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Abstract—The synthesis of optimal narrow beam low sidelobe linear
array is addressed. Only the length of the array is constrained. The
number, the positions and the weightings of the elements are left
free. It is proven, that the optimal design is always an array with a
small number of elements. One first demonstrates that among equally
spaced linear arrays of given length, the sparsest Dolph-Chebyshev
design, i.e., the one with the largest admissible inter-element distance,
is the optimal one. Then, the restriction to equally spaced elements
is removed, and the general problem is solved and discussed. It is
shown that the sparsest Dolph-Chebyshev designs are optimal for array
lengths in given specified intervals and close to optimal for all other
lengths.

1. INTRODUCTION

The synthesis of linear arrays has been intensively investigated since
the mid 20th century due to its many practical applications in radar,
communication systems and more generally in signal processing.
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However, the basic question of determining the linear array of fixed
length L, i.e., of fixed maximal distance between the center of phases
of the two extreme elements, which radiates the optimal narrow beam
low sidelobe pattern, seems to be still open.

It is only in the case of an array composed of equally spaced
isotropic elements that the optimal excitations are known. Dolph
was the first to propose a procedure that is optimal only for element
spacings that are greater than half a wavelength (d ≥ λ/2) [1]. One
year later, Riblet [2] modified Dolph’s method to obtain optimal
designs also for d < λ/2 but only for an odd number of array elements.
The extension to an even number of elements has been proposed much
more recently by McNamara in [3] where a fairly exhaustive review of
the works derived from Dolph original ideas is also given.

The design of unequally spaced arrays has also been and is
still addressed by many authors [4–7]. In addition to the element
weightings, the element spacing provides indeed another parameter to
control the radiation pattern. However, the goals are different from
the one studied here. In these studies, unequally spaced arrays are
typically designed to reduce the number of array elements or to replace
the amplitude tapering of equally spaced arrays by unequally spaced
arrays with uniform amplitude, with no additional optimality goal.

In [8], the design of a narrow beam low sidelobe linear array
with fixed number of elements is addressed using a global optimization
routine. The computational load of these numerical techniques limits
however their use to arrays with a small number of elements and
optimality is not guaranteed.

Thus, while a considerable amount of work has been dedicated
to array pattern synthesis, the canonical problem of finding the
linear array of given length that radiates the pattern having the best
tradeoff between sidelobe level and beam width has, to the best of our
knowledge, not yet been addressed. This synthesis problem requires
the simultaneous optimization of the array geometry (i.e., the number
of elements and their positions) as well as the element weightings.

The next section describes this open problem and shows how to
approximate it numerically while Section 3 deals with the synthesis
of optimal equally spaced linear arrays. In Section 4, the general
problem is solved using results from linear programming theory and the
optimal solution is discussed. Finally, some numerical examples and
comparisons between equally spaced arrays with optimal weightings
and the optimal arbitrary arrays developed in this contribution are
given to illustrate the obtained results.
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2. PROBLEM DESCRIPTION

2.1. Problem Formulation and Discrete Approximation

One looks for the linear array of given length L (i.e., given distance
between the phase center of the first and last element) that yields
the pattern with a broadside magnitude normalized to unity having
the minimal main beam width for a given maximal sidelobe level or
equivalently the lowest sidelobe level ρ for a given half main beam
width θs, as depicted in Fig. 1(a). This latter problem formulation
will be considered in the sequel. Its solution yields the optimal
array geometry and optimal associated weightings. The corresponding
pattern will be called the optimal pattern.

Note that, as represented in Fig. 1(a), the beam width θs is the
angular range in which the radiation pattern is not to be minimized.
It thus differs from the standard half power beamwidth or from the
definition used by Dolph [1] where the beam width is the angular range
between the two first nulls.

In order to solve the optimal design problem, one approximates it
by a specific (convex) optimization problem that can be solved using
standard optimization routines. To do so, one considers a large number
N of elements distributed over L. The linear array is represented in
Fig. 1(b). This step, in constraining the positions of the elements, does
not allow for an arbitrary geometry and the pattern associated with
the solution of the optimization problem is thus only an approximation
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Figure 1. (a) Schematic view of the pattern synthesis problem. The
magnitude of the far field pattern |f(θ)| is normalized to unity in the
broadside direction (|f(0)|=1) whereas one minimizes its sidelobe level
ρ for a fixed half beam width θs. (b) Geometry of the linear array
of length L composed of N isotropic elements. The observation angle
θ = 0 corresponds to the broadside direction.
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of the optimal pattern. It will nevertheless allow to guess the optimal
geometry and it is then proven that this guessed geometry with its
associated optimal weightings is indeed the sought-for optimal solution.

Due to the symmetry of the problem, it is easy to prove by
contradiction that the optimal excitations can be chosen real and
symmetric, i.e., that in the optimal solution both the geometry and the
excitations of the array will be symmetric with respect to the middle
of the linear array.

The steering vector a(θ) of such a symmetric array can be
condensed into a vector that is real and has dimension reduced to
half:

a(θ)T=
{

[1 2 cos(2πr2 sin θ) . . . 2 cos(2πrn sin θ)], if N =2n+1
[2 cos(2πr1 sin θ) . . . 2 cos(2πrn sin θ)], if N =2n

(1)

where .T denotes the transpose operator, θ is the observation angle
with respect to broadside and rj = ‖~rj‖ is the element position in
wavelength with respect to the middle of the array.

Since a large number N of elements is considered, an element
is always placed at the origin and n + 1 weightings are thus to be
determined. One then has r0 = 0 and rn = L

2 .
The far field pattern f radiated in the direction θ is then:

f(θ) = a(θ)Tw, (2)

where the j-th component wj of w, a column vector of dimension n+1,
is the weighting of the element located at rj .

As shown in [9, 10], the approximate synthesis problem can be
translated into the following convex optimization problem:

minw ρ, under f(0) = 1, |f(θ)| ≤ ρ, ∀ θ ∈ [θs,
π
2 ] and w ≥ 0, (3)

where w ≥ 0 means wj ≥ 0, for all j and θs is the half beam width
corresponding to the specific definition given earlier.

The directions θ in [θs, π/2] are then discretized by introducing
m directions {θi}, i = 1, . . . ,m. This amounts to introduce a second
approximation into the formulation of the original problem.

While the steering vector (1) in the broadside direction is:

aT
0 = a(0)T = [1 2 . . . 2]T , (4)

the other steering vectors are:

aT
i = a(θi)T = [1 2 cos(qir1) . . . 2 cos(qirn)], (5)

with qi = 2π sin θi, q1 = qs = 2π sin θs and qm = qe = 2π, where “e”
stands for endfire.
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One then builds the following matrix A:

A =




1 . . . 2 cos (qsrj) . . . 2 cos
(
qs

L
2

)
...

...
...

1 . . . 2 cos (qirj) . . . 2 cos
(
qi

L
2

)
...

...
...

1 . . . 2 cos (2πrj) . . . cos
(
2π L

2

)




. (6)

With this approximation, the synthesis problem (3) becomes then:
min
w

ρ, under aT
0 w = 1, ‖Aw‖∞ ≤ ρ and w ≥ 0, (7)

where ‖Aw‖∞ ≤ ρ is equivalent to |aT
i w| ≤ ρ, for i = 1, . . . , m.

2.2. Approximate Optimal Solution via a Linear Program

The solution of the approximate optimal design problem is found by
solving (7), that can be transformed into a Linear Program (LP). Since
this LP will be used in the proofs in Section 4, let us detail the LP in
standard form equivalent to (7):

min cTx, under Bx = b, x ≥ 0. (8)
To transform the inequality ‖Aw‖∞ ≤ ρ of (7) into equalities as
required in (8), one introduces two m-dimensional vectors s1 and s2.
The inequality is then transformed into 2m equalities:
−ρ + aT

i w + s1i = 0 and − ρ− aT
i w + s2i = 0, for i = 1, . . . , m (9)

where s1i and s2i, the i-th component of s1 and s2, are the so-called
slack variables required to be positive.

With x in (8), a column vector of dimension 1 + (1 + n) + 2m:
xT = [ρ w s1 s2] (10)

that has indeed only positive components, the cost function minw ρ
in (7) takes the appropriate form in (8) with cT = [1 01,1+n+2m].

By taking also into account aT
0 w = 1, the matrix B in (7) becomes:

B =




0 aT
0 01,m 01,m

−1m,1 A Im,m 0m,m

−1m,1 −A 0m,m Im,m


 (11)

of dimension (1 + 2m)× (2 + n + 2m), where 1m,n and 0m,n are m×n
matrices filled with respectively ones and zeros and In,n is the identity
matrix of order n.

Before using these reformulations of the problem, a summary of
the DC design that is another building block of the proofs to come is
given.



320 Fuchs and Fuchs

3. OPTIMAL EQUALLY SPACED LINEAR ARRAY

For equally spaced linear arrays, applying the Dolph-Chebyshev
method [1] allows to synthesize optimal patterns. However, for a given
length L, there are several equally spaced arrays. It will be shown that
among these arrays having the same length, the one built with the
minimal number of elements, i.e., the array with the largest admissible
inter-element distance d, is optimal.

Before establishing this result, a brief summary of Dolph design
is presented.

3.1. Optimal Excitations for Equally Spaced Arrays

The pioneering work of Dolph [1] and the associated synthesis play a
major role in the sequel. Therefore, the corresponding result and the
notations that are used later are now presented.

The Dolph synthesis is a nice application of Chebyshev’s classical
theorem on the polynomials with minimal deviation from zero. It
says that among all polynomials of degree N and leading coefficient
equal to 1, the one with smallest maximal absolute value over the
interval [−1, 1] is TN (x)/2N−1, where TN is the Chebyshev polynomial
of degree N of the first kind:

TN (y) =
{

cos
(
N cos−1(y)

)
, for |y| ≤ 1,

cosh
(
N cosh−1(y)

)
, for |y| ≥ 1.

(12)

In the present symmetric pattern synthesis context, an adequately
chosen change of variables will transfer part or all of the [−1, 1] interval,
where the optimal equi-ripple property holds, to one of the sidelobe
regions, the other one being taken care of by the evenness of the cosine
function. More precisely for a linear array with N equally spaced
elements, an inter-element distance d expressed in wavelength and a
desired half beam width θs, the optimal pattern is [1]:

W (u) =
TN−1(x0 cos(u))

TN−1(x0)
, (13)

with u = πd sin θ and where it remains to characterize x0 > 1.
With the change of variable y = x0 cos(u), as θ increases from

broadside to endfire, y decreases. For θ = 0, y is equal to x0, which
yields W (0) = 1 as expected. For θ = θs, y is chosen equal to 1 to
enter the equi-ripple zone, which implies that x0 satisfies:

1
xo

= cos(πd sin θs) = cos(us) (14)
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and this fixes the achievable level ρ = W (us) = TN−1(1)/TN−1(xo) =
1/TN−1(xo). As θ further increases, y further decreases, becomes
negative but has to remain greater than −1 for θ = θe = π/2
to be still in the equi-ripple zone at endfire. This thus requires:
xo cos

(
πd sin π

2

) ≥ −1 or

d ≤ dmax =
1
π

cos−1

(
− 1

xo

)
=

1
1 + sin θs

, (15)

where the last equality follows from cos−1(−α) = π − cos−1(α). For
d > dmax, a grating lobe appears at endfire. Note that, since in any
reasonable design problem θs < π/2, one always has dmax > λ/2.

Using de Moivre formula, the pattern W (u), which is a polynomial
in x0 cos(u) can be rewritten as a linear combination of cos(ku) where
the real (and positive) coefficients are the excitations ek to be applied
to the elements. The real weighting to be applied to the elements
located at ±(k − 1)d with k = 1, . . . , n + 1 is then ek/2.

3.2. Within Dolph Designs Parsimony Means Optimality

Given the length L and the wavelength λ, there are several equally
spaced linear arrays that use this whole length. One usually takes d
slightly larger than λ/2 but other values are allowed provided they
satisfy (15).

Let L = NdN = (N − 1)dN−1 be two possible designs with
respectively N + 1 and N elements and dN < dN−1 ≤ dmax. For
simplicity, dN is assumed to be greater than λ/2 but the result holds
also otherwise.

With ρN−1 the sidelobe level of the sparser N element array, one
establishes that ρN−1 < ρN , where ρN−1 satisfies:

ρN−1 =
1

TN−1(x0,N−1)
. (16)

One can equivalently establish that TN−1(x0,N−1) > TN (x0,N ) or
equivalently:

cosh
(
(N − 1) cosh−1(x0,N−1)

)
> cosh

(
N cosh−1(x0,N )

)

(N−1) cosh−1

(
1

cos(πdN−1 sin θs)

)
> N cosh−1

(
1

cos(πdN sin θs)

)

(N − 1) cosh−1


 1

cos
(

πL sin θs
N−1

)

 > N cosh−1

(
1

cos
(

πL sin θs
N

)
)

(17)
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N − 1
πL sin θs

cosh−1


 1

cos
(

πL sin θs
N−1

)

>

N

πL sin θs
cosh−1

(
1

cos
(
πL sin θs

N

)
)

or yet to prove that h(y) increases as y increases, with:

y =
πL sin θs

N
, and h(y) =

1
y

cosh−1

(
1

cos y

)
=

1
y

ln
(

1 + sin y

cos y

)
.

Using (7), one can show that y ∈ [0, π/2], let us evaluate the derivative
h′ of h(y). After some manipulations one obtains:

h′(y) = −1
y

(
h(y)− 1

cos y

)
.

To prove that h′ ≥ 0, let us show that (1/ cos y) ≥ h(y) for y ∈ [0, π/2],
or

y

cos y
≥ ln

(
1 + sin y

cos y

)

where both sides are positive, start at zero for y = 0 and the derivative
of the first member (1/ cos y) + (y sin y/ cos 2y) is greater than the
derivative of the second member (1/ cos y), hence the result.

This concludes the demonstration that, among Dolph’s arrays, the
one built with the minimal number of elements is optimal. Such an
array is from now on called sparsest Dolph design and for such an array
the inter-element spacing is always greater than λ/2.

4. OPTIMAL LINEAR ARRAY

The synthesis of optimal pattern is now addressed. Since the problem is
convex the solution is generically unique. The optimal solution depends
upon the array length L and it will appear that the positive real axis
will be paved with two types of alternating intervals. For L in the
even intervals the optimal solution is of one sort, for L in the odd
intervals the optimal solution is of a second sort. Two distinct proofs
are provided for each type of intervals.

4.1. Overview of the Optimal Solution

The approximate optimal design can be obtained by solving the LP (8)
where the array geometry is fully free except for the discretization of
the localization of the potential elements.

It happens that the (true) optimal array has always a finite and
small number of almost equally spaced elements. When solving (8)
numerically, it might be difficult to recognize this feature of the true
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optimum, since the optimal element locations will strictly speaking
never be among the proposed potential positions, the rj ’s in (6). The
solution of (8) will have in general almost equally spaced clusters of
contiguous nonzero components in the w-part of the optimal x.

As a matter of fact the solution of (8) will rigorously correspond
to the optimal design only if one knows the optimal design beforehand,
since one can then add intentionally the optimal element locations to
the columns of A and the active directions (the qi’s where the optimal
pattern reaches ±ρ) to the rows of A. This is the strategy that is used
below in the proofs since the optimal solution, has been guessed and is
thus known (at least when L is within one of the two types of intervals).

Let us present the guessed design that will be proved to be optimal.
There always exists a positive integer k such that L falls within
the interval [(k − 1)dmax, kdmax] and this fixes the optimal number
N = k + 1 of elements. This interval is further divided into two sub-
intervals. If L belongs to the upper sub-interval, then the optimal
design is the sparsest Dolph design defined in Section 3.2. Otherwise,
in the lower sub-interval, the elements are not equally spaced and their
locations are difficult to characterize precisely.

The limit between the 2 sub-intervals is kdm(k), with dm(k)
defined implicitly by:

πdm(k) = cos−1

(
cos

(
k − 1

k
π

)
cos(πdm(k) sin θs)

)
. (18)

The physical interpretation of dm(k) can be seen in Fig. 2(b).
Loosely speaking, one can say that for d = dmax the optimality

of the Chebyshev polynomial is fully exploited (see the definition of
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Figure 2. Far field patterns of a four element linear array of
diminishing length 3d synthesized by the Dolph Chebyshev method,
where sin θs = 0.2. As d decreases, ρ increases. In (c), the optimal
pattern which, in this case, is different from the DC pattern, is added
in dotted line.
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Figure 3. Far field pattern of a four element linear array synthesized
by the Dolph Chebyshev method with some useful notations.

dmax (15) and Fig. 2(a)) where the pattern at endfire is strictly equal
to ρ. For d slightly smaller but greater or equal to dm(k), there is
some apparent unused freedom (see in Fig. 3), since the value of the
pattern at endfire is smaller than ρ. This apparent freedom is however
unexploitable for symmetry or periodicity reasons. For d = dm(k)
in Fig. 2(b), exactly one sidelobe has disappeared and the pattern at
endfire becomes precisely equal to ρ. For d < dm(k), see Fig. 2(c), there
is again some freedom at endfire and it is now exploitable, meaning that
one can do better than DC (dotted pattern in Fig. 2(c)) by moving the
elements and changing their weightings.

4.2. Proof

The exact (non equally spaced) locations of the elements in the first
sub-interval are difficult to characterize analytically and it will only be
proven that the sparsest Dolph design is non optimal in this case. In
the second sub-interval, it will be established that the sparsest Dolph
design is optimal.

Since the proof is quite intricate, only the case k = 3 is considered.
This case highlights all the main points and is simple enough to
permit a somehow detailed presentation. Some familiarity with the
basics of the linear programming theory is assumed [11]. For k = 3,
the two sub-intervals are then [2dmax, 3dm(3)[ and [3dm(3), 3dmax] and
the associated inter-element distances d for equally spaced arrays are
[23dmax, dm(3)[ and [dm(3), dmax].

- In a first step, it will be verified that for an equally spaced linear
array with N = 4 elements, the solution of the adequately tailored
LP is identical to the Dolph design.
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- In a second step, one then proves that if 2
3dmax < d < dm(3), this

solution is no longer optimal if an additional element is permitted
(at a specific location) which establishes the announced result.

- In a third step, one establishes that for dm(3) ≤ d ≤ dmax, this
Dolph solution remains optimal even if an additional elements
at any arbitrary location is permitted. In a LP context, this
establishes the result.

4.2.1. First Step

From (13) and the fact that T3(y) = 4y3 − 3y, it follows that the
optimal pattern for an equally spaced linear array with N = 4 equally
spaced elements is [1]:

W (u) =
1

T3(x0)
(
4x0

3 cos3 u− 3x0 cosu
)

=
3x0

2 − 3
4x0

2 − 3
cosu +

x0
2

4x0
2 − 3

cos 3u (19)

and this result remains valid as long as d ≤ dmax.
The far field patterns of this array are plotted in Fig. 2 for

different values of d. For sin θs = 0.2, one gets dmax = 0.833 (15)
and dm(3) ' 0.652 (18).

- For d = dmax (Fig. 2(a)), the pattern has two full sidelobes and at
θe (endfire), the pattern attains exactly ρ.

- For d = dm(3) (Fig. 2(b)), one full sidelobe has disappeared and
at θe the pattern attains exactly ρ.

- For 2
3dmax < d < dm(3) (Fig. 2(c)), there is one sidelobe and at

endfire the pattern is smaller than ρ.
Some notations used in the following developments are indicated in
Fig. 3.

The weightings in (19) together with the optimal ρ will now be
recovered as the optimum of a quite simple LP that corresponds to
(7) or (8) when only two potential elements are proposed at locations
r1 = d/2 and r2 = 3d/2. The matrix A has thus two columns and
it remains to define its active rows, those for which W (u) attains its
maximal value ±ρ (16,14). By definition of the beam width, there
is us = πd sin θs = arccos(1/x0) and also the values of u for which
the derivative W ′(u) is zero. One can check (see Fig. 2(c)) that
for d < dm(3) there is only one value u1 = arccos(1/2x0) and one
can now define the tailored LP that allows to recover the Dolph-
Chebyshev pattern and actually prove that this pattern is optimal for
this geometry.
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The tailored LP is:

min
z

[1 0 0]z, under Qz =

[ 1
0
0

]
, and z = [ρ w1 w2]T ≥ 0, (20)

with

Q =




0 2 2
−1 2

x0

8
x0

3 − 6
x0

−1 − 1
x0

− 1
x0

3 + 3
x0


 . (21)

It has only one admissible point that is thus the optimum:

z = Q−1

[ 1
0
0

]
=

[
1

4x0
3 − 3x0

1
2

3x0
2 − 3

4x0
2 − 3

1
2

x0
2

4x0
2 − 3

]T

(22)

and one recovers exactly ρ (16) and the weightings w1 and w2 in (19).
In this LP approach to the synthesis, one must now further check that
the sidelobes remain smaller than ρ over the whole sidelobe region.

4.2.2. Second Step

To establish the non optimality of this solution, when other elements
are allowed one creates the column vector c(.) associated with such an
additional element to be added to Q in (21).
For this purpose, let us introduce a parameter δ ∈ [0, 3], then for an
additional element at position r(δ) = δd/2 > 0 say, the first component
in c belongs to a0 and is thus equal to two, the second component is
2 cos qsr(δ) (6) and thus substituting qs and r(δ) and keeping δ and
us, the second component becomes 2 cosusδ and similarly for the third
component. This yields:

c(δ) =

[ 2
2 cos δus

−2 cos δu1

]
(23)

and one can check that the column 2 and 3 in Q are simply c(1) and
c(3) since r1 = d/2 and r2 = 3d/2.

It will now be proven that the point z in (22) is non optimal if
an additional element is allowed at any location δ ∈ [0, 1]. To simplify
the evaluation, let us introduce a element at location δ = 0+ whose
associated column c(0+) is [2 2 −2]T . For this element, the Lagrange
multiplier associated with its non-negative weighting constraint is:

[−1 0 0]Q−1 c(δ) =
(x0 − 1)(6− 8x0 − 8x0

2)
12x0

3 − 9x0
. (24)

This scalar can be shown to be negative (since x0 > 1) and this
establishes the non optimality of z in (22).
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4.2.3. Third Step

Let us now consider an inter-element distance d satisfying dm(3) ≤
d ≤ dmax. There are some modifications to be brought to the reduced
LP introduced in first step since there is now an additional constraint
that becomes active (see Fig. 2(b)), namely u2 = arccos(−1/2x0) (see
Fig. 3), where W ′(u) = 0. This adds a fourth component to c (23) and
a fourth row to Q:

Q =




0 2 2
−1 2

x0

8
x0

3 − 6
x0

−1 − 1
x0

− 1
x0

3 + 3
x0

−1 − 1
x0

− 1
x0

3 + 3
x0


 , (25)

and the reduced LP becomes:

min
z

[1 0 0]z, under Qz =




1
0
0
0


 , and z ≥ 0. (26)

Since the fourth constraint is identical to the third, there is still an
unique admissible point, the optimal solution is still (22) and identical
to the Dolph design. From a LP theory point of view, this solution is
however degenerate and the optimality conditions are therefore more
difficult to specify. One has to add a column to Q to make it square
again, i.e., to come back to a basic optimal solution for which the same
condition as above applies. This condition which was necessary and
sufficient before, is then only sufficient, but this is coherent with our
purpose. To establish that (22) is the optimum even if other elements
are available, it suffices to show that t(δ) = [−1 0 0 0]Q−1c(δ) ≥ 0
for all δ ∈ [0, 3] with:

c(δ) =




2
2 cos δus

−2 cos δu1

2 cos δu2


 = 2




1
cos

(
δ cos−1

(
1
x0

))

− cos
(
δ cos−1

(
1

2x0

))

cos
(
δ cos−1

(
− 1

2x0

))




. (27)

The column to be added is difficult to identify. If for a given column,
t(δ) does not remain positive, no conclusion can be drawn but in the
opposite case, step three is established.

In the present case, the column that works is the column obtained
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when taking the derivative of c(δ) with respect to δ evaluated at δ = 1

∂

∂δ
c(δ)|δ=1 =




0
−2us sin(us)
2u1 sin(u1)
−2u2 sin(u2)


 , (28)

this choice corresponds to an additional element (column) that is
infinitely close to the element 1 located at δ = 1. When this column is
added to Q in (25) to make it square of order 4, the function t(δ) is zero
by construction for δ = 1 and δ = 3 and remains greater than zero for
all δ ∈ [0, 3]. To establish this result analytically is cumbersome and
the details are not presented. For a specific value of θs, one can easily
evaluate dmax, x0, us, u1 and u2 and check the positivity numerically.

4.3. Illustrations

For a half beam width θs of 20◦ and various L, radiation patterns are
computed applying the sparsest Dolph design (SD) and the (quasi)
optimal array obtained from (7) with large m and n. For both cases,
the algebraic value of the maximum sidelobe levels ρ are plotted in
Figs. 4 and 5 as a function of the array length L.
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Figure 4. Maximum sidelobe
level as a function of the ar-
ray length for a half beam width
θs of 20◦. The results applying
the sparsest Dolph design (SD)
and the optimal array obtained
by LP are compared for L rang-
ing between 2dmax and 3dmax.
They are superimposed for L ∈
[3dm(3), 3dmax].
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Figure 5. Maximum sidelobe
level as a function of the array
length for a half beam width θs

of 20◦. The results applying the
sparsest Dolph design (SD) and
the optimal array obtained by
LP are compared for L ranging
between 2dmax and 6dmax.
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It turns out looking at Fig. 5 that the results obtained by both
approaches are close. A zoom on the performances for L ranging
between 2dmax and 3dmax, i.e., for a four element array, enables one
however to distinguish the sub-intervals of L where the SD design
is optimal (between 3dm(3) and 3dmax) or not (between 2dmax and
3dm(3)). The discrepancies between ρ found by SD and LP are about
1 dB. For broader beam widths, more important discrepancies are
obtained. When θs = 30◦, the maximum sidelobe levels synthesized by
SD design are indeed up to 4 dB higher than the one obtained using
LP strategy when L is slightly higher 3dmax.

5. SUMMARY AND CONCLUSION

The synthesis of the linear array of given length that radiates the
optimal narrow beam low sidelobe pattern has been addressed. It is
proven that the optimal array is very close to a Dolph-Chebyshev array.
More precisely, the optimal array has always a small number of almost
equally spaced elements of maximal inter-element spacing.
To summarize the proposed procedure, the steps to synthesize the
optimal linear array of length L are, for a specified half beam width
θs, the following:

(i) From θs, one deduces dmax (15).
(ii) From L, one determines the optimal element number N = k + 1

that is such as L ∈ [(k − 1)dmax, kdmax].
(iii) With k and θs, one computes dm(k) (18).
(iv) The optimal array is the sparsest Dolph design for L ∈

[kdm(k), kdmax] and an unequally spaced array whose geometry
and weightings can be numerically found by Linear Program for
L ∈ [(k − 1)dmax, kdm(k)].
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