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Abstract—Based on the altitude-dependent model of ITU-R slant
atmospheric turbulence structure constant, the log-amplitude variance
of laser beam propagation on the slant path through turbulent
atmosphere is obtained with transmitter and receiver parameters
and can be degenerated to the result of the horizontal path
with atmospheric structure constant as a fixed value. These
expressions are convenient tools for beam-wave analysis. Finally, we
apply the ITU-R turbulence structure constant model to calculate
collimated, divergent and convergent beam log-amplitude variance.
The numerical conclusions indicate the log-amplitude variance of laser
beam propagation on slant path is generally smaller than those on
horizontal path.
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1. INTRODUCTION

Recently, because of the requirement of atmospheric communication,
detection and remote sensing, the characteristics of the laser beam
propagation on slant path become very important. The fluctuation
characteristics of the amplitude and phase of an optical wave
propagating through a turbulent medium have been a source of
theoretical and experimental investigations for many years [1–9]. There
are also many other correlative researches [10–25]. Ishimaru [1]
used spectral analysis techniques to obtain expressions for the
covariance and structure functions of log-amplitude and phase in
locally homogeneous and isotropic turbulence. Kerr and Eiss [4]
and Kerr and Dunphy [5] later demonstrated that the predicted
reduction in the scintillation for a large-aperture focused beam is of
limited practical significance, since it depends critically on the focus
adjustment and on beam wander. Miller et al. [9] discussed the log-
amplitude variance and wave structure function of Gaussian beam
propagation on the horizontal path.

All the theoretical studies have centered on the horizontal path.
This paper discusses the slant transmitted path. The bulk of the
theoretical studies has centered on the spherical or infinite plane-
wave forms, which are primarily limiting cases of more general optical
propagation modes. It is difficult to interpret basic beam-wave
behavior and produce numerical results with expressions left in this
form. Most results for the log-amplitude variance, for example, are
in the form of complicated relations, often involving functions with
complex arguments. In many applications, however, neither the
spherical nor the plane-wave approximation is sufficient to characterize
propagation properties of the wave. In such cases it is necessary
to account for beam size as well as for the focusing or diverging
characteristics of the beam propagation on the slant path.

Based on the altitude-dependent model of the ITU-R turbulence
structure constant model C2

n(h), this paper derives the log-amplitude
of the laser beam propagation through atmospheric turbulence on the
slant path and can be degenerated to the result of the horizontal path
with atmospheric structure constant a fixed value. Finally, different
Gaussian beam log-amplitude variances are calculated based on ITU-
R turbulence structure constant model. In computation, because the
atmospheric structure constant changes with the propagation path, the
computing formulas have to reserve the C2

n(h) path integral calculus
form.
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2. NON-DIMENSIONAL BEAM PARAMETERS

The electric field U of laser beam as to paraxial beam in the plane of
the transmitter at z = 0 may be written in the form

U(0, ρ0) = exp
[
−1

2
(kα) ρ2

0

]
(1)

where α = λ/πW 2
0 + i(1/F0) is the transmitter at z = 0; W0 is the half

width of initial beam; F0 is radius of curvature of wave front; and ρ0 is
the coordinate of z = 0. λ is wave length, and k is the wave number.

Introduced non-dimensional parameters Θ0 and Λ0 [9] are

Θ0 = 1− L

F0
, Λ0 =

2L

kW 2
0

(2)

Alternatively, one can express the complex amplitude 1 + iαL as
the sum of real and imaginary parts, which leads to [9]

1 + iαL = 1 + iλL/πW 2
0 − (L/F0) = Θ0 + iΛ0

1/(1 + iαL) = 1/(Θ0 + iΛ0) = Θ− iΛ
(3)

When the beam propagates from ⇀
ρ0(z = 0) to ⇀

ρ(z = L) along z
axis, the wave field at z = L (receiver) can be represented by

U(L, ρ) =
1

1 + iαL
exp

[
ikL− 1

1 + iαL

(
1

W 2
+ i

k

2F

)
ρ2

]

=
1

1 + iαL
exp

[
ikL−

(
1

W 2
+ i

k

2F

)
ρ2

]
(4)

where F and W are the radius of curvature of wave front and beam
half width of receiver, respectively.

F =
F0(Θ2

0 + Λ2
0)(Θ0 − 1)

Θ2
0 + Λ2

0 −Θ0
, W = W0(Θ2

0 + Λ2
0)

1/2 (5)

The parameters Θ and Λ are related to F and W , expressed by

Θ =
Θ0

Θ2
0 + Λ2

0

= 1 +
L

F
, Λ =

Λ0

Θ2
0 + Λ2

0

=
2L

kW 2
(6)

The field intensity of receiver is

I(L, ρ) = |U(L, ρ)|2 =
W 2

0

W 2
exp

(
−2ρ2

W 2

)
(7)
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3. LOG-AMPLITUDE VARIANCE OF LASER BEAM
PROPAGATION ON THE SLANT PATH

If a normal distribution is assumed for the probability density of
the logarithm of the beam fluctuating amplitude, the log-amplitude
variance for a laser beam after propagation along a path of length L
in a turbulent atmosphere is described by [9]

σ2
x(L, ρ)=2π2

∫ L

0

∫ ∞

0

{
I0(2γiκρ)|H(κ, ρ)|2+Re[H2(κ, z)]

}
Φn(κ)κdκdz

(8)
where I0(χ) is the modified Bessel function of the first kind. γ is
the transfer constant, γ = 1 when the wave is the plane wave, while
γ = z/L wherever the wave is sphere wave. When the beam is laser
beam, the transfer constant γ being complex, can be expressed as

γ =
1 + iαz

1 + iαL
= γr − iγi, γr =

1 + α2Lz

1 + α2L2
, γi =

α(L− z)
1 + α2L2

(9)

Φn(κ) in Eq. (8) is the air refraction index power spectrum; κ is spatial
wave number; z is propagation distance

|H(κ, z)|2 = k2 exp
[
−γiκ

2(L− z)
k

]
(10)

H2(κ, z) = −k2 exp
[
−γκ2(L− z)

k

]
(11)

Taking ξ = z/L and using the receiver parameters Λ and Θ, the
Eq. (8) takes a simpler form

σ2
x(L, ρ) = 2π2k2L

∫ 1

0

∫ ∞

0

{
I0(2Λρξκ)− cos

[
Lκ2

k
(1− Θ̄ξ)ξ

]}

×
[
exp

(
−ΛLξ2κ2

k

)]
Φn(κ)κdκdξ (12)

where the complementary parameter is
Θ̄ = 1−Θ (13)

It is useful to express the log-amplitude variance [Eq. (12)] further
as the sum

σ2
x(L, ρ) = σ2

x,l(L) + σ2
x,r(L, ρ) (14)

where σ2
x,l(L) and σ2

x,r(L, ρ) are called the longitudinal and radial
components, respectively. These components are defined by

σ2
x,l(L)=4π2k2L

∫ 1

0

∫ ∞

0
sin2

[
Lκ2

2k
(1−Θ̄ξ)ξ

]
exp

(
−ΛLξ2κ2

k

)
Φn(κ)κdκdξ

(15)
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σ2
x,r(L, ρ)=2π2k2L

∫ 1

0

∫ ∞

0
[I0(2Λρξκ)−1] exp

(
−ΛLξ2κ2

k

)
Φn(κ)κdκdξ

(16)
Note that the radial component [Eq. (16)] vanishes along the

beam axis ρ = 0, since I0(0) = 1. Also, the radial component
directly involves only the Fresnel (ρ/W ) ratio at the receiver Λ, while
the longitudinal component [Eq. (15)] involves both Λ and curvature
parameter Θ (or Θ̄).

If optical turbulence is homogeneous along the propagation path,
and the inner scale is sufficiently small with respect to the size of the
Fresnel zone, the evaluation of integrals (15) and (16) can be based on
the Kolmogorov spectrum

Φn(κ) = 0.033C2
nκ−11/3 (17)

where C2
n is the refractive-index structure parameter. This paper

discusses the laser beam propagation on the slant path, and C2
n is

altitude dependent. Kolmogorov spectrum can be written as
Φn(κ) = 0.033C2

n(ξH)κ−11/3 (18)
where H is the vertical height of receiver from ground. There we
employ ITU-R atmospheric turbulence structure constant model [26]
expressed by
C2

n(h)=8.148×10−56v2
RMSh10e−h/1000+2.7×10−16e−h/1500+C0e

−h/100

(19)
where vRMS =

√
v2
g + 30.69vg + 348.91 is the wind velocity of vertical

path; vg is sub aerial wind velocity; C0 is sub aerial atmospheric
structure constant (its typical value is 1.7× 10−14m−2/3).

Substituting Eq. (18) into Eq. (16), then

σ2
x,r(L, ρ) = 0.066π2k2L

∫ 1

0
C2

n(ξH)dξ

×
∫ ∞

0
[I0(2Λρξκ)− 1] exp

(
−ΛLξ2κ2

k

)
κ−8/3dκ (20)

The result of integrand Eq. (20) is

σ2
x,r(L, ρ) = 0.033π2C2

n0k
7/6L11/6Γ (−5/6)Λ5/6

×
∫ 1

0

C2
n(ξH)
C2

n0

ξ5/3[
1F1

(−5/6; 1; 2ρ2/W 2
)− 1

]
dξ (21)

Reducing Eq. (21)

σ2
x,r(L, ρ)=1.77σ2

0Λ
5/6

[
1−1F1

(−5/6; 1; 2ρ2/W 2
)]∫ 1

0

C2
n(ξH)
C2

n0

ξ5/3dξ

(22)
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where σ2
0 = 1.23C2

n0k
7/6L11/6 is the Rytov covariance. The

atmospheric turbulence structure constant on the slant path is a fixed
value C2

n(ξH) = C2
n0 Eq. (22) can be degenerated to the result of the

horizontal path

σ2
x,r(L, ρ) = 1.77σ2

0Λ
5/6

[
1− 1F1

(−5/6; 1; 2ρ2/W 2
)] ∫ 1

0
ξ5/3dξ

= 0.66σ2
0Λ

5/6[1−1 F1(−5/6; 1; 2ρ2/W 2)] (23)
where 1F1(a; c; x) is the hypergeometric function of the first kind [27].
For ρ ≤ W the radial component [Eq. (23)] can be closely approximated
with the first few terms of the series representation of the 1F1, whereas
the large-argument asymptotic form of 1F1 may be used for large values
of ρ/W . The result of these approximations is

σ2
x,r(L, ρ) ≈

{
1.1σ2

0Λ
5/6(ρ/W )2[1 + 0.083(ρ/W )2] ρ ≤ W

0.027σ2
0Λ

5/6(ρ/W )11/3 exp(2ρ2/W 2) ρ À W
(24)

Hence, when ρ < W , radial component (23) increases
approximately as the square of the distance from the center line of
the beam to the diffractive beam radius at the receiver [ignoring the
small contribution from the multiplicative factor 1+0.083(ρ/W )2]. For
ρ À W the radial component predicts a rapid increase with ρ, owing
to the exponential behavior of the 1F1 function.

We can express the longitudinal component Eq. (15) as

σ2
x,l(L) = 2π2k2L

∫ 1

0

∫ ∞

0
Φn(κ)κ

{
1− cos

[
Lκ2

k
(1− Θ̄ξ)ξ

]}

exp
(
−ΛLξ2κ2

k

)
dκdξ (25)

Using Eq. (18)

σ2
x,l(L) = 2π2k2L

∫ 1

0
0.033C2

n(ξH)dξ

×
∫ ∞

0

{
1−cos

[
Lκ2

k
(1−Θ̄ξ)ξ

]}
exp

(
−ΛLξ2κ2

k

)
κ−8/3dκ (26)

The result of integrand is

σ2
x,l(L) = 0.033Γ(−5/6)π2C2

n0k
7/6L11/6

∫ 1

0

C2
n(ξH)
C2

n0

×
{

Λ5/6ξ5/3 − [
Λ2ξ4 + (1− Θ̄ξ)2ξ2

]5/12

cos
[
5
6

tan−1

(
1− Θ̄ξ

Λξ

)]}
dξ (27)
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Equation (27) is simplified as

σ2
x,l(L) = 1.77σ2

0

∫ 1

0

C2
n(ξH)
C2

n0

×
{[

Λ2ξ4 + (1− Θ̄ξ)2ξ2
]5/12 cos

[
5
6

tan−1

(
1− Θ̄ξ

Λξ

)]

−Λ5/6ξ5/3
}

dξ (28)

When atmospheric turbulence structure constant is a fixed value
C2

n(ξH) = C2
n0, Eq. (28) can be degeneracy as the result of laser beam

propagation on the horizontal path

σ2
x,l(L) = 1.77σ2

0

∫ 1

0

{[
Λ2ξ4+(1−Θ̄ξ)2ξ2

]5/12cos
[
5
6

tan−1

(
1− Θ̄ξ

Λξ

)]

−Λ5/6ξ5/3
}

dξ = 0.66σ2
0

[
f(Θ̄, Λ)− Λ5/6)

]
(29)

where

f(Θ̄, Λ) = Re[(16/11)i5/6
2F1(−5/6, 11/6, 17/6; Θ̄ + iΛ)] (30)

And 2F1(a, b, c; χ) is the hypergeometric function. Submitting
Eq. (22) and Eq. (28) into Eq. (14), we can obtain log-amplitude
variance of beam propagation on the slant path

σ2
x(L, ρ) = 1.77σ2

0Λ
5/6

∫ 1

0

C2
n(ξH)
C2

n0

ξ5/3dξ
{[

1−1 F1

(−5/6; 1; 2ρ2/W 2
)]

+
[
Λ2ξ4+(1−Θ̄ξ)2ξ2

]5/12cos
[
5
6

tan−1

(
1−Θ̄ξ

Λξ

)]
−ξ5/3

}
(31)

Submitting Eq. (23) and Eq. (29) into Eq. (14), we can obtain
log-amplitude variance of beam propagation on the horizontal path

σ2
x(L, ρ) = 0.66σ2

0

[
f(Θ̄,Λ)− Λ5/6

1 F1(−5/6; 1; 2ρ2/W 2)
]

(32)

It is equivalent to the result that Ishimaru [28] obtained.
Simplifying Eq. (30) to more tractable analytic functions depends on
the particular beam form. For instance, it can readily be shown that∣∣Θ̄ + iΛ

∣∣ ≤ 1 when Θ0 ≥ 0.5, which corresponds to all divergent and
collimated beam forms and some convergent beams. In this case the
series representation of the hypergeometric function in Eq. (30) yields

f(Θ̄,Λ)=
11
16

∞∑

n=0

(−5/6)n(11/6)n

(17/6)nn!
(Θ̄2+Λ2)n/2cos

[
n tan−1

(
Λ
Θ̄

)
+

5π

12

]
,

∣∣Θ̄ + iΛ
∣∣ ≤ 1(33)
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where (a)n = Γ(a + n)/Γ(a), n = 0, 1, 2, 3, . . ..
Also,

∣∣Θ̄ + iΛ
∣∣ > 1 wherever Θ0 < 0.5, and one may then use the

analytic continuation formula

2F1(a, b, c;−x) =
Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

x−a
2F1(a, 1 + a− c, 1 + a− b;−1/x)

+
Γ(c)Γ(a−b)
Γ(a)Γ(c−b)

x−b
2F1(b, 1+b−c, 1+b−a;−1/x) (34)

For the hypergeometric function in Eq. (30) to obtain the
representation

f(Θ̄,Λ)=0.338(Θ̄2+Λ2)−11/12 cos
[
11
6

tan−1

(
Λ
Θ̄

)
−π

4

]
+

(
Θ̄2+Λ2

)5/12

×
∞∑

n=0

(−5/6)n(11/6)n

(17/6)nn!
(
Θ̄2+Λ2

)−n/2cos
[(
n− 5

6

)
tan−1

(
Λ
Θ̄

)
+

5π

12

]
,

∣∣Θ̄ + iΛ
∣∣ > 1 (35)

3.1. Collimated Beam

For a collimated beam the parameters Λ and Θ are completely
determined by Λ0, since Θ0 = 1 for this beam type. Also, Eq. (33)
can be used for f(Θ̄, Λ) in the longitudinal component Eq. (29), since∣∣Θ̄ + iΛ

∣∣ ≤ 1. Writing both Θ and Λ in terms of Λ0, we arrive at the
expression

σ2
x,l(L)

σ2
0

= 0.96
∞∑

n=0

(−5/6)n(11/6)n

(17/6)nn!

(
Λ2

0

1+Λ2
0

)n/2

cos
[
n tan−1

(
1
Λ0

)
+

5π

12

]

−0.66
(

Λ0

1 + Λ2
0

)5/6

(36)

Two linear transformations on the hypergeometric function in
Eq. (30) yield the alternative form

σ2
x,l(L)

σ2
0

=0.39
(

1 + Λ2
0

Λ2
0

)11/12

sin
[
11
6

tan−1 (Λ0)
]
− 0.66

(
Λ0

1 + Λ2
0

)5/6

+0.96Λ−11/6
0

∞∑

n=0

(−5/6)n(11/6)n

(17/6)nn!
(1+Λ2

0)
−n/2sin[ntan−1(Λ0)] (37)

The series in Eq. (36) converges more rapidly than that in Eq. (37)
except for large Λ0, and thus Eq. (36) is generally more useful in
calculations. Eqs. (36) and (37) in the limit Λ0 = 0 yield the standard
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plane-wave expression σ2
x,p = 0.307C2

nk7/6L11/6 while producing the
standard spherical-wave expression σ2

x,s = 0.124C2
nk7/6L11/6 in the

limit Λ0 = ∞.
The numerical results indicate that the log-amplitude variance of

laser beam propagation on the slant path in the turbulent atmosphere
is generally smaller than that on horizontal path. Because the drone
is higher the intensity of the turbulence is weaker.

3.2. Divergent Beam

A divergent beam is characterized by Θ0 > 1 with
∣∣Θ̄ + jΛ

∣∣ ≤ 1, and
thus we can substitute Eq. (33) into Eq. (29) to obtain

σ2
x,l(L)

σ2
0

= 0.96
∞∑

n=0

(−5/6)n(11/6)n

(17/6)nn!
(Θ̄2+Λ2)n/2cos

[
n tan−1

(
Λ
Θ̄

)
+

5π

12

]

−0.66Λ5/6 (38)

The log-amplitude variance for the divergent beam, like that for
the collimated beam, tends to that of spherical wave case for decreasing
beam size, since the values Λ = Θ = 0 are obtained in the limit
Λ0 = ∞. For Λ0 → 0, however, the behavior may differ form that of the
collimated beam because Θ approaches the limiting value Θ = 1/Θ0

rather than unity. The value of the longitudinal component moving
from plane wave to spherical wave, as Θ0 increasing from unity.

This limiting behavior is demonstrated in Fig. 1 on horizontal
and in Fig. 2 on slant path. Note that the curves of divergent beam
are much like those of collimated beam, except that they appear to
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be shifted to the right. For example, the largest off-axis fluctuations
occur near Λ0 = 2 rather than near unity as for collimated beam
when ρ/W ≥ 0.5. And the smallest value occurs near Λ0 = 5 when
ρ/W < 0.5.

3.3. Convergent Beam

A convergent beam is characterized by the relation Θ0 < 1, and when
it is compared with other beam types, exhibits some notable extremes
in behavior owing to large variations in the values of Λ and Θ when Θ0

is near zero. In Figs. 3 and 4 the parameters Λ and Θ, respectively, are
plotted as functions of Λ0 for several values of |Θ0|. Observe that for
Θ0 6= 0 the Fresnel ratio Λ approaches zero as Λ0 → 0 and Λ0 → ∞,
while at Λ0 = |Θ0| it assumes its maximum value Λmax = 1/2Θ0. Only
when Θ0 = 0 the resulting Fresnel ratio Λ = 1/Λ0 becomes unbounded
as Λ0 → 0. The quantity |Θ| also approaches zero as Λ0 → ∞, but
as Λ0 → 0 it approaches its maximum value |Θ|max = 1/ |Θ0|, Λ0 = 0,
Θ0 6= 0. When Λ0 = 0, it follows that Θ → +∞ as Θ0 → 0+ and
Θ → −∞ as Θ0 → 0−.

For a convergent beam with 0.5 ≤ Θ0 < 1 the analytic expression
describing the longitudinal component for the log-amplitude variance
has the same form as that of the divergent beam given by Eq. (38).
However, when Θ0 < 0.5, (35) above must be used for f(Θ̄, Λ), which
leads to
σ2

x,l(L)

σ2
0

= 0.22(Θ̄2+Λ2)cos
[
11
6

tan−1

(
Λ
Θ̄

)
−π

4

]
−0.66Λ5/6+0.66(Θ̄2+Λ2)5/12

×
∞∑

n=0

(−5/6)n(−8/3)n

(−5/3)nn!
(Θ̄2+Λ2)−n/2cos

[(
n− 5

6

)
tan−1

(
Λ
Θ̄

)
+

5π

12

]

∣∣Θ̄ + jΛ
∣∣ > 1 (39)

For the traditional case of a perfectly focused beam defined by
Θ0 = 0, Eq. (39) can be rewritten in the form

σ2
x,l(L)

σ2
0

= 0.22
(

Λ2
0

1 + Λ2
0

)11/12

cos
[
11
6

tan−1

(
1

ΘΛ0

)
−π

4

]
− 0.66Λ5/6

+0.66
(

1 + Λ2
0

Λ2
0

)5/12 ∞∑

n=0

(−5/6)n(−5/6)n

(−5/3)nn!

(
Λ2

0

1 + Λ2
0

)n/2

× cos
[(

n− 5
6

)
tan−1

(
1
Λ0

)
+

5π

12

]
(40)
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radial distances on the horizontal and slant path.

Consistent with other beam forms, the radial component
approaches zero as Λ0 = 0; the longitudinal component approaches
zero as Λ0 = ∞; and the longitudinal component approaches that of
a spherical wave. However, as Λ0 = 0 the longitudinal component
vanishes, while the radial component becomes unbounded. Fig. 5 also
shows us the change relationship of scale log-amplitude variance with
different heights of drone. For a fixed Λ0, the higher the drone is,
the smaller the log-amplitude is. With the increase of the H, the
atmospheric turbulence effects become smaller and smaller.
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4. CONCLUDING REMARKS

Beam-wave propagation in free space can be described by wavelength,
path length, transmitter beam size W0, and radius of curvature F0.
However, when optical turbulence effects are included, the beam
parameters W0 and F0 by themselves do not always lead to a clear
understanding of the resulting complex phenomenon That is, many
quantities of interest are often complicated functions of W0 and F0,
from which it is difficult to discern subtle differences between behavior
patterns and the various beam forms. It has been demonstrated here
that beam-wave propagation in free space is also completely specified
by the transmitter beam parameters Λ0 and Θ0 or, equivalently, the
receiver parameters Λ and Θ, in addition to wavelength and path
length. The receiver parameters have special physical significance,
since they form the real and imaginary parts of the complex amplitude
of the beam and also lead to relatively simple forms of the derived
statistical quantities.

This paper discusses the relation of the log-amplitude variance
of laser beam propagation through turbulent atmosphere on the slant
path with transmitter and receiver parameters, and analysis optical
turbulence-related characteristics predicted for Gaussian beam. These
expressions are simple and can be degenerated to the result of the
horizontal path with atmospheric structure constant a fixed value. All
the derived analytic expressions are completely general and not bound
by such restrictions.

The Kolmogorov power-law spectrum was chosen because of its
simplicity but also because derived analytic forms can be degenerated
to the result of the horizontal path that may be compared with earlier
contributions to the field based primarily on the same spectral model.
Nonetheless, it is recognized by the authors that the presence of a
nonzero inner scale and a finite and the pronounced vertical nature of
profiles for C2

n(h) have important effects on optical scintillations and
phase fluctuations. Thus the limiting inertial range behavior described
here is valid only
(1) the optical turbulence strength is weak to moderate
(2) the inner scale of the turbulence is relatively small
(3) the outer scale of the turbulence is sufficiently large
(4) the propagation is essentially along a horizontal path.

More realistic propagation environments including saturation
must eventually be considered if our understanding is to extend beyond
limiting results. In this regard, research is currently under way
to extend these findings to other situations involving more general
spectral models and the strong-fluctuation regime.
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Finally, the beam log-amplitude variance is calculated based
on ITU-R turbulence structure constant model which is altitude
dependent. The calculations indicate the log-amplitude variance of
laser beam propagation on slant path is generally smaller than the
that on horizontal path. Because the drone is higher, the intensity of
the turbulence is weaker. This research is of great importance to the
application of laser collimation, laser local technique and the research
of laser propagation theory.
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