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Abstract—Born approximation is widely used in (inverse) scattering
problems to alleviate the computational difficulty, but its validity
and applicability are not well defined. In this paper, a universal
criterion to identify the validity of Born approximation is put forward
based on applying the operator theory on the scattering integral
equation. In comparison with the traditional criteria, the new one
excels in its ability to give a wider and more rigorous valid frequency
range, especially while non-uniform scatterers are under consideration.
Numerical examples verify the validity and advantage of the new
criterion.

1. INTRODUCTION

The IE (integral equation) method is widely used in computational
electromagnetics to characterize the scattering behavior of a
scatterer [12]. In the method, the integral equation to be solved is a
3D Fredholm integral equation of the 2nd kind. In most situations
of practical interest, it is not possible to find a solution of this
integral equation in a closed form. One must, therefore, employ a
proper numerical scheme to solve it. Up to now, the most attractive
numerical method for this kind of integral equation is the method
of moment (MoM) [13, 14, 29, 35]. However, enormous computational
cost is required by this method, especially for electrically large-scaled
scatterers. In this sense, approximation techniques might be more
advisable in some situations. Among the approximate methods, the
Born approximation is the most commonly used one, which directly
employs the incident field as the total field inside the scatterer [4].
This method is easy to use, and it is widely used in (inverse) scattering
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problems [8–10, 25, 26]. However, its applicability at high frequencies
is believed to be unsatisfactory.

Some criteria have been developed in the past decades to identify
the validity of this approximation, and they can generally be classified
into the following three categories:
(i) The first one is like ∆εrkL ¿ 1, where L stands for the scale

of the scatterer [6, 7, 16, 17]. This kind of criterion is generally
concluded from some special numerical experiments where even
scatterers are considered, so its rigour is limited.

(ii) The second one is the extension of the previous one. It follows
∆εr{1, kL, (kL)2} ¿ 1 [28].

(iii) The third one is like k2∆εrV /(4πr) ¿ 1, where V is the volume of
the scatterer and r is the detection distance [30–32]. This criterion
is derived from the condition that the scattered field around the
receiver is much smaller than the incident field. However, this
comparison should actually be made in the scatterer [4], so the
generality of this criterion is not satisfactory.

Conclusively, the validity of Born approximation has not been well
specified. This paper intends to establish a new criterion to identify
it.

2. BORN APPROXIMATION AND ITS VALIDITY

In light of the Maxwell equation, the scattering behavior of a scatterer
can be characterized by an integral equation as follows [7]:

E(r) = Ei(r) + k2

∫∫∫

V ′
G(r, r′) ·∆εr(r′)E(r′)d3r′, r ∈ V ′, (1)

where k is the wave number of incident wave, r is the radius vector
from the origin to the field point (receiver), r′ is the radius vector
from the origin to the source point, V ′ is the volume the scatterer
occupies, ∆εr is the difference in relative dielectric constant between
the scatterer and the ambient medium, E is the total electric field,
Ei is the incident electric field, G is the dyadic Green function. The
dyadic Green function is defined by

G(r, r′) =
(
I +

∇∇
k2

)
G(r, r′) (2)

with G(r, r′) = eik|r−r′|/(4π|r− r′|) being the free space Green function
and I being a unit dyadic.

As is well known, Equation (1) is very difficult to solve via classical
algorithms (such as MoM), especially for electrically large-scaled
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scatterers. In order to alleviate the computational difficulty, Born
proposed the Born approximation method [4]. The approximation is
that if the contrast between the scatterer and the ambient medium
is extremely small, the total field inside the scatterer can be well
approximated by the incident field, and then the total field E at the
receiver (r is located at the receiver) is approximately obtained as

E(r) ≈ Ei(r) + k2

∫∫∫

V ′
G(r, r′) ·∆εr(r′)Ei(r′)d3r′. (3)

This technique is easy to implement and it plays an important role in
(inverse) scattering problems [8–10], but its validity needs more study.
The following sections intends to put forward a new criterion to identify
the validity of it.

2.1. Operator Expression of a Sufficient Condition for the
Validity of Born Approximation

In (1), the presence of operator ∇∇ results in a three-order singularity
1/|r−r′|3 when the field point coincides with the source point (r′ = r).
This makes the integral not integrable. In the present paper, we
start our investigation with another expression of the original integral
Equation (1), which is free of three-order singularity [7]:

E(r) = Ei(r) + k2

{∫∫∫

V ′
G(r, r′)∆εr(r′)E(r′)d3r′

+
1
k2

∫∫∫

V ′
∇′ · [∆εr(r′)E(r′)

]∇G(r, r′)d3r′
}

. (4)

Define a vector P(r) to describe the total field such that

E(r) = P(r)eik·r, (5)
then the vector integral Equation (4) can be transformed as

P(r) = Pi(r) + k2

{∫∫∫

V ′
G(r, r′)∆εr(r′)P(r′)eik·(r′−r)d3r′

+
1
k2

∫∫∫

V ′
∇′ ·

[
∆εr(r′)P(r′)eik·r′

]
∇G(r, r′)e−ik·rd3r′

}
,(6)

where Pi(r) ,
[
P x

i (r) P y
i (r) P z

i (r)
]T stands for the incident wave

(the factor eik·r is excluded). Moreover, defined an operator H by

HP =
∫∫∫

V ′
k2∆εrPG(r, r′)eik·(r′−r)d3r′

+
∫∫∫

V ′

[∇′(∆εr)·P+∆εr∇′ ·P+∆εrP·(ik)
]∇G(r, r′)eik·(r′−r)d3r′.(7)
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then the integral equation becomes

P = Pi +HP. (8)

In light of the operator theory [19], the solution of (8) can be expressed
as

P = (I −H)−1 Pi, (9)

where I is the identity operator. If ‖H‖ < 1, the inverse operator can
be expanded in a Neumann series [2, 5, 15], i.e.,

P = Pi +HPi +H2Pi + · · · = Pi +
∞∑

n=1

HnPi, (10)

where H0Pi,HPi,H2Pi, · · · ,HnPi are the zeroth-order scattered field
(P0), the first-order scattered field (P1), the second-order scattered
field (P2), · · · , and the nth-order scattered field (Pn), respectively. Of
course, if the high-order operators HnPi are available, the total field
can be directly obtained by summing them. However, the calculation
of high-order terms are generally very difficult because of the presence
of highly oscillatory factors G(r, r′) [11]. This makes the applicability
of series of (10) to be prohibitive.

In practice, if the contrast between the scatterer and the ambient
medium is extremely small, the Born approximation can be used. This
technique approximates the total field inside the scatterer with the
incident field [4], i.e.,

P(r) ≈ Pi(r), r ∈ V ′. (11)

Obviously, this approximation takes only the first term on the right
hand side of (10), and the left terms are truncated. In this manner, if
the truncated terms are much smaller than the kept term, i.e.,∣∣∣∣∣

∞∑

n=1

HnPi

∣∣∣∣∣ ¿ |Pi| , (12)

then the Born approximation is believed to be valid. This paper intends
to study the validity of Born approximation based on this condition.

2.2. Estimation of the First-order Scattered Field

Without loss of generality, we assume a plane wave propagates to the
scatterer in x direction and the polarization is in z direction, i.e.,

k = [1, 0, 0]T , P0 = Pi = [0, 0, 1]T .
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In this situation, there should be ∇ · Pi = 0, Pi · (ik) = 0 and
∇(∆εr)·Pi = ∂(∆εr)/∂z. Subsequently, substituting these expressions
into (7) yields the first-order scattered field:

P1(r) = (HPi)(r)

=

[0
0
1

]∫∫∫

V ′
k2∆εr(r′)G(r, r′)eik·(r′−r)d3r′

+
∫∫∫

V ′

∂(∆εr(r′))
∂z′

∇G(r, r′)eik·(r′−r)d3r′. (13)

In (13), the presence of oscillatory factor G (r, r′) eik·(r−r′) and
∇G (r, r′) eik·(r−r′) makes the computation of the two integrals very
difficult; we shall make proper estimations on them.

Investigation of the Green function shows that if a plane incident
wave propagates to the scatterer in x direction, there should be the
following two approximations:

G
(
r, r′

)
eik·(r−r′) ≈ i

2k
u(x− x′)δ(y − y′)δ(z − z′), (14)

and
∇G

(
r, r′

)
eik·(r−r′)

≈ i
2k

[
δ(x−x′)δ(y−y′)δ(z−z′)
u(x−x′)δ′(y−y′)δ(z−z′)
u(x−x′)δ(y−y′)δ′(z−z′)

]
+

1
2

[1
0
0

]
u(x−x′)δ(y−y′)δ(z−z′),(15)

where δ′(x−c) = d
dxδ(x−c) is the unit impulse doublet function, δ(x−c)

is the unit impulse function, and u(x−c) is the unit step function [18].
For details of the derivation, please refer to Appendix A.

Substituting (14) and (15) into (13) yields an approximation of
the first-order scattered field:

P1(r) ≈ ik
2

[0
0
1

]∫ x

xmin

∆εr(x′, y, z)dx′

︸ ︷︷ ︸
I1

+
i

2k




∂∆εr(x,y,z)
∂z

− ∫ x
xmin

∂2∆εr(x′,y,z)
∂y∂z dx′

− ∫ x
xmin

∂2∆εr(x′,y,z)
∂z2 dx′




︸ ︷︷ ︸
I2

+
1
2

[1
0
0

]∫ x

xmin

∂∆εr(x′, y, z)
∂z

dx′

︸ ︷︷ ︸
I3

. (16)

Here, we have considered that
∫∞
−∞ f(t)u(τ − t)dt =

∫ τ
−∞ f(t)dt,∫∞

−∞ f(t)δ(τ − t)dt = f(τ) and
∫∞
−∞ f(t)δ′(τ − t)dt = −f ′(τ).
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In (16), the first-order scattered field is decomposed into three
integrals I1, I2, I3. Comparing the magnitudes of them shows that if
the dielectric constant of the scatterer varies slowly, there should be

|I1| ∼ O(kL∆εr), |I2| ∼ O
(

∆εr

kL

)
, |I3| ∼ O(∆εr).

In (inverse) scattering study, the Born approximation for electrically
large-scaled scatterers (kL À 1) attract much attention because the
scattering integral equations for these scatterers are generally very
difficult to solve. In this situation, the comparison of the above
integrals gives

|I2| ¿ |I3| ¿ |I1|.
So the first-order scattered field is mainly determined by I1:

P1(r) ≈ I1 =
ik
2

[0
0
1

]∫ x

xmin

∆εr(x′, y, z)dx′, (17)

and its magnitude can be estimated as
∣∣P1(r)

∣∣≈ k

2

∣∣∣∣
∫ x

xmin

∆εr(x′, y, z)dx′
∣∣∣∣6

k

2

∥∥∥∥
∫ x

xmin

∆εr(x′, y, z)dx′
∥∥∥∥, k

2
‖I‖,
(18)

where the norm is defined as ‖·‖ = sup
r∈V ′

|·|. This norm is easy to obtain

because only a one-dimensional non-oscillatory integral is involved.
Specially, for a uniform scatterer (∆εr(r) = constant), there should
be ‖I‖ = ∆εrL with L being the scale of the scatterer in x direction.
Obviously, the norm ‖I‖ carries the units of meter, and the magnitude
of P is unitless.

2.3. Estimation of Higher-order Scattered Fields

The second-order scattered field P2(r) follows

P2(r) =
(H2Pi

)
=

(HP1
)
(r) =

∫∫∫

V ′
k2∆εrP1G(r, r′)eik·(r′−r)d3r′

+
∫∫∫

V ′

[∇′(∆εr) ·P1+∆εr∇′ ·P1+∆εrP1 · (ik)
]

∇G(r, r′)eik·(r′−r)d3r′. (19)
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According to (17), we have ∇′ ·P1(r′) ≈ 0 and P1(r′) · k ≈ 0. In this
manner, (19) can be estimated as

P2(r)≈
∫∫∫

V ′
k2∆εr

{
ik
2

[0
0
1

]∫ x′

x′min

∆εr(x′′, y′, z′)dx′′
}

G(r, r′)eik·(r′−r)d3r′

+
∫∫∫

V ′

∂(∆εr)
∂z′

[
ik
2

∫ x′

x′min

∆εr(x′′, y′, z′)dx′′
]
∇G(r, r′)eik·(r′−r)d3r′.(20)

Substituting (14) and (15) into (20) and readopting the
process of magnitude comparison in Section 2.2 yield the following
approximation:

P2(r) ≈
[0
0
1

]
ik
2

∫ x

xmin

∆εr(x′, y, z)

{
ik
2

∫ x′

x′min

∆εr(x′′, y′, z′)dx′′
}

dx′.

(21)
This approximation immediately leads to the following estimation of
the second order scattered field:

∣∣P2(r)
∣∣ /

(
k

2
‖I‖

)2

, (22)

where / means “smaller than or approximate to”. Moreover, the
higher-order scattered field can be obtained in the same way:

|Pn(r)| /
(

k

2
‖I‖

)n

, n = 3, 4, . . . . (23)

Therefore, the sum of the truncated terms shown in (12) can be
estimated as ∣∣∣∣∣

∞∑

n=1

HnPi

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=1

Pn

∣∣∣∣∣ /
∞∑

n=1

(
k

2
‖I‖

)n

. (24)

If k‖I‖
2 < 1 (this condition will be discussed later), (24) is simplified as

∣∣∣∣∣
∞∑

n=1

HnPi

∣∣∣∣∣ /

k

2
‖I‖

[
1−

(
k

2
‖I‖

)∞]

1− k

2
‖I‖

. (25)

Considering that the limit lim
n→∞

(
k

2
‖I‖

)n

= 0 holds for k‖I‖
2 < 1,

estimation (25) can be simplified as
∣∣∣∣∣
∞∑

n=1

HnPi

∣∣∣∣∣ /
k

2
‖I‖

1− k

2
‖I‖

. (26)
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2.4. A New Validity Criterion for Born Approximation

Substituting the estimation of the truncated terms (26) to condition
(12) shows that the inequality

k

2
‖I‖

1− k

2
‖I‖

¿ 1 (27)

can serves as a sufficient condition to ensure the validity of Born
approximation. Generally, a positive number a is believed to be much
smaller than another positive number b if the ratio a/b is smaller than
a small threshold qth such as qth = 0.1. Therefore, introducing a
threshold qth to (27) gives the following sufficient condition for Born
approximation:

k ‖I‖
2

6 qth

1 + qth
. (28)

From (28), the upper bound of valid frequency is yielded as

f 6 cqth

π ‖I‖ (1 + qth)
, (29)

where c = 3×108 m/s is the velocity of light in free space. Considering
that the threshold qth is very small, it is also advisable to simplify the
valid frequency as

f 6 cqth

π ‖I‖ . (30)

It should be noted that during the derivation from (24) to (26),
we have assumed k‖I‖

2 < 1. Actually, this assumption is weaker than
the sufficient condition (28) when a small threshold qth is taken into
account, so the assumption is acceptable and (29) can really serve as
a sufficient condition to identify the validity of Born approximation.

Table 1. Parameters for the dielectric sphere.

Parameters Value
Outmost radius of the sphere 1 m

Radial profile of ∆εr 10−2/(1 + 30r2)
Number of layers 200, equal thickness

Detection distance R 500m
Amplitude of incident wave |Ei| 1V/m

Frequency f 10MHz–10 GHz, 400 equi-spaced
samples in the logarithmic scale
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3. VERIFICATION OF THE CRITERION

In this section, we test the validity of the proposed criterion. The
scattering characteristics of (homogenous or layered) dielectric spheres
have been elaborately studied via the Mie theory [3, 33, 34]. In this
work, we adopt a multi-layered dielectric sphere to verify the present
criterion. The parameters for the dielectric sphere and the incident
wave are listed in Table 1.

According to the parameters, the scattered electric field can be
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Figure 1. Relationship between the back-scattered field and the
frequency while a multi-layered dielectric sphere is under consideration.
(a) Scattered field obtained by the Born approximation and the Mie
theory. (b) Difference in scattered electric field between the Born
approximation and the Mie solution.
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worked out via the Mie theory. For more details please refer to
Appendix B. At the same time, the scattered field based on the Born
approximation can be computed according to formula (3). During
the processing, the oscillatory integral caused by the Green function
G(r, r′) is computed with an accurate and efficient quadrature method
developed by the present authors [20–22].

The relationship between the scattered field amplitude and the
frequency are presented in Figure 1(a), and the difference between
the two solutions (Mie theory and Born approximation) is presented
in Figure 1(b). As shown in Figure 1(a), the two curves are almost
coincident (the difference between them can only be observed at high
frequencies); this indicates that the Born approximation can in fact
obtain good results if weak scatterers are considered.

For better description of the solution error of Born approximation,
the relative error of the scattered field at the receiver is considered,
which follows

Er =
∣∣∣∣
Es,Born −Es,Mie

Es,Mie

∣∣∣∣ . (31)

Figure 2 presents the relationship between the relative error and the
frequency. It is observed that the relative error increases as a whole
with the increase of frequency. In the low frequency band, Er is
very small, so the Born approximation is believed to be valid. As
the frequency increases, Er increases (although not smooth enough),
and then the validity of Born approximation becomes worse and worse.
At a very high frequency, Er would be very large, and then the Born
approximation becomes invalid.
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Figure 2. Relative error of Born approximation for a multi-layered
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At the same time, although the error of scattered field is smooth
(see Figure 1(b)), some special peak values are observed in the relative
error curve (see Figure 2). The main reason for this phenomenon is as
follows: the scattered field Es serves as the denominator in the relative
error (31), so the presence of valley values of scattered field may result
in peak values on the relative error curve even if the error curve is
smooth. For example, two valley values at f = 4.588 × 108 Hz and
f = 7.848×108 Hz are indicated in Figure 1(a); they correspond to the
two peak values as indicated in Figure 2. In this manner, employing
the average values (not the peak values) to verify the present criterion
would make more sense.

Based on Figure 2, we now intend to give a comparison of the
existing criteria and the newly proposed one.

(i) For the criterion like ∆εrkL ¿ 1 [6, 16, 17], the valid frequency
range follows

f 6 f Ishimaru
max =

cqth

2π‖∆εr‖L. (32)

Here we have assumed that a/b 6 qth serves as a sufficient
condition for a ¿ b.

(ii) For the criterion like ∆εr{1, kL, (kL)2} ¿ 1 [28], the dominant
condition is ∆εr(kL)2 ¿ 1 while electrically large-scaled scatterers
are considered, so the valid frequency range follows

f 6 fShariff
max =

c
√

qth
‖∆εr‖

2πL
. (33)

Obviously, this bound is smaller than (32) because ∆εr < qth is
involved in the criterion.

(iii) For the present criterion (see (30)), the valid frequency range
follows

f 6 fLi
max =

cqth

π ‖I‖ , (34)

where ‖I‖ = max
r∈V ′

∣∣∣
∫ x
xmin

∆εr(x′, y, z)dx′
∣∣∣ is an integral norm.

As is known, ‖I‖ = max
r∈V ′

∣∣∣
∫ x
xmin

∆εr(x′, y, z)dx′
∣∣∣ 6 ‖∆εr‖L, so we

have
fLi
max > 2f Ishimaru

max .

Moreover, if ∆εr is with an evident peak distribution (∆εr in a
small region is much larger than that in other regions), then there
should be ‖I‖ = max

r∈V ′

∣∣∣
∫ x
xmin

∆εr(x′, y, z)dx′
∣∣∣ ¿ ‖∆εr‖L. This
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means that the following relationship will hold:

fLi
max À 2f Ishimaru

max .

In this sense, our criterion can give much wider valid frequency
in comparison with the traditional ones, especially when a non-
uniform scatterer is under consideration.

In Figure 2, we have marked the valid frequency boundaries
(f Ishimaru

max , fShariff
max , fLi

max) with three vertical lines, where the threshold
qth = 0.1 is assumed. From this figure, we know:

(i) On the one hand, it is seen that the relative errors around the
upper bound valid frequencies are all smaller than 0.1 (some peak
values are larger than 0.1, but they are caused by dividing small
scattered field Es), so the Born approximation is believed to be
valid there.

(ii) On the other hand, the valid frequency boundaries are fShariff
max =

75.5MHz, f Ishimaru
max = 238MHz, and fLi

max = 1.88GHz, so we have
fShariff
max < f Ishimaru

max < fLi
max. In this sense, the present criterion can

give a much wider valid frequency range, and it is more attractive.

4. CONCLUSIONS

A universal criterion to identify the validity of the Born approximation
is proposed. Compared with the existing criteria, the new one can
provide a much wider valid frequency range. This could provide
help to the (inverse) scattering studies while the Born approximation
is employed to alleviate the computational difficulty of solving the
scattering integral equations.
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APPENDIX A. APPROXIMATION OF SPECTRAL
GREEN FUNCTION

This appendix presents the derivation of approximation (14) and (15).
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A.1. Proof of Approximation (14)

It is known that the spectral-domain Green function follows [1, 27]

G
(
r, r′

)
=

(
1
2π

)3

lim
ε→0+

∫∫∫
eiq·(r−r′)

q2 − k2 − iε
d3q.

According to this expression we have

G
(
r, r′

)
eik·(r′−r) =

(
1
2π

)3

lim
ε→0+

∫∫∫
ei(q−k)·(r−r′)

q2 − k2 − iε
d3q.

Let s = q− k, then

G
(
r, r′

)
eik·(r′−r) =

(
1
2π

)3

lim
ε→0+

∫∫∫
eis·(r−r′)

s2 + 2s · k− iε
d3s,

where s = |s|. Because the factor eis·(r−r′) is a highly oscillatory
function, the integral result is chiefly determined by the region of s
around s = 0, then we have the following approximation:

G
(
r, r′

)
eik·(r′−r) ≈

(
1
2π

)3

lim
ε→0+

∫∫∫
eis·(r−r′)

2s · k− iε
d3s.

Assume the incident wave propagates to the scatterer in a fixed
direction (x direction for example), there will be s · k = sxk and the
above-mentioned expression is further transformed as

G
(
r, r′

)
eik·(r−r′) ≈

(
1
2π

)3

lim
ε→0+

∫∫∫
eis·(r−r′)

2sxk − iε
d3s

=
1
2π

lim
ε→0+

∫ +∞

−∞

eisx(x−x′)

2sxk−iε
dsx

1
2π

∫ +∞

−∞
eisy(y−y′)dsy · 1

2π

∫ +∞

−∞
eisz(z−z′)dsz

≈δ(y − y′)δ(z − z′)· 1
2π

lim
ε→0+

∫ +∞

−∞

eisx(x−x′)

2sxk − iε
dsx, (A1)

where we have considered 1
2π

∫ +∞
−∞ eisy(y−y′)dsy = δ(y − y′) and

1
2π

∫ +∞
−∞ eisz(z−z′)dsz = δ(z − z′).
Obviously, the third integral on the right-hand side of (A1) has a

pole sp
x = iε/2k on the upper half plane (see Figure A1).

In complex analysis theory, this kind of integral can be computed
with the residue theorem by introducing a particular integral path [24].
Figure A1 provides two candidate paths (C and C ′) and we are trying
to choose a proper one according to the characteristic of the integral.
These two paths are both semicircles with infinite radius, i.e.,

C : sx = lim
Rc→∞

eiθ = lim
Rc→∞

(cos θ + i sin θ) , θ ∈ (π, 2π),
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x
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k

ε
=
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Q

Figure A1. Cauchy integtral path for the integral with a pole.

and
C ′ : sx = lim

Rc→∞
eiθ = lim

Rc→∞
(cos θ + i sin θ) , θ ∈ (0, π).

Then we have

eisx(x−x′) = lim
Rc→∞

e[−Rc(x−x′) sin θ+iRc(x−x′) cos θ].

Obviously, the proper integral path should be a path where the real
part of the exponent is less than 0 (otherwise the integrand will
becomes infinity), so the following condition has to be satisfied:

(
x− x′

)
sin θ > 0.

If this condition holds, then there should be

lim
Rc→∞

e[−Rc(x−x′) sin θ+iRc(x−x′) cos θ] = 0.

In this manner, the integral result can be obtained as follows using the
residual theorem:

(i) If x − x′ > 0, we should choose C ′ as the proper integral path,
and then the pole is located in the closed integral path Q + C ′.
Subsequently, according to the Cauchy’s theorem and the residue
theorem [24], we have

1
2π

lim
ε→0+

∫ +∞

−∞

eisx(x−x′)

2sxk − iε
dsx

=
1
2π

lim
ε→0+

{
2πi lim

sx→ iε
2k

[
eisx(x−x′)

2sxk − iε

(
sx − iε

2k

)]}
=

i
2k

,
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(ii) otherwise if x − x′ < 0, the proper integral path should be C,
then the pole is excluded from the closed integral path Q + C.
Subsequently, we have

1
2π

lim
ε→0+

∫ +∞

−∞

eisx(x−x′)

2sxk − iε
dsx = 0.

In light of these two situations, the integral is finally obtained as

1
2π

lim
ε→0+

∫ +∞

−∞

eisx(x−x′)

2sxk − iε
dsx =

i
2k

u(x− x′). (A2)

Substituting (A2) into (A1) yields the following approximation:

G
(
r, r′

)
eik·(r−r′) ≈ i

2k
u(x− x′)δ(y − y′)δ(z − z′).

A.2. Proof of Approximation (15)

According to (14), the gradient of G (r, r′) eik·(r−r′) follows

∇
[
G

(
r, r′

)
eik·(r−r′)

]
≈ i

2k

[
δ(x− x′)δ(y − y′)δ(z − z′)
u(x− x′)δ′(y − y′)δ(z − z′)
u(x− x′)δ(y − y′)δ′(z − z′)

]
,

where we have considered the relationship u′(x − c) = δ(x − c).
Moreover, the expansion of this gradient follows

∇
[
G

(
r, r′

)
eik·(r−r′)

]
= ∇G

(
r, r′

)
eik·(r−r′) + ikG

(
r, r′

)
eik·(r−r′),

(A3)
so, there should be

∇G
(
r, r′

)
eik·(r−r′) ≈ i

2k

[
δ(x− x′)δ(y − y′)δ(z − z′)
u(x− x′)δ′(y − y′)δ(z − z′)
u(x− x′)δ(y − y′)δ′(z − z′)

]

−ikG
(
r, r′

)
eik·(r−r′). (A4)

Considering that k = [1, 0, 0]T, we then have the following
approximation after substituting approximation (14) into (A4):

∇G
(
r, r′

)
eik·(r−r′) ≈ i

2k

[
δ(x− x′)δ(y − y′)δ(z − z′)
u(x− x′)δ′(y − y′)δ(z − z′)
u(x− x′)δ(y − y′)δ′(z − z′)

]

+
1
2

[1
0
0

]
u(x− x′)δ(y − y′)δ(z − z′).

This finishes the proof of (15).
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APPENDIX B. COMPUTATION OF THE SCATTERED
FIELD BY MIE THEORY

For a plane wave propagating to a dielectric sphere, the scattered field
expressed in the spherical coordinate system reads [3, 23]

Esθ =
eikR

ikR
cosφ

∞∑

n=1

2n + 1
n(n + 1)

(anτn + bnπn),

Esφ =
eikR

−ikR
sinφ

∞∑

n=1

2n + 1
n(n + 1)

(anπn + bnτn)

(B1)

where Esθ is the scattered far-field component in the scattering plane
(defined by the incident and scattered direction), Esφ is the orthogonal
component, φ is the angle between the incident electric field and the
scattering plane. For back-scattering problems, there should be

πn = −(−1)n n(n + 1)
2

, τn = (−1)n n(n + 1)
2

, φ = π/2. (B2)

At the same time, it is generally accurate enough to obtain the
scattered field by summing only the first Nc = xL + 4x

1/3
L + 2 terms in

(B1). Therefore, the scattered field components can be simplified as

Esθ = 0, Esφ =
eikR

ikR

Nc∑

n=1

2n + 1
2

(−1)n(an − bn) (B3)

In (B3), only the coefficients an and bn are undetermined. They can
be yielded with a very stable recurrence algorithm developed in [33],
then the scattered field can be easily worked out .
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