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Abstract—The time domain Maxwell’s equations are numerically
solved using a multigrid method in a scattered field formulation
and a cell-vertex based finite volume time domain framework. The
multilevel method is an adaptation of Ni’s [9] cell-vertex based
multigrid technique, proposed for accelerating steady state convergence
of nonlinear Euler equations of gas dynamics. Accelerated convergence
to steady state of the time domain Maxwell’s equations, for problems
involving electromagnetic scattering, is obtained using multiple grids
without the use of additional numerical damping usually required in
nonlinear problems. The linear nature of the Maxwell’s system also
allows for a more accurate representation of the fine-grid problem on
the coarse grid.

1. INTRODUCTION

Finite volume time domain (FVTD) methods are used to solve the
time domain Maxwell’s equations written as a system of hyperbolic
conservation laws [1–3]. Electromagnetic scattering involving complex
geometries, broad-band signals and diverse material properties
can be dealt with advantageously using FVTD methods [2, 4].
However, FVTD methods are of limited applicability in predicting
electromagnetic scattering for practical applications involving large
electric sizes. The computational grid for FVTD methods can be
based on resolution of 12–20 points per wavelength (PPW) resulting
in very fine meshes at large electrical sizes. This consequently results
in long computational times for problems involving large electrical
sizes making FVTD techniques prohibitively expensive for many
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engineering applications. A variety of techniques can be used to bring
down computing costs including parallel computing, hybrid methods
by combining two or more approaches, incorporating algorithmic
acceleration devices like multigrid methods etc. In this work, we use
a cell-vertex based multigrid approach to accelerate the convergence
to time-harmonic steady state of the time domain Maxwell’s equations
for electromagnetic scattering problems. The multigrid technique was
originally developed for the numerical solution of linear elliptic partial
differential equations (PDE) and proved very successful in accelerating
the convergence of boundary value problems [6, 7]. The extension
of this technique to accelerate the convergence of the solution of
hyperbolic PDEs is nontrivial [8]. Hyperbolic PDEs differs from elliptic
PDEs in the nature of the solution, and the manner in which the
boundary effects the solution. The wave nature of the hyperbolic
system lead to numerical schemes with a bias in the direction of
propagation. The numerical solution of hyperbolic PDEs can also
be advanced to a steady state via multigrid methods by cycling
the solution through a hierarchy of fine and coarse grids. In case
of hyperbolic equations, accelerated convergence through multigrid
methods is achieved due to faster wave propagation on coarser levels
due to a more relaxed stability criteria and a sparser grid. Multigrid
techniques were extended to the system of hyperbolic equations in the
work of Ni [9] and Jameson [10] by exploiting faster wave propagation
in the computational domain using coarser grids while solving for the
time dependant Euler equations of gas dynamics. However, they relied
on heavy user defined numerical damping to stabilize the multigrid
scheme and smoothen interpolation errors. In this current work, the
multilevel method of Ni [9] is extended to the numerical solution of
the time dependant Maxwell’s equations for electromagnetic scattering
problems. Inherent advantages of applying Ni’s cell-vertex based
multilevel technique to a linear system of equations compared to
the nonlinear Euler equations are brought out along with practical
implementation details.

2. GOVERNING EQUATIONS

Maxwell’s curl equations in differential form for wave propagation in
free space, can be expressed as

∂B
∂t

+∇×E = 0 (1)

∂D
∂t

−∇×H = 0 (2)
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where B is the magnetic induction, E the electric field vector, D the
electric field displacement, and H the magnetic field vector. The B and
D are related to E and H through permittivity (ε) and the permeability
(µ) with D = εE, and B = µH. The time domain Maxwell’s equations
can be recast in conservation total field form as

∂u
∂t

+
∂f(u)
∂x

+
∂g(u)

∂y
+

∂h(u)
∂z

= 0. (3)

In two dimensions (2D), Maxwell’s equations can be split into two sets
of systems. These are the equations for Transverse Magnetic (TM)
and Transverse Electric (TE) waves. The 2-D conservative form for
free space can be expressed as

∂u
∂t

+
∂f(u)
∂x

+
∂g(u)

∂y
= 0. (4)

For TM polarized incident plane wave, the vectors u, f, and g in
Equation (4) are

u=

(
Bx

By

Dz

)
, f =

( 0
−Dz/ε
−By/µ

)
, g=

(
Dz/ε

0
Bx/µ

)
. (5)

The FVTD technique numerically solves the integral form of
Equations (3) or (4) in a discrete finite volume framework and is
described in detail in Refs. [1–4, 11]. In a scattered field formulation,
the scattered field variables are solved for and an analytically defined
incident field assumed to be available, as also described in Refs. [1–
4, 11].

3. NUMERICAL SCHEME

The underlying scheme in this current work, for numerically solving the
time domain Maxwell’s equations, is the cell vertex based finite volume
scheme originally proposed by Ni [9] for the numerical solution of the
2D Euler equations of gas dynamics. Details regarding an extension of
Ni’s cell vertex finite volume scheme to the solution of the time domain
Maxwell’s equations in scattered field formulation in two and three
dimensions were presented in Ref. [11] and is discussed here briefly.
Ni’s cell-vertex based finite volume scheme can be considered to belong
to the “fluctuation-signal” framework proposed by Roe for the solution
of time dependant Euler equations of gas dynamics [14]. In Ni’s finite-
volume time integration scheme, the fluctuation is calculated based on
state vector stored at cell vertices and distributed to cell vertices after
a discrete time-step. This distribution finally leads to second-order
accurate cell-vertex based Lax-Wendroff scheme [15]. Ni, in his original
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paper, required heavy numerical damping while solving for strongly
nonlinear systems encountered in the form of transonic flows in gas
dynamics. The linear nature of the time dependant Maxwell’s equation
in free space, may be a more appropriate choice for the application of
Ni’s novel cell-vertex based finite volume scheme, as there is no reliance
on user defined numerical damping to stabilize the scheme [11].

3.1. Ni’s Multigrid Method

The explicit multigrid time stepping method used here, involves
cycling the solution in a hierarchy of fine and coarse grids, was
developed by Ni [9] to accelerate the convergence of his own cell-
vertex based finite volume time integration scheme while solving for
the nonlinear Euler equations of gas dynamics. Additionaly cell
vertex based multigrid method for the Navier-Stokes equations of
fluid mechanics are discussed in the Ref. [16, 17]. In this multilevel
solution methodology proposed by Ni the basic cell-vertex based finite
volume method, also used here, and the multigrid method are strongly
coupled. For the basic finite volume scheme the approximation of the
flux balance for a computational cell is obtained by evaluating the
conservation law in integral form [9]. This solution technique starts
with the calculation of “change” in a control volume based on cell
vertex flux values. This change is used to determine the “corrections”
to be distributed to relevant cell vertices in order to update the
state vector (at cell vertices) with the help of relevant distribution
formulas [9]. The multigrid technique interwoven with the basic time
integration technique employs progressively coarser grids to propagate
the fine grid correction rapidly in the computational domain. When
this time stepping procedure is applied on the coarse levels, the change
for the coarse mesh cells are estimated as the weighted average of the
corrections of the fine mesh nodes defining the corresponding coarse
mesh cell. These coarse cell changes are distributed to the corners of
the coarse mesh cells by the same distribution formula. This procedure
is repeated for several coarse levels. Once the coarsest grid reached,
the coarser grid correction are then interpolated back on the fine grid
and added to the solution of the fine grid. The multigrid process is
described below in more detail.

3.1.1. Fine Grid Solution

As mentioned, the fine grid solution in the present work is Ni’s cell-
vertex based finite volume integration scheme based on the Lax-
Wendroff technique. This is briefly described here for the sake of
completion. The Lax-Wendroff update for u is based on a second
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order Taylor series approximation

δu =

(
∂u
∂t

)n

∆t +

(
∂

∂t

(
∂u
∂t

))n
∆t2

2

In above equation, time derivatives can be expressed as space
derivatives using Equation (4),

δu=−
(

∂f
∂x

+
∂g
∂y

)n

∆t+

[
∂f
∂u

∂

∂x

(
∂f
∂x

+
∂g
∂y

)
+

∂g
∂u

∂

∂y

(
∂f
∂x

+
∂g
∂y

)]n
∆t2

2
. (6)

Equation (6) is approximated using a cell-vertex based finite volume
formulation. Consider a 2-D discretization as shown in Fig. 1, with
four cells A, B, C and D and their corresponding vertices where the
state vector is defined. The vertices of cell C are marked as 1, 2, 3
and 4. The first order discrete numerical “change” ∆U for a arbitrary
quadrilateral cell C is approximated using the divergence theorem as

∆Uc =
∆t

∆Ac

(
4∑

p=1

[
(F (us) · n̂s)p

] )
, (7)

where ∆Ac is the area of the cell C, s the face length with an outer
unit normal vector n̂, ∆t is the time step restricted by the Courant-
Friedrich-Lewy (CFL) stability criteria. Flux vectors F(u), G(u)
are computed for each pth cell face by taking average of the flux
vectors stored at vertices of the face. ∆Uc is used for the discrete
approximation of the first-order term in Equation (6). The unsteady
fluxes [9] ∆Fc and ∆Gc, in the Cartesian x and y directions are defined
for each cell as

∆Fc =

(
∂f
∂u

)
∆Uc, ∆Gc =

(
∂g
∂u

)
∆Uc.

The second-order changes are based on replacing (∂u/∂t) by (∆Uc/∆t)
and computed cell wise by an application of the divergence theorem to
cell based unsteady flux values ∆Fc and ∆Gc. The components that
make up the second-order changes are written as

∆fc =
∆t

∆Ac

(
∆Fc∆yl + ∆Gc∆xl

)

∆gc =
∆t

∆Ac

(
∆Fc∆ym + ∆Gc∆xm

) (8)

where ∆xl, ∆yl, ∆xm and ∆ym are given as [9, 11, 18]. These cell wise
changes are appropriately distributed to cell vertices that make up the
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Figure 1. 2-D arbitrary computational cell.

cell using distribution formulas [9]

(δu1)c =
1
4

[
∆Uc −∆fc −∆gc

]

(δu2)c =
1
4

[
∆Uc −∆fc + ∆gc

]

(δu3)c =
1
4

[
∆Uc + ∆fc + ∆gc

]

(δu4)c =
1
4

[
∆Uc + ∆fc −∆gc

]
.

(9)

The total correction at grid point 1, δu1, is obtained by adding the
contribution from all four neighboring cells sharing vertex 1

(δuh)1 = (δu1)a + (δu1)b + (δu1)c + (δu1)d (10)

where, (δu1)a, (δu1)b, (δu1)c, and (δu1)d are the contribution of the
numerical changes from cells A, B, C and D respectively. The fine
grid solution un+1

1 is updated by adding the fine grid correction δun
1 to

the flow variable at previous time level n. More details are available
in Ref. [11].

3.1.2. Coarse Grid Computations

Fine grid corrections calculated using the basic finite volume
integration scheme are propagated over a computational domain
through successively coarser grids. Successive coarse-grids (Ω2h, Ω4h)
are obtained from the previous fine mesh by deleting every alternate
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Figure 2. Schematic of multigrid process.

grid line. Consider a mesh Ω2h obtained by deleting alternate grid lines
from the fine mesh Ωh. The “change” in the coarse mesh cell ∆U2h is
calculated as

∆U2h = R2h
h δuh, (11)

where, R2h
h indicates the restriction operator. In the present work, the

area weighted average of fine grid corrections is used as a restriction
operator. The coarse grid (2h) corrections are calculated using the
same distribution formulas used in the basic scheme. This procedure is
repeated for several coarse levels. Once the coarsest grid level reached,
the coarse corrections are then interpolated back on the fine grid. The
state vector u at next time level are updated by adding each coarse
grid correction to the state vector values at previous time level. For a
three level multigrid process, the updated value of the state vector u
at time level n + 1 is given as [9]

un+1
h = un

h + Ih
2hδu2h + Ih

4hδu4h, (12)

where Ih
2h and Ih

4h are bilinear interpolation operators in 2D which
interpolates the corresponding coarse grid corrections to give the
corrections at each grid point on the fine grid. The multigrid process
is shown schematically in Fig. 2. Thus, the fine grid corrections are
rapidly distributed in the domain. In this method, fine grid corrections
are transferred as coarse grid changes. Second order terms in the coarse
grid can be described purely in terms of the first order changes in
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linear systems as the Jacobian matrix required in defining unsteady
flux terms are constants. This is in contrast to that for nonlinear
system where the Jacobian matrix on the coarse grids requires to be
approximated using fine grid values. This approximation can lead to
loss in time accuracy in nonlinear problems as the state vector on the
fine grid is retarded in time when compared to the coarse grid.

Time accuracy is particularly important for FVTD solution of
the time domain Maxwell’s equations in a scattered field formulation.
Perfect electric conductor (PEC) boundary conditions are based on the
total electric field vector E and satisfying this on coarse level requires
a time accurate coarse grid solution (scattered field) to synchronize
with the analytically available incident field. Time accuracy on coarse
levels is not respected in the original Ni’s multilevel scheme and is
better addressed in Hall’s [15] modification of Ni’s method described
below which is adapted in the present work for the multigrid solution
of time domain Maxwell’s equations.

3.2. Hall’s Extension

Hall [15] developed a cell-vertex multigrid scheme which essentially is
a variation of Ni’s method. Halls major contribution was to fill in the
practical details missing from Ni’s [9] original paper.

3.2.1. Fine Grid Solution

The first order change in fine grid at grid point 1 is obtained as a area
weighted quantity

(∆Un
h)1 =

∆Ua∆Aa + ∆Ub∆Ab + ∆Uc∆Ac + ∆Ud∆Ad

∆Aa + ∆Ab + ∆Ac + ∆Ad
(13)

∆Aa, ∆Ab, ∆Ac, ∆Ad are the area for cells A, B, C and D respectively.
For a uniform rectangular grid the above expression reduces to Ni’s
formulation. Unsteady fluxes ∆Fc and ∆Gc in cell C are found by
evaluating the Jacobians at the corresponding vertices as [15]

∆Fc =
1
4

[(
∂f
∂u

)

1

+
(

∂f
∂u

)

2

+
(

∂f
∂u

)

3

+
(

∂f
∂u

)

4

]
∆Uc, (14)

∆Gc =
1
4

[(
∂g
∂u

)

1

+
(

∂g
∂u

)

2

+
(

∂g
∂u

)

3

+
(

∂g
∂u

)

4

]
∆Uc. (15)
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The total correction at grid point 1, δu1, is obtained by adding the
first-order and second-order change contributions as

(δuh)1 = ∆Un
1 +

[(
∆Fb−∆Fd

)
∆y2+

(
∆Fa−∆Fc

)
∆y1

+
(
∆Gd−∆Gb

)
∆x2+

(
∆Gc−∆Ga

)
∆x1

]
∆t

4∆A1
(16)

where, ∆x1 = (xb − xd), ∆x2 = (xc − xa), ∆y1 = (yb − yd) and
∆y2 = (yc − ya). The state vector at next time level is updated by
adding the total correction δu1 to the state vector at time level n.

3.2.2. Coarse Grid Computations

To advance the solution on coarse grid, the fine grid corrections are
restricted on the coarse grids. The first-order change in coarse mesh
cell (with centroid 1) is given as [15]

(∆U2h)1 =

(
δun

aAa + δun
bAb + δun

cAc + δun
dAd

Aa +Ab +Ac +Ad

)
∆t2h

∆tnh
(17)

where,

δun
c =

1
4
(
δun

1 + δun
2 + δun

3 + δun
4

)

and the coarse-grid calculation involves an advance in time through
∆t2h. Here, the first order change on coarse grid ∆U2h, is expressed
using weighted average of fine grid corrections at level n, ∆tnh the fine
grid time-step and ∆t2h. The correction on the coarse grid is

δu2h = δun
h

∆t2h

∆tnh
− 1

2

[
∂

∂x

(
∂f
∂u

δuh

)
+

∂

∂y

(
∂g
∂u

δuh

)]n

× (∆t2h + ∆tnh)× ∆t2h

∆tnh
. (18)

This expression for δu2h is a coarse grid but fine-grid accurate
representation of δun+1

h = un+1
h − un

h with ∆t2h = tn+1 − tn obtained
by a Taylor series expression around u [15]. Thus, unlike Ni’s original
multigrid method time accuracy is attempted to be maintained on
the coarse grid. The second order change on coarse mesh cell is
obtained in Equation (18) by substituting ∆F ∼= (∂f/∂u)δu and
∆G ∼= (∂g/∂u)δu, and applying Gauss theorem. Total correction
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at grid point 1 is given as [15]

δu2h=∆U2h+

[(
∆F9−∆F5

)
∆y2+

(
∆F7−∆F3

)
∆y1+

(
∆G5−∆G9

)
∆x2

+
(
∆G3−∆G7

)
∆x1

]
∆t2h

∆tnh

(
∆t2h+∆tnh

4∆A1

)
(19)

where ∆x1 = (x9 − x5), ∆x2 = (x3 − x7), ∆y1 = (y9 − y5) and
∆y2 = (y3 − y7), ∆A1 the area of the coarse grid cell 7935. The
coarse grid correction are then interpolated back on the fine grid using
bilinear interpolation and added to the solution of the fine grid at
previous time level.

4. RESULTS

Multigrid results using two and three levels are compared with
single (fine) grid solutions. Results are presented for electromagnetic
scattering from perfectly electric conductors (PEC) circular cylinder
and PEC NACA 0012 airfoil subject to incident harmonic transverse
magnetic (TM) wave. Bistatic RCS results are presented for a circular
cylinder with a/λ = 9.6 and a/λ = 14.4, where a is the radius of
cylinder and λ the wavelength of the incident harmonic wave. An
‘O’ topology grid is used similar to that in Ref. [11], and shown
in schematic form in Fig. 3. Initially computations are carried out
using a two-level multigrid scheme with a resolution of 10 points per
wavelength (PPW) at the scatterer surface on the fine grid and 5 PPW
on the coarse grid. The bistatic RCS computed using present multigrid
method on two levels is compared with the exact solution, fine grid
results and good agreement can be seen in Fig. 4. It may be noted

i

j

θ

Figure 3. Schematic of grid around circular cylinder.
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Figure 4. Bistatic RCS, circular cylinder (2 level, a/λ = 9.6).

Table 1. Multigrid test case description.

Test Case a/λ
Discretization

(i× j)
Grid level

PEC Circular cylinder

9.6 600× 50 1
300× 25 2

1600× 80 1
800× 40 2
400× 20 3

14.4 2000× 50 1
1000× 25 2

PEC NACA 0012 Airfoil
10.0 1548× 48 1

774× 24 2
387× 12 3

that the dispersion error in the predominantly shadow region is almost
identical in both the computed results. This error will reduce with
grid refinement as was shown in Ref. [11]. The two-level multigrid
method is next used to compute for electromagnetic scattering from a
PEC circular cylinder (a/λ = 14.4). Fine grid discretization with an
resolution of 22 PPW is used on the scatterer surface. The two-level



192 Deore and Chatterjee

and fine grid results are compared with the exact solution and again
good agreement can be seen in Fig. 5. Computations are similarly
carried out for a circular cylinder (a/λ = 9.6) using a three-level
multigrid scheme with grid resolution of 26.7 PPW at the finest level on
the scatterer surface. Fig. 6 shows a comparison of three-level multigrid
and fine grid solution with the exact result. Almost fine-grid accuracy
is obtained except for a narrow region in the shadow area between
±50◦. Bistatic RCS obtained using three-level multigrid method, is
further compared with a single-level solution on purely the coarsest
grid with resolution of 6.67 PPW on scatterer surface. This comparison
is done to bring out the ability of the present multigrid method to
enforce almost fine grid accuracy while cycling the solution through a
hierarchy of grids. This comparison in, Fig. 7, shows the enhanced
accuracy of the three-level multigrid solution when compared to a
solution obtained on purely the coarsest grid. The coarse grid solution
deviates from the exact solution even at the important monostatic
point ±180◦. Results are similarly presented for a NACA 0012 airfoil
subject to broadside incidence shown in Fig. 8. Bistatic RCS for a
TM illumination using three-level multigrid method is compared with
fine grid solution and Ref. [19] results in Fig. 9. For this test case
an ‘O’ topology grid is used with finest grid resolution of 24.7 PPW
on the scatterer surface and a/λ = 10, where a indicates the airfoil
chord length. Table 2 compares the CPU time used for numerical
solution using the multigrid method to that for the purely fine grid
solution. For all the cases presented, a reduction of CPU time between
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Figure 5. Bistatic RCS, circular cylinder (2 level, a/λ = 14.4).
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Figure 6. Bistatic RCS, circular cylinder (3 level, a/λ = 9.6).
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Figure 7. Bistatic RCS, circular cylinder (3 level and coarsest grid,
a/λ = 9.6).

30 and 40% is obtained. Reduction in CPU time is obtained due
to the larger time steps allowed on coarser levels due to the relaxed
stability criteria arising out of increased cell sizes. The larger time-
step allowed on coarser level means more rapid wave movement on
coarser levels leading to faster convergence. The number of grid points
also reduce with successive coarsening resulting in less computational
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effort. Overheads during the multigrid process include restricting fine
grid variables on the coarse grid as well as interpolating corrections to
the fine grid. There is no significant increase in memory requirement
in the multigrid process since coarse-grid corrections are not required
to be stored at each level and can be transferred immediately to the
fine grid. Each multigrid cycle consist of one iteration on each level
and typically 1000 such cycles are required for convergence to a time-
harmonic steady state. The number of levels in the multigrid method
are limited by the minimum discretization available on the coarsest
level. Numerical experiments indicate a minimum resolution of 5–
6 PPW on the scatterer surface at the coarsest level requires to be
adhered to for obtaining almost fine-grid accuracy in the multigrid
process. No additional numerical damping was required to stabilize
the multigrid method or to smoothen out interpolation errors which are
essential while solving for nonlinear hyperbolic problems like Euler’s
equations of gas dynamics.

Table 2. CPU times (seconds).

Test Case a/λ
Grid

levels

CPU Time (s)
% saving in

CPU time
Basic scheme

(fine grid)
multigrid

Circular cylinder 9.6 2 126.24 79.53 37

Circular cylinder 14.4 2 408.7 289.68 29

Circular cylinder 9.6 3 1820 1073 41

NACA 0012 airfoil 10.0 3 224.49 152.65 32

j

i
θ

Figure 8. Schematic of grid around NACA 0012 airfoil.
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5. CONCLUSION

The time domain Maxwell’s equations posed as a set of hyperbolic
conservation laws are solved using a cell-vertex based multilevel scheme
originally proposed by Ni for the solution of nonlinear Euler equations
of gas dynamics. Unlike solution of Euler equations, the linear
Maxwell’s system does not requires the Jacobian to be approximated on
coarser levels leading to the better implementation. Hall’s modification
of original Ni’s scheme allows time synchronization of incident and
scattered field on coarser levels due to time accuracy of the transient
solution on the coarse grid. No artificial damping is required to
stabilize the multigrid technique for the linear Maxwell’s system or to
dampen interpolation errors. The reduction in CPU time along with
almost fine-grid accuracy of the obtained multigrid solution suggests
that this technique could be useful in more practical three-dimensional
applications involving electromagnetic scattering.
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