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Abstract—This paper presents a general analytical formulation for
calculating the three-dimensional magnetic field distribution produced
by Halbach structures with radial or axial polarization directions.
Our model allows us to study tile permanent magnets of various
magnetization directions and dimensions. The three magnetic field
components are expressed in terms of analytical and semi-analytical
parts using only one numerical integration. Consequently, the
computational cost of our model is lower than 1 s for calculating
the magnetic field in any point of space. All our expressions
have been checked with previous analytical models published in
the literature. Then, we present two optimized permanent magnet
structures generating sinusoidal radial fields.

1. INTRODUCTION

This paper continues the work published in a previous paper [1]. We
present a more general formulation of the magnetic field produced by
a tile permanent magnet whose polarization can be directed along
any direction of space. Such a formulation is suitable for studying
MRI structures or more generally Halbach structures [2] using tile
permanent magnets with radial or axial polarization directions. For
MRI structures, it is well known that analytical expressions are suitable
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tools for optimizing the device dimensions to obtain the greatest static
magnetic field [3–5].

Several approaches are commonly used for optimizing permanent
magnet structures, these approaches are based on analytical [6, 7] or
numerical methods [8]. Furthermore, some original methods have been
proposed for designing MRI structures made of permanent magnets by
employing inverse methods [9].

The other applications using tile permanent magnets are certainly
the magnetic couplings [10–14] and the electric machines [15–18].
Indeed, the radial field in electric machines is obtained by stacking
together tile permanent magnets with different polarizations. This
radial field can be trapezoidal or sinusoidal. The easiest way of
optimizing the radial field in electric machines is to use analytical
formulations with a low computational cost.

The analytical method we use in this paper is based on the
coulombian model of a magnet. This model implies the existence
of fictitious magnetic charges located on the faces of a permanent
magnet [19, 20]. Such an analytical method has been widely used
by many authors for calculating the magnetic field produced by ring
permanent magnets radially and axially magnetized [21–23]. It is
to be noted that such an approach is suitable for studying Halbach
structures [24], wigglers, electric machines and magnetic sensors [25].

The main goal of this paper is to present a general analytical
formulation allowing the study of Halbach structures with radial or
axial polarization directions. For instance, our model can be used
for calculating the magnetic field produced by either the configuration
shown in Fig. 1 or the one shown in Fig. 2. Then, we present two
optimized structures generating a sinusoidal radial field in front of the
magnets.

Figure 1. Halbach structure made of tile permanent magnets using
radial polarization directions: left = ideal structure, right = real
structure.
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Figure 2. Halbach structure made of tile permanent magnets using
axial polarization directions: left = ideal structure, right = real
structure.

2. NOTATION AND GEOMETRY

The geometry considered is shown in Fig. 3. We consider a tile
permanent magnet whose polarization is uniform. Its inner radius is
r1, its outer one is r2. Its height is z2 − z1 and its angular width is
θj+1−θj . The vector polarization of the tile permanent magnet shown
in Fig. 3 is expressed as follows:

~J = J cos(θf ) sin(φ) ~X + J sin(θf ) sin(φ)~Y + J cos(φ)~Z (1)

The three vectors ~X, ~Y and ~Z are linked to the global coordinate
system ~ux, ~uy, ~uz:

~X = cos
(

θj + θj+1

2

)
~ux + sin

(
θj + θj+1

2

)
~uy

~Y = − sin
(

θj + θj+1

2

)
~ux + cos

(
θj + θj+1

2

)
~uy

~Z = ~uz

(2)

We also define the normal units of the tile permanent magnet as follows:
~n1 = − cos(θ)~ux − sin(θ)~uy

~n2 = − sin(θj+1)~ux + cos(θj+1)~uy

~n3 = cos(θ)~ux + sin(θ)~uy

~n4 = sin(θj)~ux − cos(θj)~uy

~n5 = ~uz

~n6 = +~uz

(3)

By using the previous relations, the vector polarization can be
expressed as follows:

~J = J sin(φ) cos
(

θf +
θj + θj+1

2

)
~ux

+J sin(φ) sin
(

θf +
θj + θj+1

2

)
~uy + J cos(φ)~uz (4)
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Figure 3. 3D representation of the geometry considered: a tile
permanent magnet whose polarization is uniform.

The magnetic field produced by the tile permanent magnet is
determined by using the Coulombian model. Consequently, this tile
permanent magnet can be replaced by fictitious magnetic pole surface
densities that are located on its faces (Fig. 4). These magnetic pole
surface densities are determined by calculating the scalar product
between the vector polarization ~J and the six normal units defined
previously. We obtain the following results:

σ1(θ) = −J sin(φ) cos
[
θ −

(
θf +

θj + θj+1

2

)]

σ2 = −J sin(φ) sin
[
θj+1 −

(
θf +

θj + θj+1

2

)]

σ3(θ) = J sin(φ) cos
[
θ −

(
θf +

θj + θj+1

2

)]

σ4 = J sin(φ) sin
[
θj −

(
θf +

θj + θj+1

2

)]

σ5 = −J cos(φ)
σ6 = +J cos(φ)

(5)

The next step consists in calculating the three magnetic field
components by using the previous fictitious magnetic pole surface
densities.
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3. ANALYTICAL MODEL OF THE MAGNETIC FIELD

This section presents the analytical model of the magnetic field created
by a tile permanent magnet whose polarization is uniform. The
magnetic field ~H(r, θ, z) can be expressed in terms of three components.
These three magnetic field components are determined in terms of
cylindrical coordinates Hr(r, θ, z), Hθ(r, θ, z) and Hz(r, θ, z).

The radial component of the magnetic field produced by the tile
permanent magnet is expressed as follows;

Hr (r, θ, z) =
1

4πµ0

∫ θj+1

θj

∫ z2

z1

σ1

(
θ̃
)(

r − r2 cos
(
θ − θ̃

))
r2dθ̃dz̃

ξ
(
r2, θ̃, z̃

)3

+
1

4πµ0

∫ θj+1

θj

∫ z2

z1

σ3

(
θ̃
)(

r − r1 cos
(
θ − θ̃

))
r1dθ̃dz̃

ξ
(
r1, θ̃, z̃

)3

+
1

4πµ0

∫ θj+1

θj

∫ r2

r1

σ6

(
r − r̃ cos

(
θ − θ̃

))
r̃dθ̃dr̃

ξ
(
r̃, θ̃, z2

)3

+
1

4πµ0

∫ θj+1

θj

∫ r2

r1

σ5

(
r − r̃ cos

(
θ − θ̃

))
r̃dθ̃dr̃

ξ
(
r̃, θ̃, z1

)3

+
1

4πµ0

∫ r2

r1

∫ z2

z1

σ2 (r − r̃ cos (θ − θj+1)) dz̃dr̃

ξ (r̃, θj+1, z̃)3

+
1

4πµ0

∫ r2

r1

∫ z2

z1

σ4 (r − r̃ cos (θ − θj)) dz̃dr̃

ξ (r̃, θj , z̃)3
(6)

where

ξ(α, β, γ) =
√

r2 + α2 − 2rα cos(θ − β) + (z − γ)2 (7)

We obtain:
Hr(r, θ, z) = H(I)

r + H(II)
r + H(III)

r (8)

H(I)
r =

2∑

i=1

(−1)i

∫ 2π

0

{
cos

(
θj+θj+1

2
+θf−θ̃

)
sin(φ)

}
(f(zi)+g(zi))dθ̃

(9)
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f(zi) =
r2(zi − z)β(r2, θ̃)

ξ(r2, zi, θ̃)

g(zi) = −r1(zi − z)β(r1, θ̃)
ξ(r1, zi, θ̃)

β(a, c) =
r − a cos(θ − c)

(r2 + a2 − 2ra cos(θ − c))

(10)

H(II)
r =

2∑

i=1

(−1)i

∫ r2

r1

cos(φ) (f(ri)− g(ri)) dθ̃ (11)

f(ri) =
−ri

(
r2 + 2(z − z2)2 cos(θ − θ̃)

)

ξ(ri, θ̃, z2)
(
−r2 − 2(z − z2)2 + r2 cos

[
2(θ − θ̃)

])

+
η2 − η2 cos

[
2(θ − θ̃)

]
+ rri cos

[
3(θ − θ̃)

]

ξ(ri, θ̃, z2)
(
−r2 − 2(z − z2)2 + r2 cos

[
2(θ − θ̃)

])

− cos(θ − θ̃) ln
[
ri − r cos(θ − θ̃) + ξ(ri, θ̃, z2)

]

g(ri) =
ri

(
r2 + 2(z − z1)2 cos(θ − θ̃)

)

ξ(ri, θ̃, z1)
(
−r2 − 2(z − z1)2 + r2 cos

[
2(θ − θ̃)

])

−
η1 − η1 cos

[
2(θ − θ̃)

]
+ rri cos

[
3(θ − θ̃)

]

ξ(ri, θ̃, z1)
(
−r2 − 2(z − z1)2 + r2 cos

[
2(θ − θ̃)

])

+ cos(θ − θ̃) ln
[
ri − r cos(θ − θ̃) + ξ(ri, θ̃, z1)

]

ηj =r2 + (z − zj)2

(12)

H(III)
r =

2∑

i=1

(−1)i

∫ r2

r1

(d(θj+1)− e(θj)) dr̃ (13)

d(θj+1) =

r̃(−z + zi)(−r + r̃ cos(θ − θj+1))
sin(φ) sin

[
1
2(θj+1 − θj − 2θf )

]

(r2 + r̃2 − 2rr̃ cos(θ − θj+1)) ξ(r̃, θj+1, zi)

e(θj) =

r̃(zi−z)(r−r̃ cos(θ−θj))
sin(φ) sin

[
1
2(θj−θj+1−2θf )

]

(r2 + r̃2 − 2rr̃ cos(θ − θj)) ξ(r̃, θj , zi)

(14)
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The azimuthal component of the magnetic field produced by the tile
permanent magnet is expressed as follows;

Hθ (r, θ, z) =
1

4πµ0

∫ θj+1

θj

∫ z2

z1

σ1

(
θ̃
) (

r2 sin
(
θ − θ̃

))
r2dθ̃dz̃

ξ
(
r2, θ̃, z̃

)3

+
1

4πµ0

∫ θj+1

θj

∫ z2

z1

σ3

(
θ̃
)(

r1 sin
(
θ − θ̃

))
r1dθ̃dz̃

ξ
(
r1, θ̃, z̃

)3

+
1

4πµ0

∫ θj+1

θj

∫ r2

r1

σ6

(
r̃ sin

(
θ − θ̃

))
r̃dθ̃dr̃

ξ
(
r̃, θ̃, z2

)3

+
1

4πµ0

∫ θj+1

θj

∫ r2

r1

σ5

(
r̃ sin

(
θ − θ̃

))
r̃dθ̃dr̃

ξ
(
r̃, θ̃, z1

)3

+
1

4πµ0

∫ r2

r1

∫ z2

z1

σ2 (r̃ sin (θ − θj+1)) dz̃dr̃

ξ (r̃, θj+1, z̃)3

+
1

4πµ0

∫ r2

r1

∫ z2

z1

σ4 (r̃ sin (θ − θj)) dz̃dr̃

ξ (r̃, θj , z̃)3
(15)

The previous relation can be written in the following form:

Hθ(r, θ, z) = H
(I)
θ + H

(II)
θ + H

(III)
θ (16)

H
(I)
θ =

2∑

i=1

(−1)i
r2
2(−z + zi) cos

(
θj+θj+1

2 + θf − θ̃
)

sin(φ) sin(θ − θ̃)

ξ(r2, θ̃, zi)
(
r2 + r2

2 − 2rr2 cos(θ − θ̃)
)

+
2∑

i=1

(−1)i
r2
1(z−zi) cos

(
θj+θj+1

2 +θf−θ̃
)

sin(φ) sin(θ−θ̃)

ξ(r1, θ̃, zi)
(
r2 + r2

1 − 2rr1 cos(θ − θ̃)
) (17)

By using θj = θ1 and θj+1 = θ2, we have:

H
(II)
θ =

2∑

i=1

2∑

k=1

(−1)k (fz1 − f(z2)) (18)

f(zi) = −cos(φ)
r

(ξ(ri, z1, θk) + η ln [ri − η + ξ(ri, z1, θk)])

η = r cos(θ − θk)
(19)
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H
(III)
θ =

∫ r2

r1

(m(θj+1)−m(θj)) dr̃ (20)

with

m(α) =
2∑

i=1

(−1)i r̃
2(−z + zi) sin(φ) sin(θ − α) sin

(
1
2(θj − α + 2θf )

)

(r2 + r̃2 − 2rr̃ cos(θ − α))ξ(r̃, α, zi)
(21)

The axial component of the magnetic field produced by the tile
permanent magnet is expressed as follows:

Hz (r, θ, z) =
1

4πµ0

∫ θj+1

θj

∫ z2

z1

σ1

(
θ̃
)

(z − z̃) r2dθ̃dz̃

ξ
(
r2, θ̃, z̃

)3

+
1

4πµ0

∫ θj+1

θj

∫ z2

z1

σ3

(
θ̃
)

(z − z̃) r1dθ̃dz̃

ξ
(
r1, θ̃, z̃

)3

+
1

4πµ0

∫ θj+1

θj

∫ r2

r1

σ6 (z − z2) r̃dθ̃dr̃

ξ
(
r̃, θ̃, z2

)3

+
1

4πµ0

∫ θj+1

θj

∫ r2

r1

σ5 (z − z1) r̃dθ̃dr̃

ξ
(
r̃, θ̃, z1

)3

+
1

4πµ0

∫ r2

r1

∫ z2

z1

σ2 (z − z̃) dz̃dr̃

ξ (r̃, θj+1, z̃)3

+
1

4πµ0

∫ r2

r1

∫ z2

z1

σ4 (z − z̃) dz̃dr̃

ξ (r̃, θj , z̃)3
(22)

The previous relation can be reduced to the following form:

Hz(r, θ, z) = H(I)
z + H(II)

z + H(III)
z (23)

H(I)
z =

2∑

i=1

(−1)i

∫ 2π

0
cos

(
θj+θj+1

2
+θf−θ̃

)
sin(φ) (f(zi)+g(zi)) dθ̃

(24)
with

f(zi) =
r2

ξ(r2, θ̃, zi)

g(zi) = − r1

ξ(r1, θ̃, zi)

(25)
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H(II)
z =

∫ 2π

0
(hz) dθ̃ (26)

with

hz=
2∑

i=1

(−1)i
2 (z − z2) cos(φ)

(
r2 + (z − z2)

2 − rri cos
(
θ − θ̃

))

ξ
(
ri, θ̃, z2

)(
−r2−2 (z−z2)

2+r2 cos
[
2

(
θ−θ̃

)])

+
2∑

i=1

(−1)i+1
2 (z−z1) cos(φ)

(
r2 + (z−z1)

2−rri cos
(
θ−θ̃

))

ξ
(
ri, θ̃, z1

)(
−r2−2 (z−z1)

2+r2 cos
[
2
(
θ−θ̃

)]) (27)

H(III)
z =

2∑

i=1

(−1)i

∫ r2

r1

(hz(θj+1)− hz(θj)) dr̃ (28)

with

hz(θj+1) =
2∑

i=1

(−1)i r̃ sin(φ) sin
(

1
2 (θj − θj+1 + 2θf )

)

ξ (r̃, θj+1, zi)

hz(θj) =
2∑

i=1

(−1)i r̃ sin(φ) sin
(

1
2 (θj − θj+1 + 2θf )

)

ξ (r̃, θj , zi)

(29)
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Figure 4. Definition of the fictitious magnetic pole surface densities
σ1, σ2, σ3, σ4, σ5 and σ6.
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Figure 5. Structure considered for verifying the accuracy of our
expressions.

4. VERIFICATION OF THE ACCURACY OF OUR
ANALYTICAL EXPRESSIONS

This section presents a comparison of the three magnetic field
components created by a tile permanent magnet whose polarization
is both radial and uniform (as shown in Fig. 5). In other words, the
vector polarization is defined as follows in that case:

~Jp = −J cos
(

θj + θj+1

2

)
~ux − J sin

(
θj + θj+1

2

)
~uy (30)

We have represented in Fig. 6 the radial field created by a tile
permanent magnet whose polarization is ~Jp with our model and the one
published in [1]. We have taken the following dimensions: r1 = 0.01m,
r2 = 0.015 m, θj = 0 rad, θj+1 = π

4 rad, z1 = 0m, z2 = 0.003m,
θ = π

8 rad, θf = 0 rad, φ = π
2 rad, z = 0.0015 m. The Fig. 6 shows that

our model is consistent with the one published in [1]. Furthermore, the
Fig. 6 shows a dissymmetry of the radial field shape, which is consistent
with the demagnetizing field in arc-shaped permanent magnets with
small dimensions.

We have represented in Fig. 7 the azimuthal field created by a
tile permanent magnet whose polarization is ~Jp with our model and
the one published in [1]. We have taken the following dimensions:
r1 = 0.025m, r2 = 0.03 m, θj = 0 rad, θj+1 = π

4 rad, z1 = 0 m,
z2 = 0.003 m, θf = π rad, φ = π

2 rad, r = 0.022m, z = 0.001m.
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Figure 6. Representation of the radial field produced by a tile
permanent magnet uniformly magnetized versus the radial direction
(r1 = 0.01m, r2 = 0.015m, θj = 0 rad, θj+1 = π

4 rad, z1 = 0 m,
z2 = 0.003m, θ = π

8 rad, θf = π rad, φ = π
2 rad, z = 0.0015m).
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Figure 7. Representation of the azimuthal field produced by a tile
permanent magnet uniformly magnetized.

The Fig. 7 also demonstrates that our model is consistent with the one
published in [1].

Eventually, we have represented in Fig. 8 the axial field created by
a tile permanent magnet whose polarization is ~Jp with our model and
the one published in [1]. We have taken the following dimensions:
r1 = 0.025m, r2 = 0.03 m, θj = 0 rad, θj+1 = π

4 rad, z1 = 0 m,
z2 = 0.003m, θf = π rad, φ = π

2 rad, r = 0.0249m. Fig. 8 also
demonstrates that our model is consistent with the one published in [1].

As a remark, there is a difficulty in evaluating the magnetic field
very near the magnet surface when the Green’s function becomes
singular. In that case, we use the Cauchy’s principal value between
the upper and lower surfaces of the magnet faces.
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Figure 8. Representation of the axial field produced by a tile
permanent magnet uniformly magnetized versus the axial direction
(r1 = 0.025m, r2 = 0.03m, θj = 0 rad, θj+1 = π

4 rad, z1 = 0 m,
z2 = 0.003m, θf = π rad, φ = π

2 rad, r = 0.0249m).

5. OBTAINING OPTIMIZED CONFIGURATIONS

This section illustrates the utility of using our analytical formulation
for obtaining a sinusoidal radial field in an electric machine. Such a
radial field can be obtained by using tile permanent magnets of various
magnetization directions. We study two configurations. Basically,
the first configuration consists of tile permanent magnets of various
angular widths and the magnetic polarization directions are fixed.
In other words, we have tile permanent magnets with radial and
orthoradial polarizations and we look for the optimal angular widths
so as to obtain a sinusoidal radial field in the air gap of the device.
Such an optimization can be carried out by using a classical gradient
method since the computational cost of our model is low. To do
such an optimization, we have used the following device dimensions:
r1 = 0.1m, r2 = 0.15m, J = 1 T, z1 = 0m, z2 = 0.03 m, r = 0.06m,
z = 0.015m, the largest angular width is π

3 rad and the other one
is π

6 rad. We have compared the obtained simulation with a simple
radial field whose equation is Hr(θ) = 55 sin(2(θ − 1.25)) kA/m. The
two simulations clearly show that we have succeeded in obtaining a
sinusoidal radial field with the considered geometry.

The second configuration consists of a device made of tile
permanent magnets with various polarization directions. In other
words, all the tile permanent magnets have various angular widths
and polarization directions. In this configuration, we look for the
optimal angular widths and polarization directions so as to obtain
a sinusoidal radial field in the air gap of the device. To do so, we
have used the following device dimensions: r1 = 0.1m, r2 = 0.15m,
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J = 1 T, z1 = 0m, z2 = 0.03m, r = 0.05m, z = 0.015m, the smallest
angular width is 0.84π

6 rad, the greatest angular width is 1.08π
6 rad. As

previously, we have compared the obtained simulation with a simple
radial field whose equation is Hr(θ) = 60 sin(2(θ − 1)) kA/m.The
two simulations clearly show that we have succeeded in obtaining a
sinusoidal radial field with the considered geometry.

More generally, the Figs. 9 and 10 emphasize the utility of using
analytical tools. Indeed, the computational cost for representing

0
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Figure 9. Representation of the sinusoidal radial field created by
an optimized structure versus the angular direction; r1 = 0.1 m,
r2 = 0.15m, J = 1 T, z1 = 0 m, z2 = 0.03m, r = 0.05 m, z = 0.015m,
the largest angular width is π

3 rad and the other one is π
6 rad, line =

this work, points = Hr(θ) = 55 sin(2(θ − 1.25)) kA/m.
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Figure 10. Representation of the sinusoidal radial field created
by an optimized structure versus the angular direction; r1 = 0.1 m,
r2 = 0.15m, J = 1 T, z1 = 0 m, z2 = 0.03m, r = 0.05 m, z = 0.015m;
line = this work, points = Hr(θ) = 60 sin(2(θ− 1)) kA/m, the smallest
angular width is 0.84π

6 rad, the greatest angular width is 1.08π
6 rad.
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this sinusoidal radial field is 3 s for the two previous simulations.
Consequently, this is a suitable tool that can be used with any
algorithm method so as to optimize the radial field in the air gap
of the device.

6. CONCLUSION

This paper has presented analytical expressions of the magnetic field
created by a tile permanent magnet uniformly magnetized. Our
analytical expressions have a low computational cost and are presented
in terms of analytical and semi-analytical parts. Basically, our
expressions are sufficiently general to be used in many engineering
applications like electric machines, couplings, wigglers or MRI devices.
All our expressions have been compared to previous ones published
in the literature. Eventually, we have presented two optimized
configurations generating a sinusoidal radial field in the air gap of the
device.
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