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Abstract—We introduce a novel variant of the Lanczos method
for computing a few eigenvalues of sparse and/or dense non-
Hermitian systems arising from the discretization of Maxwell- or
Helmholtz-type operators in electromagnetics. We develop a Krylov
subspace projection technique built upon short-term vector recurrences
that does not require full reorthogonalization and can approximate
simultaneously both left and right eigenvectors. We report on
experiments for solving eigenproblems arising in the analysis of
dielectric waveguides and scattering applications from PEC structures.
The theoretical and numerical results reported in this study will
contribute to highlight the potential and enrich the database
of this technology for solving generalized eigenvalue problems in
Computational Electromagnetics.

1. INTRODUCTION

In the analysis of many electromagnetism applications, one seeks
eigenvalues of the algebraic set of equations arising from the
discretization of Maxwell or Helmholtz-type operators. Finite element
analysis of uniform waveguides filled with inhomogeneous dielectric and
perfectly conducting (PEC) structures is one such example [26]. The
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problem leads to a canonical sparse matrix eigensystem in the form
Qx = γ2Rx, that yields solutions simultaneously for the propagation
constant γ and the corresponding magnetic field distribution. For
lossless waveguides the pertinent matrices are sparse and real, R
is positive definite while Q is in general nonsymmetric, revealing
possibly complex modes (see e.g., [18]). Finite difference discretizations
of the Helmholtz equations for the magnetic field also lead to a
nonsymmetric eigenvalue problem with special block structure where
the computational task is to determine the right most eigenvalues and
their corresponding eigenvectors (see details of this problem in [21]
and in Section 4). Spectral information can be also incorporated in
the construction of robust preconditioners for solving linear systems
of equations. In the experiments reported in [5–7], we showed that
updating a preconditioner with eigenvectors associated to a few small
eigenvalues of the preconditioned matrix can lead to a significant
reduction of the number of iterations of Krylov subspace methods
in the solution of dense linear systems arising from the Method
of Moments discretization of integral operators in electromagnetic
scattering. Scattering analysis continues to receive much attention
in electromagnetics research, see e.g., [15, 25, 30, 31, 37].

When no theoretical information is available on the spectrum of
the underlying operator, one necessarily resorts to numerical methods
to approximate eigenvalues and eigenvectors of interest. Several
algorithms and software are developed for solving eigensystems, most
of them is based on the Arnoldi or the Jacobi-Davidson method. In
particular, the Implicitly Restarted Arnoldi (IRA) method has become
the de facto standard for computing a few eigenpairs of general non-
Hermitian matrices. It proceeds by transforming the matrix into upper
Hessenberg form with the help of long vector recurrences that are
orthogonalized at each step. To reduce orthogonalization costs, the
procedure is restarted after a finite (typically small) number of steps
with an up-to-date initial vector which is filtered from components
corresponding to the undesired part of the spectrum.

In this study, we follow a different approach and explore variants
of the Lanczos method for solving non-Hermitian eigensystems arising
from finite element, finite difference, boundary element discretizations
of wave propagation problems. The Lanczos algorithm may be
computationally attractive because it is built on three-term vector
recurrences that are cheap to store in memory, and it has very
limited reorthogonalization cost. However, most implementations
of the Lanczos methods are oriented to solve real generalized
symmetric eigenvalue problems with complex Hermitian matrices
and real symmetric positive-definite matrix pairs, for which it was
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originally developed. Although some authors have extended the
Lanczos method for solving other kinds of problems, e.g., non-
Hermitian problems [2, 20], current software is less advanced and
rich in functionalities compared to the Arnoldi method especially
when one seeks approximate eigenvalues located in the interior of the
spectrum [24]. Indeed this area of research is still open and under
development.

In this paper, we present an iterative technique for solving non-
Hermitian eigensystems built upon a variant of the Lanczos method,
that we call the Lanczos Biconjugate A-Orthonormalization method.
In a previous study we showed the remarkable efficiency of this
procedure which enabled us to derive fast convergent and economical
iterative linear solvers for electromagnetism applications [27]. This
work is the natural extension of our earlier study to eigensystems;
we develop an oblique projection techniques into suitable Krylov
subspaces to compute a few eigenvalues and corresponding left/rigth
eigenvectors. Key objective of the theoretical and numerical results
reported in this study is to contribute to highlight the potential and
enrich the database of this technology for solving generalized eigenvalue
problems in Computational Electromagnetics.

The paper is structured as follows. In Section 2, we outline the
Lanczos Biconjugate A-Orthonormalization procedure and some of its
theoretical properties. In Section 3, we develop an eigenvalue solver
from the Lanczos Biconjugate A-Orthonormalization procedure and
we discuss some computational aspects as well. We report on the
results of numerical experiments in Section 4. Finally, in Section 5, we
draw some preliminary conclusions from this study and perspectives
of future research.

2. THE NON-HERMITIAN LANCZOS BICONJUGATE
A-ORHTONORMALIZATION METHOD

Throughout this paper we use capital letters for matrices, lower case
letters for column vectors and lower case Greek letters for scalars.
We denote by the symbol “∗” the conjugate transpose operation and
by “≡” a definition. We consider the complex n-dimensional vector
space Cn with standard innerproduct 〈·, ·〉 between two complex vectors
u, v ∈ Cn defined as

〈u, v〉 ≡ u∗v =
n∑

i=1

ūivi,

and associated Euclidean vector norm ‖x‖ ≡ √
x∗x and compatible

matrix norm. We also consider the complex n-dimensional dual vector
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space (Cn)∗ of row vectors that is isomorphic to Cn. In (Cn)∗, we have
〈v∗, u∗〉 = u∗v and ‖x∗‖ =

√
x∗x.

Given a complex non-Hermitian matrix A and {v1, w1} two vectors
of unit Euclidean inner product 〈ω1, Av1〉 = 1, we define Lanczos-
type vectors {vj , wj} and scalars {δj , βj}, j = 1, 2, . . . , m through the
following recursions

δj+1vj+1 = Avj − βjvj−1 − αjvj , (1)
β̄j+1wj+1 = A∗wj − δjwj−1 − ᾱjwj , (2)

where the scalars are chosen as

αj =
〈
wj , A

2vj

〉
, βj =

〈
wj−1, A

2vj

〉
, δj =

〈
wj , A

2vj−1

〉
. (3)

This choice of the scalars guarantees that the recursions generate
sequences of biconjugate A-orthonormal vectors (or briefly, A-
biorthonormal vectors) {vi, wi}, according to the following definition

Definition 1 Right and left Lanczos-type vectors vj , j = 1, 2, . . . , m
and wi, i = 1, 2, . . . ,m form a biconjugate A-orthonormal system in
exact arithmetic, if and only if

〈ωi, Avj〉 = δi,j , 1 ≤ i, j ≤ m. (4)

Equations (1)–(2) can be interpreted as a two-sided Gram-Schmidt
orthonormalization procedure of linear algebra. At step j, vectors
vj and wj are multiplied by A and A∗, respectively, and then they
are orthonormalized against the most recently generated Lanczos-type
pairs of vectors (vj , wj) and (vj−1, wj−1). Notice that the choice (3)
for the scalars βj and δj is not unique; some freedom is left provided
the biconjugate A-orthonormalization property (4) holds. We sketch
a complete version of the Biconjugate A-Orthonormalization (BiCOR)
procedure in Algorithm 1.

The matrix A is not modified by Algorithm 1 and is accessed only
via matrix-vector products either by A or A∗. Compared to the Arnoldi
procedure, the memory storage of the BiCOR procedure is very limited:
at step j only the two most recently computed pairs of Lanczos-type
vectors {vk, wk}, k = j, j − 1 are needed to produce {vj+1, wj+1};
additionally, they may be overwritten with the most recent updates.
The procedure is possible to breakdown whenever γj+1 vanishes while
ŵj+1 and Av̂j+1 are not equal to 0 ∈ Cn in line 7. In our experiments,
we never observed this problem, although it is fair to mention that
it may occurr in practice. In the interest of counteractions against
such breakdowns, refer oneself to remedies such as so-called look-ahead
strategies [19, 22, 35, 36] which can enhance stability while increasing
cost modestly, or others for example [12]. But that is outside the scope
of this paper and we shall not pursue that here.
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Algorithm 1 The Biconjugate A-Orthonormalization Procedure
(BiCOR)

1: Choose v1, ω1, such that 〈ω1, Av1〉 = 1
2: Set β1 = γ1 ≡ 0, ω0 = v0 = 0 ∈ Cn

3: for j = 1, 2, . . .,m do
4: αj = 〈ωj , A (Avj)〉
5: v̂j+1 = Avj − αjvj − βjvj−1

6: ω̂j+1 = A∗ωj − ᾱjωj − γjωj−1

7: γj+1 = |〈ω̂j+1, Av̂j+1〉|
1
2

8: βj+1 =
〈ω̂j+1, Av̂j+1〉

γj+1

9: vj+1 =
v̂j+1

γj+1

10: ωj+1 =
ω̂j+1

β̄j+1

11: end for

The following Proposition shows that recurrences (1)–(2) produce
a sequence of biconjugate A-orthonormal vectors.

Proposition 1 If Algorithm 1 proceeds m steps, then the right and
left Lanczos-type vectors vj , j = 1, 2, . . . ,m and wi, i = 1, 2, . . . , m form
a biconjugate A-orthonormal system in exact arithmetic, i.e.,

〈ωi, Avj〉 = δi,j , 1 ≤ i, j ≤ m.

Furthermore, denote by Vm = [v1, v2, . . . , vm] and Wm =
[w1, w2, . . . , wm] the n×m matrices and by Tm the extended tridiagonal
matrix of the form

Tm =
[

Tm

γm+1e
∗
m

]
, (5)

where

Tm =




α1 β2

γ2 α2 β3

. . . . . . . . .
γm−1 αm−1 βm

γm αm




,

whose entries are the coefficients generated during the algorithm im-
plementation, and in which α1, . . . , αm, β2, . . . , βm are complex while
γ2, . . . , γm positive. Then with the Biconjugate A-Orthonormalization
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Procedure, the following four relations hold

AVm = VmTm + γm+1vm+1e
∗
m, (6)

A∗Wm = WmT ∗m + βm+1ωm+1e
∗
m, (7)

W ∗
mAVm = Im, (8)

W ∗
mA2Vm = Tm. (9)

Proof. See [28].
In exact arithmetic the biconjugate Lanczos A-orthonormalization

method ideally builds up a pair of biconjugate A-orthonormal bases for
the dual Krylov subspaces Km(A; v1) and A∗Km(A∗;w1); the vector
recurrences produce a tridiagonal matrix as the result of projecting
A onto the corresponding Krylov subspaces. Key relations to this
study are Relations (8)–(9) which suggest to use the eigenvalues of the
tridiagonal matrix Tm to approximate part of the spectrum of A by
means of an oblique projection of A onto Km(A; v1) orthogonally to
A∗Km(A∗;w1). We state this idea more clearly in the next section.

3. THE BICOR METHOD FOR EIGENSYSTEMS

We denote by λi(A) the i-th eigenvalue of the complex n×n matrix A
according to a given order. To each eigenvalue λ there corresponds at
least one column eigenvector x and one row eigenvector y∗ satisfying
Ax = xλ, y∗A = λy∗. The set {λ, x, y∗} is an eigenelement of
A. In this work, we compute a few eigenelements of A from the
approximate invariant subspaces produced by Algorithm 1. We recall
that the columns of a given n × m matrix Q with m ≤ n span an
invariant column-subspace of A if AQ = QC for some m ×m matrix
C. The matrix C is uniquely determined provided the columns of Q
are independent. The spectrum of C is representative of a subset of the
spectrum of A as every eigenvector x of C induces an eigenvector Qx of
A. In a similar way, the rows of the m×n matrix P ∗, assuming they are
independent, span an invariant row-subspace of A when P ∗A = DP ∗
for some uniquely determined m × m matrix D. From the chain of
relations P ∗QC = P ∗AQ = DP ∗Q follows that, provided P ∗Q is
nonsingular, we may write C = (P ∗Q)−1D(P ∗Q) and the invariant
subspaces generated by Q and P ∗ correspond to the same part of the
spectrum of A.

The Lanczos biconjugate A-orthonormalization procedure approx-
imates an m-dimensional invariant subspace of A by computing two
n ×m matrices V and W for m < n. The columns of V span an ap-
proximate invariant column-space of A while the rows of W ∗ span an
approximate invariant row-space of A. Therefore, assuming that W ∗V
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is nonsingular we may compute a few eigenvalues of a general nonsym-
metric matrix from recursions (1)–(2) by Relations (8)–(9) along the
following lines

STEP 1 Run m steps of Algorithm 1, for some given m ¿ n.
Generate Lanczos-type matrices Vm = [v1, v2, . . . , vm], Wm =
[w1, w2, . . . , wm] and the tridiagonal projection matrix Tm defined
in Proposition 1.

STEP 2 Seek approximate eigenpairs of A of the form (λ, u) with
λ ∈ C and u ∈ Km = Km(A; v1) imposing the Petrov-Galerkin
condition

〈Au− λu, z〉 = 0 ∀z ∈ Lm ≡ A∗Km(A∗;w1). (10)

The mth dimensional space Km is referred to as the subspace of
approximants or search subspace and the mth dimensional space
Lm as the constraints subspace. Expanding u in terms of the basis
Vm we have

u = Vmy,

and Eq. (10) becomes in matrix form

(A∗Wm)∗ (AVmy − λVmy) = 0.

By substitution and computation with Eqs. (8)–(9), the problem
can be written in equivalent form as

find λ ∈ C, y 6= 0 such that Tmy − λy = 0. (11)

At this stage, we have to compute eigenpairs (λ, y) of the reduced
tridiagonal matrix Tm. To each (λ, y), there correspond a right
Ritz vector Vmy and a left Ritz vector Wmy of A.

STEP 3 Accept {λ, Vmy, Wmy} as approximate eigenelement of A if
the corresponding residual norms are small enough, i.e.,

‖AVmy − λVmy‖ ≤ tol, ‖A∗Wmy − λWmy‖ ≤ tol

for some user-defined tolerance tol. Otherwise, enlarge the Krylov
subspace and repeat the process again.

In finite precision arithmetic, the sequence of vectors {vj , wj}
generated by Algorithm 1 does not mantain the biconjugate A-
orthonormalization property. Complete reorthogonalization at step j
of the latest computed vector {vj , wj} against all previously computed
vectors {vi, wi} for i = 1, . . . , j − 1 is possible by adding the following
two loops after line 10 in Algorithm 1:

vj = vj − (v∗j A∗wi)vi, i = 1, . . . , j − 1,

wj = wj − (w∗j Avi)wi i = 1, . . . , j − 1.
(12)
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This extra cost may quickly become a bottleneck of the procedure
especially for large matrices. With no reorthogonalization, although
the projection of A is not optimal it can still yield useful information
on the spectrum of A. In fact, for sufficiently large m the
eigenvalues of A appear amongst the eigenvalues of Tm. An
explanation of this phenomenon was suggested for the symmetric
case [9]. However, there is clear evidence that it is also valid for
nonsymmetric recurrences such as Relations (1)–(2). One problem
due to the loss of A-biorthonormalization is that some eigenvalues
of Tm may not approximate well any eigenvalue of A and we
need to define an identification test to distinguish “converged” from
“spurious” eigenvalues in the spectrum of Tm. In STEP 3, we use
the residual estimates to classify “good”and “bad”eigenvalues. The
reasoning behind this strategy is based on the following results of the
theory of backward error analysis for eigenproblems of diagonalizable
matrices [29, 40].
Theorem 1 Let A and two unit vectors x and z with x∗z 6= 0 be given.
For any scalar µ define two corresponding residual vectors

r ≡ Ax− µx, s ≡ A∗z − µz.

Define the subset of perturbation matrices

E = {E| (A− E) x = µx, (A∗ − E∗) z = µz}
Then

min
E
‖E‖ = max {‖r‖ , ‖s‖} . (13)

Proof. See [29].
We aim at computing eigenelements that are correct approxima-

tions to those of perturbed matrices B = A − E where E is small.
Unless max {‖r‖ , ‖s‖} is satisfactorily small, an eigenvalue λ of Tm

should not be used as approximate eigenvalue of A. From the matrix
form of the Lanczos recursions (6)–(7), it turns out that the closest
matrix to A with eigenelement (λ, Vmy, Wmy) is B − E for an E sat-
isfying

‖E‖ = max
{ |βm+1y(m)| ‖vm+1‖

‖Vmy‖ ,
|βm+1y(m)| ‖wm+1‖

‖Wmy‖
}

. (14)

Direct measure of the accuracy of the computed eigenvalue
approximation may be established by the relation

|µ− λ| ≤ cond(µ) ‖E‖+O
(
‖E‖2

)
(15)

where the conditioning of the eigenvalue µ is defined as

cond(µ) = ‖x‖ ‖z‖ / |x∗z| , (16)
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and x and z denote the right and left eigenvectors of A corresponding
to µ. In Eq. (14), it is possible to avoid the computation
of the right eigenvectors of Tm by resorting to a symmetric
formulation of recurrences (1)–(2). For any irreducible tridiagonal
matrix there exists a diagonal similarity transformation which maps
it into a complex symmetric tridiagonal matrix, for which an
expression of the corresponding right eigenvector may be derived [10].
Besides immediate availability of the right eigenvectors, computing
eigenelements of symmetric tridiagonal Lanczos-type matrices may
be also advantageous for symmetrization of error propagation, better
control of round-off errors and a priori balancing. However, this
computational aspect is out of the scope of this paper and we will
not pursue it further in this study.

A practical procedure built on the non-Hermitian Lanczos
biconjugate A-orthonormalization procedure for eigensystems is
summarized in Algorithm 2. For brevity, we refer to it as BiCOR-
EIG. We stress that we do not perform complete reorthogonalization
of the sequence of vectors; we reorthogonalize the sequence only locally,
i.e., by adding the following two loops after line 10 in Algorithm 1:

vj = vj − (v∗j A∗wi)vi, i = j − 3, . . . , j − 1,

wj = wj − (w∗j Avi)wi i = j − 3, . . . , j − 1.
(17)

Algorithm 2 The Biconjugate A-Orthonormalization Procedure for
Eigenvalues (BiCOR-EIG)

1: Run m steps of Algorithm 1.
2: Compute the eigenvalues of Tm.
3: Compute the eigenvectors corresponding to each eigenvalue of Tm.
4: Check convergence for right Ritz vectors using Eq. (14).
5: If convergence is not achieved, enlarge m and repeat the procedure.

3.1. Combining BiCOR-EIG with Shift-invert and Implicit
Restart Techniques

One problem with Arnoldi/Lanczos-type algorithms is that conver-
gence to eigenvalues located in the interior of the spectrum may be
rather slow; their computation typically requires approximate invari-
ant subspaces of large size. One possibility to speed-up convergence
is to incorporate a shift-invert mechanism in Algorithm 2. Assuming
that the problem is to compute the k eigenvalues closest to a shift
θ, we apply the procedure to the matrix B = (A − θI)−1. Extremal
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eigenvalues of B are the eigenvalues of A closest to the shift θ. The
closer θ to an eigenvalue of A, the faster the convergence. Matrix B is
never explicitly formed; an LU factorization of B is computed and used
each time we need to apply B. Clearly, one can use iterative solvers to
compute with B avoiding a costly factorization, see, e.g., [39]. Another
possible strategy may be to run Algorithm 2 on A to compute a layer
of extremal eigenvalues and then to deflate the converged eigenvalues
from the spectrum of A. The next run will attempt to approximate the
extremal eigenvalues of the deflated matrix which is a layer of interior
eigenvalues of A. The procedure should be repeated until the desired
part of the spectrum is well approximated. We mention by the way
that there is a growing research effort to compute interior eigenvalues
from the so called harmonic Ritz values, see, e.g., [33, 34]. However,
in the numerical experiments reported in study we limit ourselves to
apply shift-invert whenever necessary.

The BiCOR-EIG procedure can be run iteratively by starting
with a modified initial vector v1 at each step. At the end of each
iteration, a linear combination of the right Ritz vectors corresponding
to the desired part of the spectrum, say the k eigenvalues satisfying
a user-defined criterion, is selected as new up-to-date initial vector
v1. Components of v1 in the direction of the unwanted eigenvalues
are filtered by performing m − k implicitly shifted QR steps on
Tm (the unwanted eigenvalues are chosen as shifts), similarly to the
IRA method. Then the procedure is restarted. The results of this
computational step is to compress the original m×m factorization —
Eq. (6) — into a k × k factorization of A.

4. NUMERICAL EXPERIMENTS

In this section, we illustrate the numerical behavior of the BiCOR-
EIG algorithm applied to solving eigensystems arising from the
discretization of Maxwell/Helmholtz-type operators in the analysis
of waveguides. The waveguide problem arises in many different
contexts in electromagnetics, see e.g., [8, 14, 23, 32, 38, 41] for some
recent studies. The model problems are extracted from the testbed
collection described in [1]; it was proposed with the primary purpose
of testing numerical algorithms for solving difficult non-Hermitian
eigenvalue problems in real applications. Experiments are carried out
in MATLAB 7.7.0 on a PC equipped with an Intel(R) Core(TM)2 Duo
CPU P8700 running at 2.53 GHz and with 4 GB of RAM.

The first test case arises in the analysis of dielectric channel
waveguides. Finite difference discretization of the Helmholtz equations
for the magnetic field H leads to a nonsymmetric generalized eigenvalue



Progress In Electromagnetics Research, Vol. 110, 2010 91

problem of the form(
C11 C12

C21 C22

)(
Hx

Hy

)
= β2

(
B11

B22

)(
Hx

Hy

)

where C11 and C22 are five- or tri-diagonal matrices, C12 and C21

are tridiagonal matrices, and B11 and B22 are nonsingular diagonal
matrices. Since B is diagonal, the generalized eigenvalue problem is
reduced to a standard eigenvalue problem Ax = xλ where A = B−1C.
The computational task is to determine the right most eigenvalues
and their corresponding eigenvectors. This eigensystem is reported
to present a challenge to existing numerical methods [13, 21]. In our
experiments we select two matrices, DWA512 and DW2048, of size
respectively 512 × 512 and 2048 × 2048. On the matrix DWA512, an
approximate invariant subspace of dimension m = 100 without full
reorthogonalization enables us to compute 18 eigenvalues to a residual
accuracy of 10−11. In Figure 1, we see the pictorial convergence
of the 6 right-most eigenvalues, and in Figure 2, the convergence
of 10 eigenvalues on the opposite part of the spectrum. On our
system, Algorithm 1 takes 0.3 s to generate the relevant approximate
invariant space. For simple comparison, the MATLAB command eigs
which interfaces the ARPACK routines implementing the IRA method
computes the 6 right-most eigenvalues at approximately the same
level of accuracy in 0.24 s and the 10 left-most eigenvalues in 0.3 s.
For m = 200, the computation takes 0.6 s and enables us to locate
accurately 27 right-most eigenvalues (see Figure 3). More eigenvalues

Figure 1. Experiments on the DWA512 problem using m = 100. The
subset of the spectrum corresponds to the right-most eigenvalues.
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Figure 2. Experiments on the DWA512 problem using m = 100. The
subset of the spectrum corresponds to the left-most eigenvalues.

Figure 3. Experiments on the DWA512 problem using m = 200.

of Tm converge to the true eigenvalues of A when m is increased. The
same trend is observed for larger problems as well, e.g., for the DW2048
matrix; with m = 300, 4 righ-most and 19 left-most eigenvalues are
approximated to a tolerance of 10−10. Also, more eigenvalues converge
by using approximate invariant subspaces of larger dimension.

A different eigenvalue problem is derived from using the edge
element method to model dispersive waveguide structures, e.g., for
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solving the waveguide problem of conductors with finite conductivity
and cross section in a lossy dielectric media. It is a complex symmetric
eigensystem Ax = λBx where both A and B are complex symmetric
non-Hermitian and have the following block form(

A11 0
0 0

)
and

(
B11 B12

B21 B22

)
.

The computational task is to find the eigenvalues with the smallest
positive real parts. We select the matrix problem DWG961b of size
961 × 961 which has a subblock A11 of dimension 705 × 705 and is
banded. On this problem, the BiCOR-EIG algorithm converges first to
the eigenvalues with largest imaginary part which is an undesired part
of the spectrum (see Figure 4). However, with shift-invert technique
using θ = 0 and m = 100 we are able to locate correctly the subset
of the spectrum very close to 0 as shown in Figure 5. For simple
comparison, the MATLAB command eigs does not compute the desired
subset of the eigenvalues of A (those with largest real part located close
to zero) after 300 iterations.

The third set of eigenvalue problems that we consider in this study
is made kindly available by Prof. Rolf Schuhmann at University of
Paderborn. It arises from three different discretizations of a hollow
waveguide with a dielectric inset (quarter size of the cross section) with
relative permittivity ε = 4. The data matrix is nonsymmetric, with
a mixture of real and complex eigenmodes [3]. We consider problem
dimensions n = 2764, 11524, 47044, corresponding to grid sizes 50×30,

Figure 4. Experiments on the DWG961b problem using m = 300.
The whole spectrum is shown.
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Figure 5. Experiments on the DWG961b problem using m = 200.
The subset of the spectrum corresponds to eigenvalues with the
smallest positive real parts.

100 × 60, and 200 × 120, respectively. The three matrices are named
accordingly as A2764, A11524, A47044. The computational task is to
compute the eigenvalues with smallest real part, which is negative. In
Figures 6–8, we show the pictorial convergence that we observe for the
three problems. On the A2764 problem, the Lanczos procedure using
m = 400 approximates the two eigenvalues with smallest real part
with twelve digits of accuracy, the third smallest eigenvalue with eleven
digits, the fourth with ten significant places and the fifth with nine. For
the largest matrices, we analyse the pictorial convergence for increasing
dimension m of the search space. On the A11524 problem, using a
projection space of size m = 500 the two eigenvalues with smallest real
part computed by the Lanczos procedure stabilize at twelve digits of
accuracy. The third smallest converges at nine digits, the fourth at
seven and the fifth at five; increasing the size of the projection space,
we may compute more eigenvalues. Finally, on the A47044 problem
using m = 1000 the two eigenvalues with smallest real part stabilize at
twelve significant places. The third smallest converges at eight places
(only at four using m = 500), the fourth at five digits, and the fifth at
four digits.

Finally, we illustrate an application to electromagnetics scattering,
for solving dense complex non-Hermitian linear systems Ax = b which
arise from the Method of Moments discretization of the Maxwell’s
equations expressed in an integral formulation. For similar studies,
see e.g., [11, 16, 17]. Denoting by M1 the left preconditioner matrix,
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we solve the preconditioned system M1Ax = M1b and we assume
that the matrix M1A is diagonalisable, that is M1A = V ΛV −1, with
Λ = diag(λi), where |λ1| ≤ . . . ≤ |λn| are the eigenvalues and V = (vi)
(resp. U = (ui) ) are the associated right (resp. left) eigenvectors. Let

Figure 6. Pictorial convergence of the eigenvalues with smallest
real part computed by the Lanczos procedure for different size of the
projection space for problem A2764.

Figure 7. Pictorial convergence of the eigenvalues with smallest
real part computed by the Lanczos procedure for different size of the
projection space for problem A11524.
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Figure 8. Pictorial convergence of the eigenvalues with smallest
real part computed by the Lanczos procedure for different size of the
projection space for problem A47044.

Vε be the set of right eigenvectors associated with the set of eigenvalues
λi with |λi| ≤ ε and Uε the corresponding subset of left eigenvectors.
The following result shows that it is possible to enhance the spectral
distribution of the coefficient matrix by means of low-rank matrix
updates for the preconditioner M1. The preconditioning updates are
made up of eigenvectors corresponding to the smallest eigenvalues of
M1A. This in turn results in faster convergence of iterative Krylov
methods.

Theorem 1 Let
Ac = UH

ε M1AVε,

the projection of the matrix M1A on the coarse space defined by the
approximate eigenvectors associated with its smallest eigenvalues.

Mc = VεA
−1
c UH

ε M1

and
M = M1 + Mc.

Then MA is diagonalisable and we have MA = V diag(ηi)V −1

with {
ηi = λi if |λi| > ε,
ηi = 1 + λi if |λi| ≤ ε.

For right preconditioning, that is AM1y = b, similar results hold.
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Proof. The proof is presented in [6].
On a sphere illuminated at 190MHz and discretized with n = 2430

grid points (approximately ten discretization points per wavelength),
applying the spectral updates on top of the left preconditioned system
M1Ay = b, where M1 is a sparse approximate inverse preconditioner,
accelerates remarkably the iterative solution; GMRES(30) converges
in 374 iterations without preconditioner, in 87 iterations with only
M1, in 66 iterations using 4 additional eigenvectors and 43 using 8
eigenvectors. From a numerical point of view we observe that the
larger the coarse space, the better the preconditioner. Furthermore,
the gain is larger if restarted GMRES is considered than if full GMRES
is used as solver. In [4], the authors employ such techniques to solve
the Almond test problem which is an official test case for the JINA
2002 Conference (12th Int. Workshop on Antenna design, Nice 2002)
describing a realistic scattering application. The geometry has size 22
wavelengths and is illuminated at 2.6 GHz and discretized with 104793
points. Using 50 eigenvectors and a sparse approximate inverse as
preconditioner M1, GMRES(10) converges in 1867 iterations while no
convergence is achieved in +3000 iterations only with M1. The number
of iterations of unrestarted GMRES decreases from 229 to 13; not only
the number of iterations is significantly reduced but also the solution
time, from 13m to 6 m.

5. CONCLUDING REMARKS

We have presented a novel computational technique that is suitable
to compute a subset of the spectrum of sparse and/or dense
matrices arising from the discretization of Maxwell and Helmholtz-
type operators. We determine eigenvalues from approximate
invariant subspaces generated by a variant of the Lanczos method
for non-Hermitian matrices called the Lanczos Biconjugate A-
Orthonormalization procedure. The algorithm is cheap in memory
because it is based on three-term vector recurrences, it enables to
compute simultaneously both left and right eigenvectors and their
corresponding eigenvalues, and does not require full orthogonalization
which may be computationally expensive. Combined with polynomial
filtering and shift-invert techniques, the method can approximate
any subset of the spectrum of interest in applications. Reported
experiments show the favourable convergence properties to the
true eigenvalues of Maxwell/Helmholtz-type operators in practical
applications. We believe that these results may contribute to highlight
the potential and enrich the database of this technology. Perspectives
of future research include exploring deflation techniques and deriving
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convergence results for inexact inverse iterations applied to the BiCOR-
EIG algorithm with shift-invert.
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