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Abstract—A two-layer nondestructive method for characterizing
the electric and magnetic properties of lossy conductor-backed
magnetic materials using a flanged rectangular-waveguide probe is
examined. The two reflection measurements necessary to determine
both permittivity and permeability are made by first applying the
probe to the material under test and then applying the probe to a
known-material layer placed on top of the material under test. The
theoretical reflection coefficient is obtained using a rigorous full-wave
solution, and an extrapolation scheme is used to minimize the error due
to truncating the modal expansion of the waveguide fields. An error
analysis is performed to compare the performance of the technique to
the two-thickness method, which utilizes two different thicknesses of
the material under test. The properties of the known material layer
that result in the least error due to network analyzer uncertainty are
determined. The sensitivity of the two-layer method is also explored
and discussed.
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1. INTRODUCTION

The in situ measurement of the properties of conductor-backed
magnetic radar absorbing materials (MagRAM) over a wide band
of frequencies is extremely challenging. In cases where damage or
misapplication of the material is suspected, even a rough estimate of
material parameters is valuable to augment visible and mechanical
inspection, and to correlate with the results from other field-based
NDE tools.

Several methods have been devloped for characterizing the
electromagnetic properties of materials under laboratory conditions,
but most cannot be employed in the field since they depend on the
knowledge of the field transmitted through the material. Instead,
techniques using direct application of the field to the material
under test are more appropriate. One promising technique uses an
open-ended rectangular-waveguide probe placed directly against the
material. If the material is sufficiently lossy, adding a small flange
allows the probe system to be modeled as a parallel-plate waveguide
of infinite extent. This permits a full-wave solution of the problem to
be developed, which can serve as the theoretical basis for parameter
extraction. It also allows for a rigorous error analysis to be performed,
which is crucial for understanding the combinations of geometrical
and material parameters for which extraction of permittivity and
permeability is feasible.

Since two complex quantities are to be determined (µr and εr) and
the material under test (MUT) is assumed to be conductor backed, an
experimental procedure is required in which two-independent reflection
coefficients are measured. Two simple experimental approaches which
address this requirement are measuring the reflection coefficients
using two thicknesses of the MUT (i.e., the two-thickness method)
or measuring the reflection coefficients using the MUT and a known-
material layer placed on top of the MUT (i.e., the two-layer method).
In a laboratory environment, where unknown material samples can
be fabricated as needed, the two-thickness method proves to be a
viable, accurate technique. However, when in the field where in situ
measurements are required, the two-layer method becomes a more
viable option than the two-thickness method. It is shown in this paper
that the sensitivity of the two-layer method is highly dependent on the
material properties of the known-material layer and their relationship
to the properties of the MUT. In fact, the errors in determining εr and
µr using the two-layer method are always larger than those produced
by the two-thickness method even when the parameters of the known
and unknown layers are the same. This perplexing fact arises from
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the difference in the formulations used in each case and is explored in
detail in later sections.

Several authors have examined the use of open-ended waveguide
probes for electromagnetic material characterization of conductor-
backed materials. Teodoridis et al. [1] consider a conductor-backed
dielectric material and uses an integral-equation formulation to provide
an analytical solution for probe characteristics. He employs a
multi-mode analysis and a dyadic Green’s function for use in a
multi-layered medium. Bakhtiari et al. [2] examine a conductor-
backed material for the purpose of determining the thickness of a
lossy dielectric. He uses only the dominant mode to represent the
aperture-field distribution and concludes that including higher-order
modes does not significantly affect the end result (by less than 3%).
Maode et al. [3] examine a conductor-backed material with both
magnetic and dielectric properties and obtains simultaneous extraction
of permittivity and permeability. She employs an approximate
variational method to determine the waveguide admittance and hence
the reflection coefficient of the conductor-backed material. With this
she performs parameter extraction using both the two-thickness and
two-layer methods.

Stewart [4, 5] performs parameter extraction of lossy conductor-
backed materials using both single and dual-aperture probes. He
employs a rigorous, full-wave integral-equation method of analysis and
uses the two-thickness method to extract permittivity and permeability
using a single-aperture probe. He also examines the effect of
waveguide-flange size and concludes, for a lossy magnetic material,
a 6-inch flange is large enough to ensure adequate decay of the edge-
diffracted fields. In addition, he observes that increasing the number
of modes used to describe the fields from 4 to 10 does not significantly
affect the extracted parameters when using the two-thickness method.
Chang et al. [6] also observes this effect. Note that nowhere in the
referenced works is a systematic error analysis performed to determine
the sensitivity of the two-thickness and two-layer methods to errors
introduced either by the measurement system or in the calculation of
the theoretical reflection coefficient.

The viability of any material-characterization method is deter-
mined in part by a knowledge of how measurement uncertainty affects
the extracted values of εr and µr. For the waveguide-probe method,
uncertainty exists in geometrical factors such as waveguide size and
sample thickness. When using the two-layer method, uncertainty also
exists in the values of the constitutive parameters of the known ma-
terial. Additional errors may be introduced by not modeling gaps
between the material and waveguide flange. Inhomogeneity of the sam-
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ple, i.e., variation of the sample thickness or material parameters, is
another possible source of error. These errors can be controlled by per-
forming very careful measurements of the various parameters needed
for extraction and by careful construction of the probe. However, a
fundamental limitation of any method is the inherent measurement
accuracy of the vector network analyzer (VNA). The sensitivities of
εr and µr to the measured values of S11 must be understood in order
to determine the conditions under which a given method may be used
effectively. Thus, in this paper, an error analysis is performed to study
the sensitivity of both the two-thickness method and the two-layer
method to uncertainty in the amplitude and phase of S11.

2. CALCULATION OF THE THEORETICAL
REFLECTION COEFFICIENT

The extracted material parameters εr and µr are taken to be those
values that minimize the difference between the theoretical and
measured values of the waveguide reflection coefficient under two
measurement conditions. To accomplish this, roots of the two functions

f(εr, µr) = Smeas
11(1) − Sthy

11(1)

g(εr, µr) = Smeas
11(2) − Sthy

11(2)

(1)

are sought simultaneously by using a two-dimensional search
algorithm, such as Newton-Raphson. It is apparent from (1)
that accurate parameter extraction is predicated in part on having
accurate knowledge of the theoretical reflection coefficient. Using an
approximate solution for Sthy

11 introduces additional errors which will
adversely affect the stated goal of this paper. Thus it is necessary to
use a rigorous full-wave approach to determine Sthy

11 , as examined next.
Consider the geometry of the waveguide probe shown in Figure 1.

An open-ended rectangular waveguide is connected to an infinite plate,
or flange, lying on the top surface of two layers of material. The
bottom layer (region 2) consists of the MUT, a material with unknown
parameters ε2 and µ2 which are to be determined. The top layer
(region 1) has permittivity ε1 and permeability µ1 and represents
either the known-material layer (used in the two-layer method) or the
additional MUT thickness (used in the two-thickness method). Both
material regions are assumed to be linear, isotropic, and homogeneous.
It is also assumed that the thicknesses of both material layers are
known and that the flange and material samples are infinite in extent
in the transverse directions. The flange at z = 0 and conductor backing
at z = −h are each modeled as a perfect electric conductor.
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Figure 1. (a) Side view and (b) top view for two layers of material
interrogated by a single waveguide probe.

The waveguide dimensions are assumed to be chosen such that
only the dominant TE10 mode propagates within the band of interest
(an X-band WR90 waveguide is used in this research). Thus, sufficient
distance between the waveguide feed and the flange guarantees an
incident TE10-mode field of amplitude ai

1 interrogates the material
under test and only a reflected TE10-mode field of amplitude as

1 returns
to the feed. Note that an infinite number of modes of amplitude as

n are
scattered by the waveguide/material interface back toward the source.
For practical and computational implementation, it is usually assumed
that the reflected field can be truncated to N modes. This introduces
a computational error which is an important contributor to the overall
error in the extracted values of εr and µr. The authors have considered
this effect at length, and have developed an extrapolation technique
that reduces the error significantly while adding little computational
complexity. This approach is used in the present computations and is
described in detail in Section 3.2.

Assuming N waveguide modes are reflected at the waveg-
uide/material interface, the total transverse fields in the waveguide
can be described by

~Ewg
t (~r) = ai

1~e
wg
1 (~ρ)ejkwg

z1 z +
N∑

q=1

as
q~e

wg
q (~ρ)e−jkwg

zq z

~Hwg
t (~r) = −ai

1
~hwg

1 (~ρ)ejkwg
z1 z +

N∑

q=1

as
q
~hwg

q (~ρ)e−jkwg
zq z

(2)

where as
n are the scattered-mode amplitudes, ~ρ is the transverse-

position vector, ~ewg
n and ~hwg

n are the electric and magnetic transverse-
modal fields, and kwg

zn is the axial wavenumber [7]. The desired
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theoretical reflection coefficient is the ratio of the dominant scattered
and incident mode amplitudes, i.e.,

S11 =
as

1

ai
1

. (3)

The scattered-mode amplitudes are determined as solutions to
a magnetic field integral equation established by employing the
continuity of the tangential magnetic field at the waveguide/material
interface z = 0. Continuity of the fields is expressed as

~H pp
t (~ρ, z = 0−) = ~H wg

t (~ρ, z = 0+) ~ρ ∈ CS, (4)

where ~H wg
t and ~H pp

t are the transverse magnetic fields in the waveguide
and in the material region (between the parallel-conducting plates),
respectively. The waveguide cross-sectional region CS is defined as
0 ≤ x ≤ a and 0 ≤ y ≤ b.

The expression for the magnetic field at the aperture in the
parallel-plate region can be written as

~H pp
t (~ρ, z = 0) = (k2

1 +∇t∇·)
∫

CS

¯̄Gpp
(
~ρ|~ρ ′; z|z′ = 0

)

·
[
ẑ × ~E wg

t (~ρ ′, z′ = 0)
]
ds′

∣∣∣
z=0

,

where ~ρ ∈ CS, k1 = ω (µ1ε1)
1/2, and ∇t is the transverse gradient

operator. Matching the tangential magnetic fields at z = 0 yields
an integral equation for the transverse electric field in the waveguide
aperture ~Ewg

t . Solving this integral equation yields the scattered-mode
amplitudes as

q and S11 via (3). Details of the integral equation and its
solution can be found in [8].

This integral-equation approach is similar in principle to that
followed by Stewart in his development of the theoretical reflection
coefficient for the two-thickness method. The primary difference is that
the two-layer method requires a two-layer parallel-plate dyadic Green’s
function ¯̄Gpp. Since the equivalent current at the waveguide/material
interface has only transverse vector components, only those elements
of ¯̄Gpp which correspond to a transverse source are necessary for the
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computation of the magnetic field, namely, Gxx, Gyy, Gzx, and Gzy:

¯̄G
pp

=
1

(2π2)

∞∫

−∞

∞∫

−∞

¯̄G (
ξ, η, z|z′) ejξ(x−x′)ejη(y−y′)dξdη

Gxx =Gyy

=− ε2p1ψ1

{
cosh[p1 (z+z′+d1)]+ep1d1 cosh[p1 (z−z′)]

}

2p1 sinh (p1d1) (ε2p1ψ1 + ε1p2ψ2)

− ε1p2ψ2

{
sinh[p1 (z+z′+d1)]+ep1d1 cosh[p1 (z−z′)]

}

2p1 cosh (p1d1) (ε2p1ψ1 + ε1p2ψ2)

+
1

2p1
e−p1|z−z′|

[Gzx

Gzy

]
=

[
jξ
jη

]−ε2
(
k2

1−k2
2

)
ψ1ψ2{sinh[p1 (z−z′)]+sinh[p1 (z+z′)]}

k2
2 sinh (2p1d1) (ε2p1ψ1 + ε1p2ψ2) (p2ψ1 + p1ψ2)

(5)

where p1,2 = (ξ2 + η2 − k2
1,2)

1/2 are the spectral-domain wavenumbers
for regions 1 and 2, respectively, ψ1 = − sinh (p1d1) cosh [p2 (h− d1)],
and ψ2 = − cosh (p1d1) sinh [p2 (h− d1)].

The form of the Green’s function (5) helps explain the relationship
between the two-thickness method and the special case of the two layer
method where the known overlay has material properties identical to
those of the MUT (perhaps without the knowledge of the tester). In the
two-thickness method, the thicker MUT may be viewed as two layers
of the same material, where it is known a priori that the material
parameters of the thicker and the thinner layers are identical. In this
case, k1 = k2, Gzx = Gzy = 0, and the Green’s function reduces
to a single-layer Green’s function. Thus in the solution of (1), all
evaluations of the Green’s function are done using, by default or intent,
a single-layer Green’s function. In contrast, when (1) is solved in the
two-layer method, the two-layer Green’s function is evaluated with the
properties of region 1 held fixed and the properties of the MUT varied.
In each evaluation, k1 6= k2 and so Gzx 6= 0, Gzy 6= 0, except perhaps
at the very end when the search has converged to the answer ε1 = ε2,
µ1 = µ2. It is found that without the a priori knowledge that the MUT
and the overlay have identical (albeit unknown) material properties,
the two-layer method is significantly more sensitive to uncertainties in
the measured S-parameters.
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3. ERROR-SENSITIVITY ANALYSIS

The main goal of this paper is to establish the realm of applicability of
the two-layer method by comparing the extracted material parameters
with those found using the two-thickness method. It is most
illuminating to compare the propagation of VNA error through the
extraction process for both methods and to determine the effects of
the known-material layer on the accuracy of the extracted parameters.

There are many possible sources of error in the two-thickness and
two-layer methods. These error sources can be broadly categorized into
two groups: those associated with the measurement of the reflection
coefficient (measurement error sources) and those associated with
computing the theoretical reflection coefficient. The latter includes
inaccuracies in the modeling of the applicator, such as ignoring air gaps
and the curvature of the material under test. Eliminating air gaps is
crucial; if they are not modeled accurately, an error of the same order
as that due to measurement uncertainties may be experienced. Also
important is ensuring that the flange size is sufficiently large to use
an ifinite parallel-plane model for the applicator. A small flange size
of approximately six inches is sufficient for lossy materials under test
such as MagRAM, even when a low-loss material is used as the known
layer.

Measurement error sources can be categorized as those arising
from material property and experimental apparatus uncertainties and
those arising from the measurement itself. Of these, the major source
of error is the latter, i.e., error due to VNA measurement uncertainty.
Since all of the other errors can be mitigated, at least in principle,
by careful probe construction, proper measurement techniques, and
good material-sample preparation, the error in the extracted values of
εr and µr due to VNA measurement uncertainty becomes the most
viable metric to use when comparing the two-thickness and two-layer
methods. Computational error, which can be considered a modelling
error, is also crucial since the accuracy of the extracted material
parameters is highly dependent on the computation of the theoretical
reflection coefficient. The effects of both VNA measurement error
(Section 3.1) and computation error (Section 3.2) are discussed in more
detail below.

3.1. Error-propagation Analysis

As discussed above, the error due to VNA measurement uncertainty
(also called VNA measurement error) is assumed to be the dominant
source of measurement error. It is further assumed that VNA
measurement uncertainty is a normally-distributed random variable
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and that it propagates through the extraction process according to the
theory of error propagation [9]. For the two-thickness method, the
first S11 measurement is made with the probe placed against the MUT
of thickness 1 (designated 1T ); the second S11 measurement is made
with the probe placed against the MUT of thickness 2 (designated 2T ).
Assuming that S11 amplitude and phase measurements are statistically
independent, the variance in the extracted real part of the permittivity
can be written as

σ2
ε′r = σ2

A(1T )

(
∂ε′r

∂A(1T )

)2

+ σ2
φ(1T )

(
∂ε′r

∂φ(1T )

)2

+σ2
A(2T )

(
∂ε′r

∂A(2T )

)2

+ σ2
φ(2T )

(
∂ε′r

∂φ(2T )

)2

(6)

where A and φ are the amplitude and phase of S11, respectively. For the
two-layer method, the first S11 measurement is made with the probe
placed directly against the conductor-backed MUT (designated 1L);
the second S11 measurement is made with the probe placed against a
known-material layer resting on top of the MUT (designated 2L). For
this measurement scheme, the variance in the extracted real part of
the permittivity can be written as

σ2
ε′r = σ2

A(1L)

(
∂ε′r

∂A(1L)

)2

+ σ2
φ(1L)

(
∂ε′r

∂φ(1L)

)2

+σ2
A(2L)

(
∂ε′r

∂A(2L)

)2

+ σ2
φ(2L)

(
∂ε′r

∂φ(2L)

)2

. (7)

Similar variance expressions are found for σ2
ε′′r

(the imaginary part of
εr), σ2

µ′r
, and σ2

µ′′r
.

To implement the error-propagation Equations (6) and (7),
derivatives of the extracted parameters with respect to the measured
quantities are required. These derivatives provide the link between the
errors in the measured quantities and the uncertainties in the extracted
material parameters; they are referred to as amplification factors,
or sensitivity coefficients. Computing these derivatives accurately is
important for obtaining accurate estimates of the error. However, since
the material-parameter extraction process is computationally intense,
a trade-off between accuracy and computational speed is needed. To
obtain the extracted parameters, several function evaluations of f
and g in (1) are required to locate a minimum. For each function
evaluation a matrix of spectral integrals must be populated and
solved. Complicated derivative routines, while accurate, require many
values of the extracted parameters. In this work, sufficient accuracy
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was obtained using a simple four-term central-difference formula to
compute the derivatives, i.e.,

df(x)
dx

≈ −f(x + 2δ) + 8f(x + δ)− 8f(x− δ) + f(x− 2δ)
12δ

. (8)

To determine the parameter δ, a comparison was made to the
more-accurate derivative technique known as Ridder’s method [10].
Appropriate values of δ were identified that match the derivative values
returned by Ridder’s method to within 0.1% in much less time.

To determine the errors in the extracted material parameters,
the measured S-parameter uncertainties are required. These were
determined for an HP8510C network analyzer system using the
software package HP 8510 Specifications & Performance Verification
Program provided by Hewlett Packard. Although VNA measurement
uncertainty is dependent on S-parameter amplitudes, for the range
of amplitudes encountered in this work, the VNA measurement
uncertainty can be assumed amplitude and frequency invariant. For
the equipment configuration used in these measurements, values of
σA = 0.004 and σφ = 0.8◦ are used. However, it is clear from (6)
and (7) that knowledge of the amplification factors alone is generally
sufficient to compare the sensitivities of the two-layer and two-thickness
methods.

3.2. Errors Due to Limitations in Computational Accuracy

Computational accuracy is dominated by two factors. The first is the
numerical accuracy used in evaluating the Green’s function spectral
integrals. A general adaptive Gaussian-quadrature routine employing
Gauss-Kronrad integration was employed to compute all spectral-
domain integrals to six digits of accuracy. The resulting error in
the extracted material parameters is found to be much less than that
introduced by VNA measurement uncertainty.

The second important factor is the number of modes N used to
represent the waveguide fields. As described in [11], when the modes
are ordered according to cut-off frequency (the traditional method of
field expansion), only modes of type TM1n where n is even significantly
contribute (by several orders of magnitude over the other modes) to
the theoretical reflection coefficient. This behavior was utilized in [11]
to develop an extrapolation technique for the two-thickness method
that allows for significantly better accuracy to be obtained than that
produced by cut-off ordered field expansion. It is found that the same
extrapolation technique works well for the two-layer method. For
example, when the material parameters of ECCOSORBR© FGM-125
MagRAM are extracted using the two-layer method with a layer of
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nylon as the known-material layer, truncating the modal expansion
after the first nine modes (ordered according to cut-off frequency)
leads to an error of over 30% in ε′r and over 15% in µ′r at midband
(10.09GHz). By employing the extrapolation method these errors are
reduced to less than 1%, which is equivalent to truncating at 160 cut-
off-ordered modes. The extrapolation method is thus used to find all
of the extracted parameters reported below.

4. NUMERICAL RESULTS

With a means of computing error due to VNA uncertainty established,
it is possible to investigate the conditions under which the two-
layer method performs acceptably well compared to the two-thickness
method. As an initial validation of the error-propagation technique,
the two-thickness method was used to extract the material parameters
of a 0.125 inch (3.175mm) thick layer of FGM-125 at X-band. The
nominal values of the material were those measured in the laboratory
using an X-band waveguide transmission/reflection system [12, 13].
The standard deviations at midband (10.09 GHz) predicted from the
VNA uncertainty using (6) and similar equations are shown in Table 1.
It can be seen that ε′′r is the most sensitive parameter (two orders of
magnitude more sensitive) with a standard deviation greater than the
value of the parameter itself. This sensitivity is partly because of the
small value of ε′′r and partly because the waveguide probe produces a
relatively small interrogating electric field in the MUT.

Also in Table 1, the error-propagation results are compared to
results from a Monte-Carlo simulation to serve as a validation of the
error-propagation technique. Sixty Monte-Carlo trials were performed
using S-parameters generated from 60 normally-distributed amplitudes
and phases with E [A] = |S11 (ε̄r, µ̄r)|, E [φ] = ∠S11 (ε̄r, µ̄r), σA =
0.004, and σφ = 0.8◦ where ε̄r and µ̄r are the nominal values of εr

Table 1. Means and standard deviations of the extracted material
parameters using the two-thickness method at 10.09 GHz. The MUT
is a 0.125 inch (3.175mm) layer of ECCOSORBr FGM-125.

Monte Carlo Error Propagation
Nominal Values Mean σ σ

ε̄ ′r = 7.32 7.34 0.126 0.141
ε̄ ′′r = 0.0464 0.0458 0.132 0.108
µ̄ ′r = 0.576 0.577 0.0147 0.0129
µ̄ ′′r = 0.484 0.484 0.0106 0.0126
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and µr discussed above. Note that performing more Monte-Carlo
trials was not possible due to the computation requirements needed
to extract εr and µr. The Monte-Carlo means and standard deviations
of the extracted parameters (shown in Table 1) are similar to those
obtained using the error-propagation method. This lends confidence
that the error-propagation method (used from this point forward) is
being implemented correctly.

As a first comparison between extraction methods, simulated
reflection coefficients were computed using the nominal values of the
material parameters for a layer of FGM-125 0.125 inches (3.175 mm)
thick and a layer of FGM-125 0.250 inches (6.35mm) thick. The
material parameters were then extracted using the two-thickness and
two-layer methods with the simulated reflection coefficients serving as
the measured S-parameters. When no error was introduced into the
simulated reflection coefficients, the nominal material parameters were
recovered as expected. To determine the effect of VNA measurement
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Figure 2. ε′r amplification factors computed for the two-thickness
method (2T Method) and the two-layer method (2L Method) using
one layer of FGM-125 as measurement 1 and two layers of FGM-125
as measurement 2.
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uncertainty, the error propagation formulas were used to compute the
standard deviations for each extracted material parameter. Figure 2
shows the amplification factors for ε′r; similar results are obtained for
ε′′r . Figure 3 shows the results for µ′r with similar results found for µ′′r .
Several interesting observations can be made. First, the amplification
factors are much larger for εr than for µr. Second, both εr and µr

are much more sensitive to errors in the 0.250 inch (6.35 mm) sample
measurements than the 0.125 inch (3.175mm) sample measurements.
This is probably due to the attenuation of the wave being greater in
the thicker material, and suggests that better results for the two-layer
method might be obtained using a less lossy top layer. Lastly, it is
immediately clear that the two-thickness method produces far more
stable results than the two-layer method.

This last observation is especially interesting, since exactly the
same data are used and the same functions (1) are minimized for
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Figure 3. µ′r amplification factors computed for the two-thickness
method (2T Method) and the two-layer method (2L Method) using
one layer of FGM-125 as measurement 1 and two layers of FGM-125
as measurement 2.
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both methods. However, as discussed in Section 2, there is a very
significant difference between the methods in how the Green’s function
is computed, producing a significantly higher uncertainty for the two-
layer method.

The errors in the extracted material parameters, calculated using
the VNA measurement uncertainty and the computed amplification
factors, are shown in Figure 4. The error bars are ±2σ and thus
represent 95% confidence intervals (assuming the material parameters
are normally distributed). The difference in error between the two-
layer and two-thickness techniques is striking. It is quite clear that the
two-layer method produces completely unreliable results for all of the
material parameters, while the two-thickness method produces results
which are acceptable for all of the parameters except ε′′r (which, as
mentioned elsewhere, is difficult to extract). This analysis suggests
that the two-thickness method should be used instead of the two-layer
method whenever convenient. Unfortunately, a common situation in
which the two-thickness method is not applicable occurs when the
material parameters of the MUT are unknown making it impossible
to obtain a second MUT sample. It is thus useful to explore whether
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layer and two-thickness methods for ECCOSORBR© FGM-125. Error
bars show ±2σ.
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there are any conditions under which the two-layer method may be
used with confidence.

As already noted, the amplification factors for the extracted
parameters computed using two layers of FGM-125 are much higher
than those found using a single layer for the two-layer method. Since
FGM-125 is a lossy material, better results for the two-layer method
might be achieved using a low-loss material as the known-material
layer. To explore this possibility, extractions of the properties of FGM-
125 were made using the two-layer method enlisting several different
low-loss materials to serve as the known-material layer. The errors due
to VNA measurement uncertainty were then computed. In all cases,
the errors were found to be greater than that of the two-thickness
method. Thus, the results, shown at midband (10.09 GHz) in Figure 5,
are normalized to the errors found using the two-thickness method. It
can be seen that the highest error results from ECCOSORBR© FGM-
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Figure 5. Errors due to VNA measurement uncertainty using the two-
layer method for ECCOSORB R© FGM-125 at 10.09 GHz. Bars show
the standard deviation for several known-material layers normalized to
the standard deviation found using the two-thickness method. Known-
material layer thicknesses in inches/mm are: 0.125/3.175 (FGM-125),
0.04/1.016 (FGM-40), 0.125/3.175 (Plexiglass and “lossy Plexiglass”),
0.125/3.175 (Nylon), 0.119/3.023 (PVC).
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40, which is the lossiest material of those tested. In contrast, each
of the low-loss dielectrics tested (nylon, plexiglass, and PVC) give
considerably smaller errors, but still several times those of the two-
thickness method. It is thus concluded under circumstances where
the two-thickness method cannot be employed, the two-layer method
may be an adequate substitute as long as low-loss materials are used
as the known-material layer. To validate the association of low loss
with low extraction error, a fictitious material called “lossy plexiglass”
was tested. The relative permittivity of this material was chosen to
have the same real part as plexiglass (ε′r=2.6) but an imaginary part of
ε′′r = 0.1, which is higher than plexiglass. The error using this material
was found to be higher than that of using plexiglass, but much lower
than that of using FGM-125 or FGM-40.

As a last numerical investigation, the dependence of extraction
error on the thicknesses of the known-material layer was explored.
Figure 6 shows the errors in the extracted parameters using the two-
layer method with plexiglass as a known-material layer. It is seen
that for known-layer thicknesses between 0.14λ and 0.24λ, where λ is
the wavelength in the known layer, there is little change in the error.
Similar results were obtained for known-material layers consisting of
nylon and PVC.
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Figure 6. Errors due to VNA measurement uncertainty using the
two-layer method for ECCOSORB R© FGM-125. The known-material
layers are plexiglass with various thicknesses.
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5. EXPERIMENTAL RESULTS

An experimental comparison of the two-layer and two-thickness
techniques was undertaken by constructing a waveguide probe
applicator and measuring the properties of FGM-125. A rectangular
aperture of size 0.4 × 0.9 inches (10.16 × 22.86 mm) was machined
into the center of a 0.25 inch (6.35 mm) thick aluminum plate of size
12 × 12 inches (304.8 × 304.8mm). An X-band WR90 rectangular
waveguide was attached to the plate using clamps and an alignment
plug so that the inner walls of the waveguide were flush with the edges
of the aperture in the aluminum plate. A second aluminum plate of
slightly larger size was used as the ground plane, and material layers
were placed between the two plates for measurement. Clamps were
used to apply pressure to the system to eliminate air gaps between the
material layers and between the materials and the plates. Calibration
was performed using a short/short/load technique which placed the
phase-reference plane at the waveguide aperture. To shift the reference
plane to the surface of the material layers (z = 0 in Figure 1), a shift
in phase was applied to the measured reflection coefficients. Reflection
coefficients were measured using an HP 8510C VNA with a 15 dBm
source power, 512 averages, and a 25ms dwell time.

Figure 7 shows values of ε′r extracted for a 0.125 inch (3.175mm)
layer of FGM-125 using the two-thickness method. The second
reflection measurement used a second 0.125 inch (3.175mm) sheet of
FGM-125 placed on top of the first. Five data sets were measured over
five consecutive days. The error bars show the ±2σ (95% confidence
interval) computed from the five samples, while the center dot shows
the mean value. Comparing this to Figure 4 reveals that the actual
experimental error is less than that predicted by the error-propagation
analysis. This is due to using a worst-case scenario to estimate the
VNA uncertainty when performing the error analysis. It is likely
that using 512 averages reduced the uncertainty. Figure 8 shows the
extracted values of ε′′r , µ′r, and µ′′r . Again the errors are somewhat less
than predicted.

A second set of experiments was performed using a 0.04 inch
(1.016mm) layer of FGM-40. Figures 9 and 10 show the results
obtained from five data sets measured over three days. The error in
the extracted parameters is of the same order as that for FGM-125.

A final set of experiments was undertaken to measure FGM-125
using the two-layer method. The reflection coefficients were measured
for a single 0.125 inch (3.175 mm) layer of FGM-125 and then for a
0.119 inch (3.023mm) layer of PVC placed on top of the FGM-125
layer. Values of the material parameters were obtained from five
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data sets taken over five days. The mean values and 95% confidence
intervals for the extracted parameters are shown in Figures 11–14
and are superimposed on the mean values obtained using the two-
thickness method. Two important observations may be made. First,
comparing these figures to Figures 7 and 8, it is seen that the errors
found using the two-layer method are approximately 5–20 times bigger
than the errors found using the two-thickness method. This is a bit
larger than predicted using the error propagation analysis (Figure 4),
but is generally in line with the predicted results. Second, the values
extracted using the two-thickness method generally lie within the error
bars of the two-layer method, demonstrating consistency between the
two techniques.

The computer time required to perform extraction of the
material parameters using the two-layer method is dominated by the
computation of the spectral integrals needed to find the theoretical
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reflection coefficients. For the purpose of error analysis, the integration
accuracy was set to be very high and a significant number of modes
was used in the extrapolation so that the error due to network analyzer
uncertainty could be isolated. In practice, much lower integration
accuracy is needed, and fewer modes are required. Other factors that
determine extraction time are the quality of the initial guess and the
requested accuracy of the root search. On an Apple MacBook Pro
computer with a 1.83 GHz Intel Core Duo processor, a typical time for
21 measured frequency points in X-band is 450 minutes. This suggests
that data for several measurements should be collected and extraction
performed post-measurement using a fast machine rather than in real
time on a notebook computer. This is generally not a significant issue
for field testers.
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6. CONCLUSION

A rigorous error analysis of a two-layer method for characterizing the
electric and magnetic properties of lossy conductor-backed absorbing
materials using a flanged rectangular-waveguide probe is undertaken.
It is found that the performance of the technique is highly dependent on
the properties of the known-material layer. Low-loss known-material
layers provide for more field penetration than lossy known-material
layers and thus produce less error associated with network analyzer
uncertainty. Interestingly, the two-layer method always performs worse
than the two-thickness method even when the known-material layer
has properties identical to that of the material under test. This is
because of the difference in how the two methods vary the parameters
of the material under test during the extraction process. Since the two-
thickness method cannot be employed in situations which commonly
arise in the field, the two-layer method can be a viable characterization
technique if the properties of the known-material layer are properly
chosen.
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