonstrate the potential of our algorithm for
extremely electrically large targets. For the ship A in the Terahertz
application, our approach is 239.8 and 27.4 times faster than the
corresponding CPU and GPU methods, respectively. Although the
speedup ratio decreases to about 5 compared with the GPU-based
SBR, our method is more suitable for extremely electrically large
targets. For example, the speedup ratio reaches up to 10.7 for the
airplane illustrated in Figure 8(c) at 100 GHz. As the frequency
increases, the electrical size of the target also grows, and the proposed
approach can achieve a higher acceleration ratio in this situation.

The number of ray tubes on the virtual plane is proportional to
the projected area of the target and the frequency. The maximum
number of the initial ray tubes is 3304×5126 for the airplane illustrated
in Figure 8(c) at 100 GHz when the initial size of ray tubes is 0.8λ.
Each corner ray needs to record the intersections with the target
and the scattered field of each ray tube requires 8 float number. In
this situation, 1873 M memory is needed for the initial resolution and
more memory will be allocated for divergent ray tubes. However,
the amount of available memory on the GPU is limited, for instance,
NVIDIA GeForce 275 used in this paper has only 896 M memory. As
the proposed method should be scalable with respect to targets with
different electrical sizes on various GPU cards, we partition the virtual

198 Gao, Tao, and Lin

plane into sub-grids. The scattered field of each sub-grid is calculated
by the GPU-based MSBR, and these scattered fields are summed up
to obtain the total scattered field of the target. In our implementation,
the sub-grid size is 1024 × 1024. The ray tubes need no subdivision
in the GPU-based SBR, since the size of ray tubes is fixed. Thus,
the memory requirement of the GPU-based SBR is at most 116 M for
considering fifth-order reflection corresponding to the sub-grid size of
1024×1024. However, the GPU-based MSBR need additional memory
for recording the intersection information and scattered fields of the
divergent ray tubes. The peak memory requirement of the GPU-based
MSBR is shown in Table 1, and the largest memory requirement of the
GPU-based MSBR is 278.9 M in our experiments.

The ship A illustrated in Figure 8(a) is widely used as the
benchmark to validate the accuracy of the SBR [4, 7, 8]. The GPU-
based MSBR result of the monostatic RCS of the ship A at 10 GHz
is compared with the result calculated with the MLFMM [25, 26] in
Figure 9. The result of our GPU-based MSBR agrees well with
the MLFMM result, and the deviation maybe partly due to lack
of the edge-diffraction effect [27]. We add the diffraction field of
the truncated-wedge incremental-length diffraction coefficients (TW-
ILDC) [28] to the scattered field of the GPU-based MSBR, and
compare it with the MLFMM result. The comparison result illustrated
in Figure 9 confirms our conjecture. The computational time of the
GPU-based MSBR and TW-ILDC are 3.3 seconds and 2.6 seconds,
respectively. Although the TW-ILDC would reduce the computational
efficiency of the proposed method, about 1.8 times in this case, the
TW-ILDC can greatly improve the accuracy of the RCS prediction.

Figure 9. The comparison of our GPU-based MSBR result, our GPU-
based MSBR + TW-ILDC result and the MLFMM result for the ship
A at 10GHz in vv-polarization.

Progress In Electromagnetics Research, Vol. 107, 2010 199

Figure 10. The comparison
of our GPU-based MSBR result
and the GPU-based SBR result
for the ship B at 10 GHz in vv-
polarization.

Figure 11. The comparison of
our GPU-based MSBR result and
the GPU-based SBR result for
the airplane at 15 GHz in vv-
polarization.

The total computational time of the GPU-based MSBR + TW-ILDC
is 5.9 seconds, and it is much faster than the MLFMM, 28 hours for
the vv result. The peak memory requirement of the ship A at 10 GHz
is 68.7 M, and it is less than 388.6 M of the MLFMM again. We also
compare the results of the ship B and the airplane calculated by our
GPU-based MSBR with the results of the GPU-based SBR [19]. Again,
good agreements are observed both in Figure 10 and Figure 11.

5. CONCLUSION

In this paper, the multiresolution grid algorithm and the kd-tree
acceleration structure are combined and implemented on the GPU
in order to improve the computational efficiency of the SBR. The
multiresolution grid algorithm highly reduces the total number of ray
tubes involved in the computation by avoiding the unnecessary ray
tube partition for regions without complex structures. Moreover, the
kd-tree acceleration structure is used to reduce the tracing time for
a single ray tube. Compared with both the CPU MSBR and the
GPU-based SBR [19], the proposed approach provides a more efficient
solution for the RCS prediction of extremely electrically large and
complex targets. Apparently, adopting the GPU in electromagnetic
computing to exploit its powerfully parallel computing ability is a new
trend. With the rapid development of graphics hardware, more efforts
should be made to accelerate the existing approaches with the GPU
and develop new advanced algorithms adapting to parallel hardware
architectures simultaneously.

200 Gao, Tao, and Lin

ACKNOWLEDGMENT

We would like to thank Prof. T. Cui from South East University for
providing the MLFMM method used in this paper.

REFERENCES

1. Li, X.-F., Y.-J. Xie, and R. Yang, “High-frequency method
analysis on scattering from homogenous dielectric objects with
electrically large size in half space,” Progress In Electromagnetics
Research B, Vol. 1, 177–188, 2008.

2. Park, S. H., K. K. Park, J. H. Jung, H. T. Kim, and K. T. Kim,
“Construction of training database based on high frequency RCS
prediction methods for ATR,” Journal of Electromagnetic Waves
and Applications, Vol. 22, No. 5–6, 693–703, 2008.

3. Ling, H., R. C. Chou, and S. W. Lee, “Shooting and bouncing
rays: Calculating the RCS of an arbitrarily shaped cavity,” IEEE
Trans. Antennas Propag., Vol. 37, No. 2, 194–205, 1989.

4. Jin, K. S., T. I. Suh, S. H. Suk, B. C. Kim, and H. T. Kim, “Fast
ray tracing using a space-division algorithm for RCS prediction,”
Journal of Electromagnetic Waves and Applications, Vol. 20,
No. 1, 119–126, 2006.

5. Tao, Y.-B., H. Lin, and H. J. Bao, “Kd-tree based fast ray tracing
for RCS prediction,” Progress In Electromagnetics Research,
Vol. 81, 329–341, 2008.

6. Havran, V., “Heuristic ray shooting algorithms,” Ph.D. disserta-
tion, Univ. Czech Technical, Prague, 2000.

7. Suk, S. H., T. I. Seo, H. S. Park, and H. T. Kim, “Multiresolution
grid algorithm in the SBR and its application to the RCS
calculation,” Microw. Opt. Technol. Lett , Vol. 29, No. 6, 394–397,
2001.

8. Bang, J. K., B. C. Kim, S. H. Suk, K. S. Jin, and H. T. Kim, “Time
consumption reduction of ray tracing for RCS prediction using
efficient grid division and space division algorithms,” Journal of
Electromagnetic Waves and Applications, Vol. 21, No. 6, 829–840,
2007.

9. Kim, B.-C., K. K. Park, and H.-T. Kim, “Efficient RCS
prediction method using angular division algorithm,” Journal of
Electromagnetic Waves and Applications, Vol. 23, No. 1, 65–74,
2009.

10. Park, K.-K. and H.-T. Kim, “RCS prediction acceleration and
reduction of table size for the angular division algorithm,” Journal

Progress In Electromagnetics Research, Vol. 107, 2010 201

of Electromagnetic Waves and Applications, Vol. 23, No. 11–12,
1657–1664, 2009.

11. Owens, J. D., D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. E. Lefohn, and T. J. Purcell, “A survey of general-purpose
computation on graphics hardware,” Comput. Graphics Forum,
Vol. 26, No. 1, 80–113, 2007.

12. NVIDIA Corporation, NVIDIA CUDA Programming Guide 2.2.1 ,
http://developer.download.nvidia.com/compute/ cuda/2 21/too-
lkit/docs/NVIDIA CUDA Programming Guide 2.2.1.pdf

13. Rius, J. M., M. Ferrando, and L. Jofre, “High frequency RCS
of complex radar targets in real time,” IEEE Trans. Antennas
Propag., Vol. 41, No. 9, 1308–1318, 1993.

14. Zha, F.-T., S.-X. Gong, Y.-X. Xu, Y. Guan, and W. Jiang, “Fast
shadowing technique for electrically large targets using Z-buffer,”
Journal of Electromagnetic Waves and Applications, Vol. 23,
No. 2–3, 341–349, 2009.

15. Tao, Y. B., H. Lin, and H. J. Bao, “From CPU to GPU:
GPU-based electromagnetic computing (GPUECO),” Progress In
Electromagnetics Research, Vol. 81 1–19, 2008.

16. Peng, S. X. and Z. P. Nie, “Acceleration of the method of moments
calculations by using graphics processing units,” IEEE Trans.
Antennas Propag., Vol. 56, No. 7, 2130–2133, 2008.

17. Zainud-Deen, S. H., E. El-Deen, M. S. Ibrahim, K. H. Awadalla,
and A. Z. Botros, “Electromagnetic scattering using GPU-
based finite difference frequency domain method,” Progress In
Electromagnetics Research B , Vol. 16, 351–369, 2009.

18. Xu, K., Z. H. Fan, D. Z. Ding, and R. S. Chen, “GPU accelerated
unconditionally stable Crank-Nicolson FDTD method for the
analysis of three-dimensional microwave circuits,” Progress In
Electromagnetics Research, Vol. 102, 381–395, 2010.

19. Tao, Y. B., H. Lin, and H. J. Bao, “GPU-based shooting and
bouncing ray method for fast RCS prediction,” IEEE Trans.
Antennas Propag., Vol. 58, No. 2, 494–502, 2010.

20. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley,
New York, 1989.

21. Baldauf, J., S. W. Lee, L. Lin, S. K. Jeng, S. M. Scarborough,
and C. L. Yu, “High frequency scattering from trihedral corner
reflectors and other benchmark targets: SBR vs. experiments,”
IEEE Trans. Antennas Propag., Vol. 39, No. 9, 1345–1351, 1991.

22. Goldsmith, J. and J. Salmon, “Automatic creation of object
hierarchies for ray tracing,” IEEE Computer Graphics and

202 Gao, Tao, and Lin

Applications, Vol. 7, No. 5, 14–20, 1989.
23. Popov, S., J. Günther, H. P. Seidel, and P. Slusallek, “Stackless

kd-tree traversal for high performance GPU ray tracing,” Comput.
Graphics Forum, Vol. 26, No. 3, 415–424, 2007.

24. Jin, B., I. Ihm, B. Chang, C. Park, W. Lee, and S. Jung, “Selective
and adaptive supersampling for real-time ray tracing,” Proceedings
of the Conference on High Performance Graphics 2009 , Vol. 34,
No. 10, 1064–1076, 2009.

25. Song, J. M. and W. C. Chew, “Multilevel fast multipole algorithm
for solving combined field integral equations of electromagnetic
scattering,” Microw. Opt. Tech. Lett., Vol. 10, 14–19, 1995.

26. Yang, M.-L. and X.-Q. Sheng, “Parallel high-order FE-BI-
MLFMA for scattering by large and deep coated cavities
loaded with obstacles,” Journal of Electromagnetic Waves and
Applications, Vol. 23, No. 13, 1813–1823, 2009.

27. Koujoumijan, R. G. and P. H. Pathak, “A uniform geometrical
theory of diffraction for an edge in a perfectly conducting surface,”
Proc. IEEE , Vol. 62, 1448–1461, 1974.

28. Johansen, P. M., “Uniform physical theory of diffraction
equivalent edge currents for truncated wedge strips,” IEEE Trans.
Antennas Propag., Vol. 44, No. 7, 989–995, 1996.

