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Abstract—Here we present the rigorous electrodynamical solution
of microwave scattering by a multilayered electrically or (and)
magnetically anisotropic circular cylinder. The number and thickness
of layers may be arbitrary. We present the solution when all area
of multilayered cylinder can be made of different uniaxial anisotropic
or isotropic materials. The multilayered cylinder media can be of
strongly lossy materials. The signs of the complex permittivity
and permeability tensor components can be positive or negative in
different combinations. Here we present the numerical dependencies
of the Poynting vector radial component Pρ that is responsible for the
scattered and absorbed powers when the incident microwave impinges
on the anisotropic Lithium Niobate (LiNbO3) cylinder as well as on two
single isotropic cylinders. The permittivity tensor components of the
anisotropic cylinder are εt = 43− i0.0005, εp = 28− i0.0005 as well as
for the isotropic cylinders the permittivities are εt = εp = 43− i0.0005
and εt = εp = 28 − i0.0005. We show here the pattern of the
value Pρ inside and outside of the LiNbO3 and two isotropic cylinders
when the polar angle ϕ changes from 0 to 360 degrees with the
step equal to one degree. We present here our calculations when
the incident microwave has perpendicular or parallel polarization at
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three frequencies 65 GHz, 92.5 GHz and 120 GHz. We found that the
values Pρ for the anisotropic cylinder have the opposite behavior of
dependencies on the permittivity tensor components for the incident
microwaves of different polarizations.

1. INTRODUCTION

Microwave scattering by 2D homogeneous anisotropic cylinders has
attracted a great deal of interest in the last decade. The importance
of scattering problems is based on their great practical utility for
many applications, such as reflector antennas, electromagnetic (EM)
defence of structures, high frequency telecommunications, navigation,
computer network, and invisibility cloaks technology, medicine. The
microwave scattering by anisotropic objects is more complicated than
the scattering by isotropic ones. Various additional effects can be
found in multilayered anisotropic cylinders. The stream of new articles
shows the actuality of the topic [1–4]. In [1] an analytical model
is proposed to predict the performance of a multilayered cylindrical
cloak, based on which, the cloak can be optimized to diminish the
intrinsic scatterings. Extremely low scattering can be achieved with
only a few layers of anisotropic metamaterials. In [2] a trapeziform
cloak that requires homogeneous anisotropic material is proposed. The
flat cloak is constructed by isotropic mediums based on a new effective
medium theory, which furthermore improves the performance of actual
flat cloak. This general cloaking concept gives a way to the practical
applications in large scales and in higher frequency. Article [3] gives
investigations of infinite circular cylinder when the material can be
described by the full permittivity tensor. A homogeneous electrically
anisotropic cylinder is the main objective of this study. The magnetic-
type Green’s function of the problem is derived by solving an integral
equation with a nonsingular kernel. The proposed technique can be
expanded to treat problems with multiple anisotropic cylindrical layers.
In [4] the EM scattering from inhomogeneous anisotropic impedance
cylinder of arbitrary shape is investigated by the method of moments.
Cylinder is illuminated by monochromatic plane wave polarized in the
cylinder z-axis. The scattered field is calculated using the electric field
integral equation, current continuity equation and two-dimensional
Green’s function. In [4] some difficulties in solving the vector integral
equations are considered. There are comparisons with other authors’
results.

On the base of anisotropic cylinder, reflectors and other devices
that can have their electrodynamical characteristics controllable by
electric and (or) magnetic fields as well as light, x-ray, temperature
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etc. can be created. The planar monopole antenna can be loaded
at its two radiating edges by controllable anisotropic cylinders [5].
The importance of the problem about the microwave scattering on
the bodies is confirmed by the large number of publications [6–12].

In our previous article we gave an algorithm for the calculation of
microwave scattered and absorbed powers by a multilayered isotropic
cylinder [13]. Here we present a simple effective algorithm that
let us analyze diffraction characteristics of the multilayered uniaxial
anisotropic or isotropic cylinders. The number and sizes of cylinder
layers are not limited. The losses can be arbitrary. The approbations
of our computer algorithm were fulfilled by comparison with numerical
results of other authors’ works. We show here numerical calculations
of the anisotropic LiNbO3 cylinder and two isotropic cylinders. We
found that the microwave reflected energy from the anisotropic cylinder
and the penetration energy into the cylinder have the opposite
behaviors dependent on the anisotropic tensor components for incident
microwaves with the perpendicular and parallel polarizations.

2. DIFFRACTION BY ANISOTROPIC CYLINDER
PROBLEM’S FORMULATION

Let us consider a 2D (multilayer) concentric cylinder with radii ρ = Rj ,
j = 1, . . . , N of concentric regions (Fig. 1). Here (N − 1) is the
quantity of layers on the anisotropic cylindrical core. The j-th region
(Rj+1 < ρ < Rj , j = 1, . . . , N) is filled with a material having
the tensor permittivity ε̂j and tensor permeability µ̂j . Numbering
of the layers is going from outside layer to the inner. Thus R1 is the
outside radius of the cylinder and for j = N + 1 the radius RN+1 = 0
(Fig. 1). The cylinder is put in medium with the scalar permittivity
ε, and the scalar permeability µ scatters a plane monochromatic EM
wave (microwave). The electric field of the wave at the point ~r is
~Ein(~r) = ~E0e

iωt−i~k~r
√

εµ. Here ~E0 is the unit electric field vector of
incident plane monochromatic EM wave. ω is the microwave frequency,
and ~k is the wave vector. We choose Cartesian coordinate system such
that the x-axis would be parallel to the wave vector ~k projection on
the plane with z = 0. The polar angle ϕ of the cylindrical coordinate
system is specified as the z-axis of the Cartesian coordinate system
which is bypassed in the counterclockwise direction. The electrical
field of the incident microwave in the circular cylindrical coordinate
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system is described by formula:

~Ein = {(E0x cosϕ+E0y sinϕ)~nρ−(E0x sinϕ−E0y cosϕ)~nϕ+E0z~nz}

e−i
√

εµkzz
∞∑

n=−∞
(−i)neinϕJn(w). (1)

The factor exp(iωt) in formula (1) is omitted, because we have to
reduce this term anyway later. The magnetic field of the incident
microwave is described by the formula similar to formula (1), only
the vector ~E0 have to be changed on the vector ~H0, where the vector
expression is: ~H0 = (

√
ε0ε/µ0µ)[~k0, ~E0]. Here ~E0 = E0x~nx + E0y~ny +

E0z~nz, where E0x, E0y, E0z are components of electric field ~E0. ~H0 =
H0x~nx + H0y~ny + H0z~nz, H0x, H0y, H0z are components of magnetic
field ~H0. ~k0 = ~k/k is the incident microwave unit vector. k = ω/c,
value c is the speed of light, and the wave vector ~k = kx~nx + kz~nz. ~nx,
~ny, ~nz are the Cartesian coordinate system orts. The real constants
ε and µ are the permittivity and permeability of an ambient medium.
ε0 and µ0 are electric and magnetic constants respectively.

The wave vector in the circular cylindrical coordinate system is
~k = kρ~nρ+kz~nz, where ~nρ, ~nϕ, ~nz are the cylindrical coordinate system
orts. Jn(w) is the Bessel function of n-th order, and w is the argument
(
√

εµ kρρ) of the Bessel function.

Figure 1. The simplest layered anisotropic cylinder model and
notations.
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3. SOLUTION OF MAXWELL’S EQUATIONS FOR
UNIAXIALLY MULTILAYERED ANISOTROPIC
CYLINDER

The Maxwell’s equations for anisotropic media and harmonic waves
are

∇× ~Hj = iωε0ε̂j
~Ej and ∇× ~Ej = −iωµ0µ̂j

~Hj (2)

where ε̂j is the permittivity tensor, and µ̂j is the permeability tensor
of any j region of layered anisotropic cylinder. Let the uniaxial
anisotropic medium permittivity and permeability tensors have forms:

ε̂j =

∣∣∣∣∣
εt,j 0 0
0 εt,j 0
0 0 εp,j

∣∣∣∣∣ , µ̂j =

∣∣∣∣∣
µt,j 0 0
0 µt,j 0
0 0 µp,j

∣∣∣∣∣ . (3)

It means that we deal with uniaxial ε̂j and µ̂j anisotropic media
when the z-axis of cylinder coincides with the medium optic axis.
The permittivity and permeability components which correspond to
the direction along of the z-axis of cylinder are indicated with index
p. The components which correspond to the perpendicular direction
are indicated with index t. The medium is negative uniaxial if the
permittivity and (or) permeability components with index t are larger
than the components with index p [14]. The medium is isotropic if the
permittivity and permeability components with index t are equal to
the components with index p.

The Maxwell’s equations for uniaxial anisotropic media (3) have
solutions expressed by the transverse electric (TE) and magnetic (TM)
waves [15]. From Maxwell’s equation (2) and taking into account the
tensor expressions (3) we get the differential equation for the TE-wave
potential Φ for every cylindrical layer (or the cylindrical core) with
indexes j from 1 to N :

∂2Φj

∂z2
+

1
βp,jρ

∂

∂ρ

(
βt,jρ

∂Φj

∂ρ

)
+

1
βp,jρ

∂

∂ϕ

(
βt,j

ρ

∂Φj

∂ϕ

)
+βt,jγt,jΦj = 0, (4)

and in the same way we get the TM-wave potential Ψ differential
equation:

∂2Ψj

∂z2
+

1
γp,jρ

∂

∂ρ

(
γt,jρ

∂Ψj

∂ρ

)
+

1
γp,jρ

∂

∂ϕ

(
γt,j

ρ

∂Ψj

∂ϕ

)
+βt,jγt,jΨj = 0. (5)

Here βp,j = ωµ0µp,j , βt,j = ωµ0µt,j , γp,j = ωε0εp,j , γt,j = ωε0εt,j ,
j = 1, . . . , N . In the case when tensor (3) components are constants we
obtain the two-dimensional Helmholtz-type equations for the potentials



180 Bucinskas, Nickelson, and Sugurovas

after the integral Fourier transform under coordinate z:

1
ρ

∂

∂ρ

(
ρ
∂Φj

∂ρ

)
+

1
ρ2

∂2Φj

∂ϕ2
+ λ2

µ,jΦj = 0,

1
ρ

∂

∂ρ

(
ρ
∂Ψj

∂ρ

)
+

1
ρ2

∂2Ψj

∂ϕ2
+ λ2

ε,jΨj = 0,

(6)

here λ2
µ,j = µp,j

µt,j
(k2εt,jµt,j − h2), λ2

ε,j = εp,j

εt,j
(k2εt,jµt,j − h2) and h is

the Fourier parameter. Solutions of the Helmholtz Equation (6) can
be written:

Φj =
∞∑

m=−∞
Φj,m exp(imϕ), Ψj =

∞∑
m=−∞

Ψj,m exp(imϕ), (7)

Ψj,m = A
(1)
j,mQ(1)

m (λε,jρ) + A
(2)
j,mQ(2)

m (λε,jρ),

Φj,m = B
(1)
j,mQ(1)

m (λµ,jρ) + B
(2)
j,mQ(2)

m (λµ,jρ).
(8)

Here Qm can be the Bessel function of m-th order, the Neumann
function of m-th order or linear combinations of these functions. The
potentials (8) can be expressed by the Bessel functions in the core of
cylinder and by combinations of the Hankel first kind H

(1)
m (w) and

the Hankel second kind H
(2)
m (w) functions in the layers of cylinder.

The potentials (8) have to be expressed by the function H
(2)
m (w) in

the medium outside of the cylinder in order to satisfy the radiation
conditions when ρ → ∞. We note that the potentials in the medium
surrounding the cylinder are written as

Ψm = As
mH(2)

m (β0ρ), Φm = Bs
mH(2)

m (β0ρ). (9)

The coefficients A
(1)
jm, B

(1)
jm, A

(2)
jm, B

(2)
jm, As

m and Bs
m are unknown

magnitudes of cylindrical waves that have to be determined from
boundary conditions. The indices m are from −∞ to +∞, and the
index j denotes a certain layer, where the index j can be from 1 to
N . The coefficients As

m, Bs
m are unknown amplitudes of cylindrical

waves outside of the cylinder. Coefficients A
(1)
jm, B

(1)
jm, A

(2)
jm, B

(2)
jm are

unknown amplitudes of the j cylinder layer, when j = 1, . . . , N , e.g.,
A

(1)
1,m B

(1)
1,m, and A

(2)
1,m, B

(2)
1,m are unknown amplitudes of the first cylinder

layer. A
(1)
2,m, B

(1)
2,m A

(2)
2,m, B

(2)
2,m are unknown amplitudes of the second

cylinder layer, and . . . A
(1)
N,m, B

(1)
N,m are unknown amplitudes of the N

cylinder layer.
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The electromagnetic field components expressed by potentials (7)
are:

Ej,ρ = − iβt,j

ρ

∂Φj

∂ϕ
+ ih

∂Ψj

∂ρ
, Ej,ϕ = iβt,j

∂Φj

∂ρ
+

ih

ρ

∂Ψj

∂ϕ
,

Ej,z =
(
k2εt,jµt,j − h2

)
Ψj ,

(10)

Hj,ρ = ih
∂Φj

∂ρ
+

iγt,j

ρ

∂Ψj

∂ϕ
, Hj,ϕ =

ih

ρ

∂Φj

∂ϕ
− iγt,j

∂Ψj

∂ρ
,

Hj,z =
(
k2εt,jµt,j − h2

)
Φj .

(11)

To solve the scattering problem we use the standard boundary
conditions, i.e., equality of the tangential EM field components the
same as in [13]. Satisfying the boundary conditions on the interface of
different cylindrical layers, i.e., equalizing the tangential components of
the electrical and magnetic components [13], we get the linear algebraic
system of equations for the determination of unknown amplitudes.

We can write from the boundary conditions at ρ = R1 the
equations:

As
m

(
−β2

0H(2)
m (β0R1)

)
+A

(1)
1,m

(
β2

1Q(1)
m (λε,1R1)

)
+A

(2)
1,m

(
β2

1Q(2)
m (λε,1R1)

)

= f1, (12)

As
m

(
mh

R1
H(2)

m (β0R1)
)

+Bs
m

(
−iωµ0µ

∂

∂R1
H(2)

m (β0R1)
)

+A
(1)
1,m

(
−mh

R1
Q(1)

m (λε,1R1)
)

+B
(1)
1,m

(
iωµ0µt,1

∂

∂R1
Q(1)

m (λµ,1R1)
)

+A
(2)
1,m

(
−mh

R1
Q(2)

m (λε,1R1)
)

+B
(2)
1,m

(
iωµ0µt,1

∂

∂R1
Q(2)

m (λµ,1R1)
)

=f2, (13)

Bs
m

(
−β2

0H(2)
m (β0R1)

)
+B

(1)
1,m

(
β2

1Q(1)
m (λµ,1R1)

)
+B

(2)
1,m

(
β2

1Q(2)
m (λµ,1R1)

)

= f3, (14)

As
m

(
iωε0ε

∂

∂R1
H(2)

m (β0R1)
)

+Bs
m

(
mh

R1
H(2)

m (β0R1)
)

+A
(1)
1,m

(
−iωε0εt,1

∂

∂R1
Q(1)

m (λε,1R1)
)

+B
(1)
1,m

(
−mh

R1
Q(1)

m (λµ,1R1)
)

+A
(2)
1,m

(
−iωε0εt,1

∂

∂R1
Q(2)

m (λε,1R1)
)

+B
(2)
1,m

(
−mh

R1
Q(2)

m (λµ,1R1)
)

=f4, (15)
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The magnitudes in the right parts of equations are:
f1=E0z

√
2πδ(h+kz

√
εµ)(−i)mJm(β0R1),

f2=
√

2πδ(h+kz
√

εµ)(−i)m

{
iE0y

∂Jm(β0R1)
∂(β0R1)

−E0x
m

β0R1
Jm(β0R1)

}
,

f3=H0z

√
2πδ(h+kz

√
εµ)(−i)mJm(β0R1),

f4=
√

2πδ(h+kz
√

εµ)(−i)m

{
iH0y

∂Jm(β0R1)
∂(β0R1)

−H0x
m

β0R1
Jm(β0R1)

}
,

where β2
0 = k2εµ−h2, β2

j = k2εt,jµt,j−h2, j = 1, . . . , N , δ(h+kz
√

εµ)
is the Dirac delta function. From the boundary conditions at ρ = Rj ,
j = 2, . . . , N − 1 we have the equations:

A
(1)
j−1,m

(
−β2

j−1Q
(1)
m (λε,j−1Rj)

)
+A

(2)
j−1,m

(
−β2

j−1Q
(2)
m (λε,j−1Rj)

)

+A
(1)
j,m

(
β2

j Q(1)
m (λε,jRj)

)
+A

(2)
j,m

(
β2

j Q(2)
m (λε,jRj)

)
= 0, (16)

A
(1)
j−1,m

(
mh

Rj
Q(1)

m (λε,j−1Rj)
)
+B

(1)
j−1,m

(
−iωµ0µt,j−1

∂

∂Rj
Q(1)

m (λµ,j−1Rj)
)

+A
(2)
j−1,m

(
mh

R1
Q(2)

m (λε,j−1Rj)
)
+B

(2)
j−1,m

(
−iωµ0µt,j−1

∂

∂Rj
Q(2)

m (λµ,j−1Rj)
)

+A
(1)
j,m

(
−mh

Rj
Q(1)

m (λε,jRj)
)

+B
(1)
j,m

(
iωµ0µt,j

∂

∂Rj
Q(1)

m (λµ,jRj)
)

+A
(2)
j,m

(
−mh

Rj
Q(2)

m (λε,jRj)
)

+B
(2)
j,m

(
iωµ0µt,j

∂

∂Rj
Q(2)

m (λµ,jRj)
)

=0, (17)

B
(1)
j−1,m

(
−β2

j−1Q
(1)
m (λµ,j−1Rj)

)
+ B

(2)
j−1,m

(
−β2

j−1Q
(2)
m (λµ,j−1Rj)

)

+B
(1)
j,m

(
β2

j Q(1)
m (λµ,jRj)

)
+ B

(2)
j,m

(
β2

j Q(2)
m (λµ,jRj)

)
= 0, (18)

A
(1)
j−1,m

(
iωε0εt,j−1∂

(
Q(1)

m (λε,j−1Rj)
)
/∂Rj

)

+B
(1)
j−1,m

(
(mh/Rj) Q(1)

m (λµ,j−1Rj)
)

+A
(2)
j−1,m

(
iωε0εt,j−1∂

(
Q(2)

m (λε,j−1Rj)
)
/∂Rj

)

+B
(2)
j−1,m

(
(mh/Rj) Q(2)

m (λµ,j−1Rj)
)

+A
(1)
j,m

(
−iωε0εt,j∂

(
Q(1)

m (λε,jRj)
)
/∂Rj

)
+B

(1)
j,m

(
−(mh/Rj)Q(1)

m (λµ,jRj)
)

+A
(2)
j,m

(
−iωε0εt,j∂

(
Q(2)

m (λε,jRj)
)
/∂Rj

)

+B
(2)
j,m

(
(mh/Rj)Q(2)

m (λµ,jRj)
)

=0. (19)
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We have equations at ρ = RN :

A
(1)
N−1,m

(
−β2

N−1Q
(1)
m (λε,N−1RN )

)
+A

(2)
N−1,m

(
−β2

N−1Q
(2)
m (λε,N−1RN )

)

+A
(1)
N,m

(
β2

NJm(λε,NRN )
)

= 0, (20)

A
(1)
N−1,m

(
mh

RN
Q(1)

m (λε,N−1RN )
)

+B
(1)
N−1,m

(
−iωµ0µt,N−1

∂

∂RN
Q(1)

m (λµ,N−1RN )
)

+A
(2)
N−1,m

(
mh

RN
Q(2)

m (λε,N−1RN )
)

+B
(2)
N−1,m

(
−iωµ0µt,N−1

∂

∂RN
Q(2)

m (λµ,N−1RN )
)

+A
(1)
N,m

(
−mh

RN
Jm(λε,NRN )

)
+B

(1)
N,m

(
iωµ0µt,N

∂

∂RN
Jm(λµ,NRN )

)
=0, (21)

B
(1)
N−1,m

(
−β2

N−1Q
(1)
m (λµ,N−1RN )

)
+B

(2)
N−1,m

(
−β2

N−1Q
(2)
m (λµ,N−1RN )

)

+B
(1)
N,m

(
β2

NJm(λµ,NRN )
)

= 0, (22)

A
(1)
N−1,m

(
iωε0εt,N−1

∂

∂RN
Q(1)

m (λε,N−1RN )
)

+B
(1)
N−1,m

(
mh

RN
Q(1)

m (λµ,N−1RN )
)

+A
(2)
N−1,m

(
iωε0εt,N−1

∂

∂RN
Q(2)

m (λε,N−1RN )
)

+B
(2)
N−1,m

(
mh

RN
Q(2)

m (λµ,N−1RN )
)

+A
(1)
N,m

(
−iωε0εt,N

∂

∂RN
Jm(λε,NRN )

)
+B

(1)
N,m

(
−mh

RN
Jm(λµ,NRN )

)
=0. (23)

From the complete set of Equations (12)–(23) we can determine the
amplitudes A

(1)
jm, B

(1)
jm, A

(2)
jm, B

(2)
jm, As

m and Bs
m. The amplitudes with

the same index m are dependent only on each other. The linear system
of Equations (12)–(23) can be solved separately for each value of m.
Then we can calculate the microwave field components. Poynting
vector describes energy flux, and its magnitude in the cylindrical
coordinate system is equal to:

Pρ = EϕH∗
z − EzH

∗
ϕ, (24)

here superscript ∗ means the complex conjugate’s operation.
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The considered problem with anisotropic cylindrical layers has
the new parameters βp,j , βt,j , γp,j , γt,j , λε,j and λµ,j (related with the
permittivity tensor components εp,j , εt,j and the permeability tensor
components µp,j , µt,j) in comparison with the isotropic problem [13].
We have checked the limit transformation of the anisotropic case
algorithm into the algorithm for the isotropic case at εp,j = εt,j and
µp,j = µt,j .

4. NUMERICAL ANALYSIS OF THE POYNTING
VECTOR RADIAL COMPONENT FOR UNIAXIAL
ELECTRICALLY ANISOTROPIC LINBO3 CYLINDER

In this section, we present patterns of the Poynting vector radial
component Pρ at some distances from the cylinder center when the
incident microwave impinges on an anisotropic LiNbO3 cylinder in
the comparison with the same characteristics of two single isotropic
cylinders. We have chosen for our investigations the material
LiNbO3 because this material is very rich by the different effects
that can be electrooptical, piezoelectric, photoelastic, ferroelectric, and
photorefractive and are widely used in variety of applications [16].

The radius of cylinder is R1 = 2 · 10−3 m. The incident microwave
impinges on the cylinder surface in the perpendicular direction to the
z-axis of the cylinder (normal incidence case). In our calculations
the module of the vector electric field of the incident microwave is
| ~E0| = 1. We analyze here two cases: 1) The incident microwave
has the perpendicular polarization when ~Ein

0 ⊥~nz and 2) the parallel
polarization when ~Ein

0 ‖~nz. The complex permittivity and permeability
tensor components of the uniaxial anisotropic LiNbO3 have values
εt = 43− i0.0005, εp = 28− i0.0005 and µt = µp = 1. The surrounding
environment is air with ε = µ = 1. The maximum number m in the
sums of formulae (7) was taken equal to 24 in our calculations.

In Figs. 2–7, we show that the Poynting vector radial component
Pρ magnitude was calculated by formula (24). Designations in Figs. 2–
7 correspond: curve 1 is for the anisotropic LiNbO3 cylinder (line with
black points); curve 2 is for the isotropic cylinder with the permittivity
εt = εp = 43− i0.0005, (line with empty triangulars); curve 3 is for the
isotropic cylinder with the permittivity εt = εp = 28 − i0.0005 (thick
line with black triangular). The permeability for all three cases was
the same µt = µp = 1.

We present here our calculations by the Fortran90 computer
program based on the formulae from Section 3 for three frequencies
65GHz (Figs. 2 and 3), 92.5 GHz (Figs. 4 and 5), and 120 GHz (Figs. 6
and 7). We have calculated the patterns with the step on the polar
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angle equal to one degree. The pattern calculations outside of the
cylinder only consist of the reflected microwave. The incident wave
field is omitted for simplicity. We cut all patterns along the radius at
the polar angle ϕ = 0◦ (or the same ϕ = 360◦) and outspread patterns
on the polar angle in horizontal plane for greater clarity.

In Figs. 2, 4 and 6, we see the magnitude Pρ when the incident
microwave has perpendicular polarization. Figs. 2(a)–7(a) present the
value Pρ distribution at the distance ρ = 2.5 ·10−3 m from the cylinder
z-axis when the polar angle ϕ changes from 0◦ to 360◦ with the step
equal to one degree. The magnitude Pρ outside of the cylinder describes
the scattered microwave power at the distance 0.5 · 10−3 m from the

0 60 120 180 240 300 360

0.000

0.005

0.010

M
a
g
n
itu

d
e
  
P
ρ
, 
 W

/m
2

ϕ, deg

 1
 2
 3

0 60 120 180 240 300 360

−0.002

0.000

0.002

0.004

0.006
M

a
g
n
itu

d
e
  
P
ρ
, 
 W

/m
2

ϕ, deg

 1
 2
 3

(a) (b)

Figure 2. Poynting vector radial component pattern dependencies on
the polar angle ϕ when the perpendicular polarized incident microwave
has the frequency f = 65GHz at two distances ρ from the cylinder z-
axis. (a) ρ = 2.5 · 10−3 m and (b) ρ = 1.5 · 10−3 m.
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Figure 3. Poynting vector radial component pattern dependencies on
the polar angle ϕ when the parallel polarized incident microwave has
the frequency f = 65 GHz at two distances ρ from the cylinder z-axis.
(a) ρ = 2.5 · 10−3 m and (b) ρ = 1.5 · 10−3 m.
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Figure 4. Poynting vector radial component pattern dependencies on
the polar angle ϕ when the perpendicular polarized incident microwave
has the frequency f = 92.5GHz at two distances ρ from the cylinder
z-axis. (a) ρ = 2.5 · 10−3 m and (b) ρ = 1.5 · 10−3 m.

cylinder surface. Figs. 2(b)–7(b) show the value Pρ distribution inside
of the cylinder at the distance ρ = 1.5 ·10−3 m from the cylinder z-axis
(at the distance 0.5 · 10−3 m from the cylinder surface too) when the
polar angle ϕ also changes from 0◦ to 360◦ with the step equal to one
degree.

The last magnitude Pρ describes the penetrated microwave power
inside of the cylinder. We see that the dependence of magnitude Pρ

on the polar angle ϕ is symmetrical with respect to the angle ϕ =
180◦ because the cylinder is a symmetrical obstacle. The maximum
reflection of the perpendicular polarized microwave from the cylinder
is at the polar angles ϕ around or equal to 0◦ and 180◦. We see that
the magnitude Pρ of the pattern at f = 65 GHz (Fig. 2(a)) has only
one main lobe with the amplitude ∼ 0.012W/m2 at ϕ ∼ 0◦ and two
weak side lobes. The incident microwave wavelength λw ∼ 4.6 ·10−3 m
commensurate with the cylinder diameter D = 2R1 = 4 · 10−3 m at
f = 65 GHz. The pattern at f = 92.5GHz (Fig. 4(a)) has also only
one main lobe with smaller amplitude ∼ 0.008W/m2 and two stronger
side lobes in comparison with the first case.

In the last case λw ∼ 3.2 · 10−3 m is smaller than the diameter D.
The pattern at f = 120 GHz (Fig. 6(a)) has four commensurate main
lobes, and in this case λw ∼ 2.5 · 10−3 m is smaller than diameter D.
These four higher amplitude lobes located at ϕ ∼ 10◦, 150◦, 210◦ and
350◦. The shallow minimum is at ϕ = 0◦. The main lobe amplitudes
become smaller at f = 120 GHz in comparison with the first and second
cases and equal to ∼ 0.004W/m2. The comparisons of Figs. 2(a), 4(a)
and 6(a) show that the nonuniform distribution of Pρ increases, and
the amplitude values of the peaks decrease with growing of frequency.
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Figure 5. Poynting vector radial component pattern dependencies
on the polar angle ϕ when the parallel polarized incident microwave
has the frequency f = 92.5GHz at two distances ρ from the cylinder
z-axis. (a) ρ = 2.5 · 10−3 m and (b) ρ = 1.5 · 10−3 m.

0 60 120 180 240 300 360

0.000

0.001

0.002

0.003

0.004

M
a
g
n
itu

d
e
  
P
ρ
, 
 W

/m
2

ϕ, deg

 1
 2
 3

0 60 120 180 240 300 360

−0.002

0.000

0.002

0.004

0.006

M
a
g
n
itu

d
e
  
P
ρ
, 
 W

/m
2

ϕ, deg

 1

 2

 3

(a) (b)

Figure 6. Poynting vector radial component pattern dependencies on
the polar angle ϕ when the perpendicular polarized incident microwave
has the frequency f = 120 GHz at two distances ρ from the cylinder
z-axis. (a) ρ = 2.5 · 10−3 m and (b) ρ = 1.5 · 10−3 m.

So we see that the reflected energy is redistributed between the main
and side lobes by interference effects. The smaller the wavelength λw

compared with the diameter D the more complicated is the Pρ pattern.
Figs. 2(b), 4(b) and 6(b) show the distribution of the penetrated
microwave energy inside of the cylinder.

The patterns at f = 65GHz and f = 92.5GHz (Figs. 2(b) and
4(b)) have the maximum penetrated microwave energy at ϕ = 0◦.
The pattern at f = 120 GHz (Fig. 6(b)) has the maximum penetrated
microwave energy at ϕ = 180◦.

Analyzing Figs. 3, 5 and 7 where the incident microwave has the
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parallel polarization we note that pictures of the Pρ distributions are
significantly different from those in Figs. 2, 4 and 6. The patterns at
f = 65 GHz, 92.5GHz and 120GHz (Figs. 3(a), 5(a) and 7(a)) have
the maximum reflected microwave energy at ϕ = 0◦.

The behavior (nature) of the maximum penetrated microwave
energy into the cylinder (Figs. 3(b), 5(b) and 7(b)) is different from the
reflected microwave energy (Figs. 3(a), 5(a) and 7(a)). The pattern at
f = 65 GHz (Fig. 3(b)) has the maximum penetrated microwave energy
equal to ∼ 0.0011W/m2 at ϕ = 0◦. The pattern at f = 95.5GHz
(Fig. 5(b)) has the maximum energy of penetrated microwave energy
equal to ∼ 0.005W/m2 at ϕ = 180◦. The pattern at f = 120GHz
(Fig. 7(b)) has four peaks with values around ∼ 0.0015 W/m2 of
penetrated microwave energy at ϕ ∼ 20◦, 160◦, 180◦, 340◦.

We find a specific feature that the influence of the permittivity
tensor components εt and εp is different for perpendicular and parallel
polarized microwaves when the incident microwave impinges normally
on the anisotropic cylinder. Figs. 2, 4 and 6 show that the lines which
represent the same patterns for the anisotropic LiNbO3 cylinder and
the isotropic cylinder with εt = εp = 43 − i0.0005 coincide with one
another for these two cases. It means that the component εp has
no influence on the energy distribution of the perpendicular polarized
microwave. The lines in Figs. 3, 5, 7 which represent the same
patterns for the anisotropic LiNbO3 cylinder and isotropic cylinder
with εt = εp = 28 − i0.0005 coincide with one another. It means
that the component εt has no influence on the energy distribution for
the parallel polarized microwave. We would like to remark that the
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Figure 7. Poynting vector radial component pattern dependencies on
the polar angle ϕ when the parallel polarized incident microwave has
the frequency f = 120 GHz at two distances ρ from the cylinder z-axis.
(a) ρ = 2.5 · 10−3 m and (b) ρ = 1.5 · 10−3 m.
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features of patterns about the permittivity tensor components appear
only at the normal incidence of microwaves.

5. CONCLUSIONS

1. We present here the simple effective algorithm that let us analyze
microwave diffraction characteristics of the multilayered uniaxial
anisotropic or isotropic cylinders. The number and sizes of the
cylinder layers can be arbitrary. The losses can be arbitrary as
well.

2. We present here numerical calculations of the Poynting vector
radial component patterns for electrically anisotropic LiNbO3

cylinder and two cylinders of isotropic materials. The isotropic
media have permittivities equal to the tensor components of
LiNbO3 material (Figs. 2–7).

3. We find that the reflected and absorbed energy by the anisotropic
cylinder depends only on the permittivity tensor component
εt when the incident microwave has perpendicular polarization
(Figs. 2, 4 and 6).

4. We find that the reflected and absorbed energy of the incident
parallel polarized microwave has the opposite behaviors in
comparison with the perpendicular polarized microwave. The
Poynting vector radial component value depends only on the
permittivity tensor component εp value (Figs. 3, 5 and 7).
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