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Abstract—A method of solving the scattering problem for general
multilayer anisotropic structures composed of conventional materials
and metamaterial is presented. The analysis is based on calculation
of the hybrid matrix of layers by means of a recursive algorithm. The
method does not have the complexity and instability problems of other
methods and is reliable in all cases. The zero reflection from stratified
structures of conventional materials and metamaterials has then been
introduced Various aspects of such a structure from the viewpoints of
frequency and incident angle are presented and a rule for zero reflection
from anisotropic medium is addressed. An interesting special case of
total transparency is observed.

1. INTRODUCTION

The problem of interaction of electromagnetic waves with isotropic and
anisotropic layers has long been a subject of interest due to its wide
application in various areas such as geophysics, locating underground
resources, microstrip radiators and absorbent coatings. The latter case
is of remarkable significance, and has gained much more consideration
from researchers. Although there have been important anisotropic
materials like ferrites, recently, the problem is being reconsidered
because of novel metamaterials and their applications in reduction of
radar cross section (RCS).

Initial works on the subject were based on 4 × 4 characteristic
matrix of a single anisotropic slab [1, 2]. Later efforts include
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generalization of the problem for stratified structures by different
methods [3–5]. Morgan et al. paid attention to a numerical solution,
and introduced an efficient and simple algorithm for this case [6].
Others proposed various techniques based on eigenvalue computation,
Ricatti differential equation and transmission line method [7–11] which
are more complex. The characteristic matrix algorithm [1, 2] had a
serious drawback and showed instability for thick layers compared to
wavelength. To avoid this instability which was due to the numerical
finite difference algorithm, the use of hybrid matrix of the structure is
suggested [12].

On the other hand, with realizing the negative permittivity and
permeability, application of isotropic metamaterials was shown in
reducing the electromagnetic scattering via coupling with conventional
isotropic materials [13–16].

In the present work after explaining a modified numerical method,
the interesting phenomena of zero reflection from anisotropic structures
will be considered. This property can find many applications in
realizing extremely wide-band non-reflecting invisible coatings, various
angular filters, etc.

2. FORMULATION

The geometry of the problem to be discussed is shown in Figure 1.
Regions (I) and (III) are free space and region (II) is composed of
anisotropic layers. An incident plane wave traveling in air, encounters
the boundary of a multilayered anisotropic planar structure at an angle
θ1. The wave interacts with the multilayered structure and after a
series of reflections at discontinuities, part of its power is transmitted
through the structure into air. The desired solution of the problem
is the reflected wave from the boundary of regions (I) and (II), and
transmitted wave into region (III).

Considering a single anisotropic layer and time dependence
convention as ejωt one can write the electromagnetic propagating waves
in the (x-z) plane as follows:

{ Ē(x, z) = Ē(z)e−jkxx

H̄(x, z) = H̄(z)e−jkxx (1)

In a region with no sources, Maxwell’s equations for electric and
magnetic fields in general anisotropic environment can be written as

{ ∇× Ē = −jω ¯̄µ · H̄
∇× H̄ = jω ¯̄ε · Ē (2)
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Figure 1. The geometry of a general multi layer structure.

with

¯̄ε =

[
ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

]
and ¯̄µ =

[
µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

]
. (3)

In such an environment, the electric permittivity and magnetic
permeability are tensors including complex elements. By expanding
the curl equations, and considering y direction symmetry, and ∂/∂x ≡
−jkx, six scalar equations are concluded which include ten unknown
parameters. kx is the component of the wave vector along x direction
(kx = k1 sin θ1) and the unknowns are the fields components and the
partial derivative of transverse components Ex, Ey, Hx and Hy with
respect to z direction.

A noticeable point is the fact that only 2 of these unknowns Ez

and Hz, are parallel to the stratification direction of the structure, z,
and the other 8 are transverse components.

After some manipulations, a system of 4 equations is resulted
which includes 8 unknowns i.e., Ex, Ey, Hx, Hy, ∂Ex/∂z, ∂Ey/∂z,
∂Hx/∂z and ∂Hy/∂z. This system is shown as


dEx/dz
dEy/dz
dHx/dz
dHy/dz


 = ¯̄Γ




Ex

Ey

Hx

Hy


 (4)

or equivalently,
d

dz

[
ĒT

H̄T

]
= ¯̄Γ

[
ĒT

H̄T

]
(5)

where,

ĒT =
[

Ex

Ey

]
and H̄T =

[
Hx

Hy

]
. (6)
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The elements of the matrix Γ is given in Appendix A. Solving
these linear first order differential equations, a matrix solution which
relates the fields at two boundaries of the anisotropic layer is obtained;
i.e.,

[
ĒT (2×1)(t)
H̄T (2×1)(t)

]
= ¯̄A(4×4)

[
ĒT (2×1)(0)
H̄T (2×1)(0)

]
. (7)

where {ET (t), HT (t)} and {ET (0), HT (0)} are the fields at z = t and
z = 0 respectively, and A is a (4× 4) matrix as;

¯̄A =

[
¯̄A11(2×2)

¯̄A12(2×2)
¯̄A21(2×2)

¯̄A22(2×2)

]
= exp(¯̄Γt). (8)

To obtain the characteristic matrix one way is to find the
eigenvalues of Γ matrix [11]. The method considered in this paper,
is based on the finite difference technique and is more straightforward
than the eigenvalue method.

Focusing on one of the anisotropic layers in region (II), the
transition matrix of the layer must be calculated. Having the
differential Equation (5) and denoting a thin portion of anisotropic
layer with an incremental thickness, ∆z, the fields at the two
boundaries of the layer are related by

[
ĒT (z+∆z)
H̄T (z+∆z)

]
−

[
ĒT (z)
H̄T (z)

]
=

∆z

2
¯̄Γ

([
ĒT (z+∆z)
H̄T (z+∆z)

]
+

[
ĒT (z)
H̄T (z)

])
(9)

By rearranging the above equation for the incremental layer, (9)
can be rewritten in the discretized form, and thus the (4×4) transition
matrix for thickness ∆z is achieved as[

ĒT (z + ∆z)
H̄T (z + ∆z)

]
= ¯̄A(∆z)

[
ĒT (z)
H̄T (z)

]
(10)

where,

¯̄A(∆z) =
(

I(4×4) −
∆z

2
¯̄Γ
)−1 (

I(4×4) +
∆z

2
¯̄Γ
)

. (11)

To calculate the overall matrix of the whole layer, i(= t/∆z) sub-
layers can be simply cascaded, where ‘t’ is the thickness of the whole
layer. In case of transition matrix, this process is done by multiplying
the matrix by itself, ‘i’ times. But a problem arises when the thickness
of the layer is large in comparison to the wavelength, which is due
to simultaneous existence of very large and very small exponential
terms in the transition matrix that leads to an uncontrolled increase in
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error [11]. Alternative methods have been recommended to overcome
this problem [11, 12]. The recursive hybrid matrix method is used here.

[
ĒT (0)
H̄T (t)

]
=

[
H11(2×2) H12(2×2)

H21(2×2) H22(2×2)

] [
H̄T (0)
ĒT (t)

]
(12)

Equation (12) is the definition of the (4 × 4) hybrid matrix for
fields perpendicular to z axis. Consequently, the matrix elements are
(2× 2) sub-matrices.

In view of Equation (10) and the calculation of hybrid matrix
from transition matrix, the hybrid matrix of the thin sub-layer can be
derived as

¯̄H(∆z) =

[
I(2×2) + ∆z

2
¯̄Γ11

∆z
2

¯̄Γ12

∆z
2

¯̄Γ21 −I(2×2) + ∆z
2

¯̄Γ22

]−1

·
[

−∆z
2

¯̄Γ12 I(2×2) − ∆z
2

¯̄Γ11

−I(2×2) − ∆z
2

¯̄Γ22 −∆z
2

¯̄Γ21

]
(13)

∆z must be chosen such that by cascading the thin sub-layer with
itself and repeating the same process recursively n times, the original
layer with thickness ‘t’ is made. Therefore, in this recursive method;
t = 2n∆z. For example if n = 3, the hybrid matrix of the whole layer
is calculated through doing the recursive process 3 times (Figure 2).

Having the hybrid matrix of a sub-layer with thickness ∆z as

¯̄H(∆z) =

[
¯̄H11(2×2)

¯̄H12(2×2)
¯̄H21(2×2)

¯̄H22(2×2)

]
, (14)

Figure 2. The recursive process for computing a layer’s matrix.
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the resulting matrix from cascading the layer with itself would be

¯̄H(2∆z) =
[ ¯̄H11+¯̄H12(I− ¯̄H11

¯̄H22)−1 ¯̄H11
¯̄H21

¯̄H12(I − ¯̄H11
¯̄H22)−1 ¯̄H12

¯̄H21(I − ¯̄H22
¯̄H11)−1 ¯̄H21

¯̄H22+¯̄H21(I− ¯̄H22
¯̄H11)−1 ¯̄H22

¯̄H12

]
.

(15)
Repeating the same process recursively, i.e., cascading the result

of each stage with itself n time, results in the hybrid matrix of the
whole layer. The advantage of recursive method is that by increasing
n, the thickness of the first sub-layer decreases exponentially, leading
to a significant improvement in accuracy.

After calculating characteristic matrices of all intermediate layers
by the above method, one can compute the total characteristic matrix
by cascading the layers’ hybrid matrices.

Naming {Ei, H i}, {Er,Hr} and {Et,Ht} as phasors of incident
fields, scattered fields in region (I) and transmitted fields in region (III)
respectively, the reflection and transmission coefficient matrices can be
defined as

Er
T =

[
Er

x
Er

y

]
=

[
r11 r12

r21 r22

] [
Ei

x

Ei
y

]
= R · Ei

T (16)

and

Et
T =

[
Et

x
Et

y

]
=

[
t11 t12

t21 t22

] [
Ei

x

Ei
y

]
= T · Ei

T . (17)

According to the definition, Equation (12) can be written as
[

Ei
T + Er

T
Ht

T

]
=

[ ¯̄H11
¯̄H12

¯̄H21
¯̄H22

] [
H i

T + Hr
T

Et
T

]
. (18)

To compute the reflection matrix, all the unknowns in (18) must
be eliminated except Ei

T and Er
T . The same procedure can be done for

Ei
T and Et

T and for transmission matrix. To do this process, impedance
relations between electric and magnetic fields in regions (I) and (III)
are needed:

Ei
T = Z1 ·H i

T ; Er
T = −Z1 ·Hr

T ; Et
T = Z3 ·Ht

T (19)

with

Zi =
[

0 ηi cos θi

−ηi sec θi 0

]
. (20)

θ1 and θ3 are the angles of the wave vector with normal to
boundaries of the regions. These two angles satisfy Snell’s law,
sin θ3 ÷ sin θ1 =

√
µ1ε1/µ3ε3, which is still valid in anisotropic

environment. ‘η’ is the wave impedance in each region. By doing
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some matrix calculations the reflection and transmission matrices can
be computed using the hybrid matrix sub-matrices. i.e.,

R = [−Z1 + H11 + H12Z3(I −H22Z3)−1H21]
· [Z1 + H11 + H12Z3(I −H22Z3)−1H21]−1 (21)

and

T = [Z−1
3 −H22 + H21(Z1 + H11)−1H12]−1

· [H21Z
−1
1 (I − (H11 − Z1)(H11 + Z1)−1)] (22)

Extraction of the features of TE and TM polarizations needs
more consideration. TE polarization consists of {Ey, Hx, Hz} field
components and TM polarization consists of {Hy, Ex, Ez} components,
therefore, Equation (16) transforms to

TE :
[

Er
x

Er
y

]
=

[
r12

r22

]
Ei

y and TM :
[

Er
x

Er
y

]
=

[
r11

r21

]
Ei

x. (23)

The returned power of the TM polarization is therefore
proportional to (r2

11 + r2
21) and in case of TE polarization it is

proportional to (r2
12 + r2

22). It is clear that if the electric and magnetic
tensors be diagonal matrices, r21 and r12 are zero and the returned
power will be proportional to r2

11 and r2
22 for TM and TE modes

respectively.
To check the validity of the given method, a magneto-plasma

layer coated on PEC (Z3 = 0) is considered. Analytical solution
for reflection from anisotropic magneto-plasma coated on PEC can
be found in [11]. The structure’s specifications and reflection are
shown in Figure 3. It can be seen that for thick layers compared to

Figure 3. Checking the validity of transition and hybrid matrix
methods.
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wavelength, transition matrix solution loses its stability while hybrid
matrix solution is still valid and carefully matches the analytical
solution.

3. RESULTS

The geometry being considered here is a general two layer anisotropic
structure perpendicular to z direction and illuminated by an
electromagnetic plane wave with a specified frequency. The layers are
assumed to be lossless in all examples and the outside region of layered
anisotropic structure is free space.

By choosing the permittivity and permeability tensors as{
ε2(3×3) = −1

m ε1(3×3)

µ2(3×3) = −1
m µ1(3×3)

; t2 = m× t1 (24)

The incident wave will not experience any reflections while
traveling through the structure. In the following, we consider five
special cases related to Equation (24).

Case I. Coupling of DPS-DNG materials with diagonal
characteristic tensors: With the relative permittivity and
permeability tensors given in Figure 4, m = 3 is chosen and the result
is practically zero reflection from the structure in the frequency range
of 1 to 100 GHz at normal incidence. Thicknesses of the layers are
stated in Meters.

The negligible fluctuations are due to errors related to the
finite difference calculations. It is evident that the accuracy of the
algorithm can be conveniently set by the appropriate selection of the
segmentation parameter n.

Figure 4. Coupling of DPS-DNG with m = 3.
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Figure 5. Coupling of ENG-MNG with m = 3.

Case II. Coupling of ENG-MNG metamaterials with
diagonal characteristic tensors: It can be seen that this
combination leads to a low-pass filter (Figure 5). With the parameter
values shown on the figure and m = 1, the structure is transparent to
the wave up to 13GHz and totally blocks it from about 20 GHz. Like
the previous example, cross polarization reflection coefficient is zero
due to diagonally assumed electromagnetic tensors.

Case III. Coupling of layers with non-diagonal character-
istic tensors: Figure 6 shows that even with non-diagonal entries of
permittivity and permeability tensors, the zero reflection is still present
and no power returns to region (I). In this example m = 5 and in con-
trast to prior examples, some fluctuations can be observed in cross
polarization coefficient which is a direct consequence of adding the
non-diagonal elements. One should note that a medium with a general
non-diagonal tensor is not necessarily realizable.

Case IV. The effect of illumination angle: Up to now,
normal incidence was considered in all examples. In fact zero reflection
explained so far, can be seen solely in this case. The reflection
coefficient vs. different incident angles is illustrated in Figure 7 at
20GHz.

What if we want a zero reflection at other angles? Such a case may
have applications in angular filters, polarization filters and treating
RCS of moving objects. It is possible to shape the angular pattern of
the reflection, or to place a zero at a specific angle.

For example with arbitrary thicknesses of the layers, ignoring the
second condition of (24), the zero reflection angle can be changed.
For example in Figure 8(a), m = 5, has led to zero reflection for TE
polarization at about 40 degrees.
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Figure 6. Zero reflection for non-diagonal matrices with m = 5.

Figure 7. Reflectance vs. different incident angles.

It is notable that in all cases of diagonal tensors as well as
special non-diagonal tensors, TE and TM reflection curves can be
controlled separately and shaped independently. For diagonal tensors,
TE polarization is related only to εy, µx and µz and TM polarizations
is related only to µy, εx and εz. Therefore, if εy = µy, µx = εx and
µz = εz, the structure affects TE and TM polarizations in a similar
manner.

By changing the elements of the tensors stated in Figure 8(b), one
can set the location of zero reflection and change the behavior of the
reflection curve (Figures 9(a) and (b)).
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(a) (b)

Figure 8. The same curve for TE and TM polarizations.

(a) (b)

Figure 9. Changing the angle of zero and shaping the curve of
reflectance.

Case V. The special case of m = 1: If the parameter m is
set equal to 1 in any of prior examples, and the two thicknesses are
equal, we encounter an interesting phenomena. Reflection would be
zero for all angles of incidence in all frequencies and the structure would
be totally transparent, even though we have an anisotropic medium
(Figure 10).



332 Mirzaei and Rashed-Mohassel

(a) (b)

Figure 10. The special case of m = 1 for frequency and angle
variations.

4. DISCUSSION

Materials used in these cases show the same electromagnetic properties
in all frequencies and therefore are not dispersive. In reality, we cannot
find such materials and their presence violates the thermodynamic
principles governing the universe [17]. Also the materials were assumed
lossless in a wide range in frequency domain which is in contrast to the
dependency of real and imaginary parts of ε and µ via Kramers-Kronig
relations.

Since, the interaction of a medium and a monochromatic EM wave
depends on ε and µ tensor values at the corresponding frequency, zero
reflection is conceivable for dispersive materials only when the tensors
satisfy (24) in every frequency for a specified m.

5. CONCLUSION

With the help of recursive algorithm and hybrid matrix computation
for anisotropic slabs with free space outside the slabs, a powerful,
fast and yet reliable procedure for solving the scattering problem
was presented The method is also convenient for an optimization
procedure. The generality of the method makes it suitable for all kinds
of anisotropic materials containing even negative tensor elements i.e.,
metamaterials. Using this method the possibility of zero reflection
from stratified anisotropic medium was demonstrated which includes
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a special case of transparency, in which the total power is transmitted
for all incident angles and all frequencies. This occurs when the
electromagnetic parameters are related by (24) with m = 1.

APPENDIX A.

The matrix Γ defined in (4) is derived from Maxwell’s equations:

Γ =


jkx
ε31

ε33
jkx

(
ε32

ε33
− µ23

µ33

)
jω

(
µ23µ31

µ33
−µ21

)
j

{
k2

x

ωε33
+ω

(
µ23µ32

µ33
−µ22

)}

0 jkx
µ13

µ33
jω

(
µ11−

µ13µ31

µ33

)
jω

(
µ12−

µ13µ32

µ33

)

jω

(
ε21−

ε23ε31

ε33

)
−j

{
k2

x

ωµ33
+ω

(
ε23ε32

ε33
−ε22

)}
jkx

µ31

µ33
jkx

(
µ32

µ33
− ε23

ε33

)

jω

(
ε13ε31

ε33
−ε11

)
jω

(
ε13ε32

ε33
−ε12

)
0 jkx

ε13

ε33



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