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Abstract—A fast inhomogeneous plane wave algorithm is developed
for the electromagnetic scattering problem from the composite bodies
of revolution (BOR). Poggio-Miller-Chang-Harrington-Wu (PMCHW)
approach is used for the homogeneous dielectric objects, while the
electric field integral equation (EFIE) is used for the perfect electric
conducting objects. The aggregation and disaggregation factors can
be expressed analytically by using the Weyl identity. Compared
with the traditional method of moments (MoM), both the memory
requirement and CPU time, are reduced for large-scale composite BOR
problems. Numerical results are given to demonstrate the validity and
the efficiency of the proposed method.

1. INTRODUCTION

Electromagnetic radiation and scattering from bodies of revolution
(BOR) that consist of perfect electrical conductor (PEC), homogeneous
dielectric media, composite PEC and dielectric and layered dielectric
media have been widely discussed during last several decades. Because
of the symmetry of the geometry, only the generatrix that forms the
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surfaces of the PEC part and dielectric part are needed for solving
the BOR problem in a surface integral equation formulation [1–6].
Similarly, only the meridian cross section is needed for solving the
BOR problem with the finite element method (FEM) [7–9]. Both
the memory requirement and CPU time in BOR solvers are reduced
compared with full three-dimensional methods. Other scattering
problems for complex objects can be found in [10–12].

In a typical BOR solver in the cylindrical coordinate system,
the electric and magnetic fields can be expanded as the summation
of different Fourier series modes in φ (azimuth angle). Because
of the orthogonality, each mode can be treated separately. In a
surface integral equation formulation, the expansion functions chosen
for the solution are harmonic in φ and sub-sectional in t (contour
length variable). When the traditional method of moments (MoM)
is used to solve a BOR integral equation, the memory requirement
for BOR-MoM is O(N2), where N is the number of unknowns for
each azimuthal mode. Thus, it is time consuming for large-scale
composite BOR problems if the traditional MoM is used. The time
for solving the integral equation of the BOR problem mainly depends
on the evaluation of modal Green’s function (MGF). Several works
such as the fast Fourier transform (FFT), Bartkys transformation and
spherical Bessel function expansion have been proposed to accelerate
the evaluation of MGF [13–16]. More recently, the fast inhomogeneous
plane wave algorithm is proposed to solve PEC and homogeneous
dielectric BOR problems [17, 18]. Both the memory requirement and
CPU time are reduced from the MoM.

In this work, we extend the fast inhomogeneous plane wave
algorithm (FIPWA) to accelerate the computation of the MoM for
composite bodies of revolution. PMCHW (Poggio, Miller, Chang,
Harrington, Wu) integral equation [19–21] is used for solving the
problem of a dielectric scatterer and the EFIE is used for solving
the PEC part. The aggregation and disaggregation factors can be
computed analytically. Both the memory requirement and the CPU
time are saved for large-scale composite BOR problems. Numerical
results are given to demonstrate the validity and the efficiency of the
FIPWA method.

2. INTEGRAL EQUATION FOR BODY OF
REVOLUTION

2.1. Integral Equations for the Composite Problem

The scattering problem of electromagnetic waves from a composite
object is widely discussed recently [22–26]. The homogeneous dielectric
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Figure 1. A composite body of revolution and the coordinate system,
where θinc is the angle of incident wave, and t̂ and φ̂ are the unit
vectors.

object having permittivity ε2 and permeability µ2 and a perfect electric
conducting (PEC) object in a homogeneous background medium
(ε1, µ1) is shown in Figure 1. This problem can be solved by PMCHW
(Poggio, Miller, Chang, Harrington, Wu) integral equations hybridized
with the electric field integral equation (EFIE) [5, 6] as follows:

n̂1 ×Ei(r) = n̂1 × [L1(Jd) + L2(Jd + Jc)]
−n̂1 × [K1(Md) + K2(Md)], r ∈ S1 (1)

n̂1 ×Hi(r) = n̂1 × [K1(Jd) + K2(Jd + Jc)]

−n̂1 ×
[

1
η2
1

L1(Md) +
1
η2
2

L2(Md)
]

, r ∈ S1 (2)

0 = n̂2 × [L2(Jd + Jc)−K2(Md)], r ∈ S2 (3)
where Jc is the induced electric current density on the PEC surface
S2; Jd is the induced electric current density on the dielectric surface
S1, and Md is the induced magnetic current density on the dielectric
surface S1; ηi =

√
µi/εi is the wave impedance for region i (i = 1, 2).

Ei is the incident electric field, Hi is the incident magnetic field, and
Li and Ki are operators defined as

Li(x) = jωµi

∫

S

[
x(r′) +

1
ω2µiεi

∇∇ · x(r′)
]

Gids′ (4)

Ki(x) =
∫

S
x(r′)×∇Gids′ (5)

Here Gi is the scalar Green’s function of the background medium
(i = 1) or dielectric region (i = 2). Using the Galerkin’s method,
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we can rewrite Equations (1)–(3) as

(P1 + P2)[Jd] + P2[Jc]− (Q1 + Q2)[Md] = bTE

(Q1 + Q2)[Jd] + Q2[Jc]−
(

P1

η2
1

+
P2

η2
2

)
[Md] = bTH

P2[Jd] + P2[Jc]−Q2[Md] = 0

(6)

where
(Pi)pq = < fp, Li(fq) >

(Qi)pq = < fp,Ki(fq) >

bTE
p = < fp,Einc >

bTH
p = < fp,Hinc >

with fq being the basis function and fp being the testing function.

2.2. Body of Revolution

In the cylindrical coordinate system (ρ, φ, z) as shown in Figure 1, the
electric and magnetic current densities on the surface S1 and S2 (which
are generated by two curves around the z-axis) can be expanded as:

J =
∑

m,i

(J t
mif

t
mi + Jφ

mif
φ
mi) (7)

M =
∑

m,i

(M t
mif

t
mi + Mφ

mif
φ
mi) (8)

where fα
mi = α̂fi(t)ejmφ is the basis function, α = t or φ, t̂ =

x̂ sin θ cosφ + ŷ sin θ sinφ + ẑ cos θ (t-directed unit vector), φ̂ =
−x̂ sinφ+ ŷ cosφ (φ-directed unit vector). Note here the definition of φ
is the same as the azimuthal angle in the spherical coordinate system;
but θ is different from the elevation angle of the position vector in the
spherical coordinate system, and is defined as the angle between the
tangent direction of the surface and the z axis, i.e., θ = cos−1(ẑ · t̂).
Function fi(t) is related to the triangular function Ti as fi(t) = 1

ρTi(t),
where

Ti(t) =





t−ti−1

ti−ti−1
if t ∈ [ti−1, ti]

ti+1−t
ti+1−ti

if t ∈ [ti, ti+1]
0 otherwise

(9)

The current densities are divided into t and φ components in
Equations (7) and (8); both parts are related to the azimuthal mode
ejmφ for the m-th mode. Note that different azimuthal modes are
uncoupled to each other. Similarly, we choose the testing function as

Wα
ni = α̂fi(t)e−jnφ (10)
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Here the testing function Wn is orthogonal to fm and to the fields
generated from fm, for example, L(fm) and K(fm). Then, each
cylindrical harmonic can be treated separately by solving the matrix
equation (6). The detail for solving the impedance matrix elements can
be found in [3]. The key process is solving the modal Green’s function
(MGF) gi

n, (i = 1, 2) which can be expressed as

gi
n =

∫ π

0

e−jkiR0

R0
cosnφdφ (11)

R0 =
√

ρ2 + ρ′2 − 2ρρ′ cosφ + (z − z′)2 (12)

For the traditional MoM, the modal Green’s function has to be
evaluated by a numerical method, hence it is time consuming when
the radius of the BOR is large. Some works based on the MoM have
been done to improve the efficiency of the MGF in recent years. In the
following part, the FIPWA method will be proposed to accelerate the
MoM to solve the scattering problem of a composite BOR.

2.3. Fast Inhomogeneous Plane Wave Algorithm

As mentioned above, it is time consuming to solve the MGF, and
the memory requirement of MoM is O(N2), where N is the number
of the unknowns for one particular azimuthal mode m (note that
different azimuthal modes are orthogonal to each other). The fast
inhomogeneous plane wave algorithm (FIPWA) was first applied to
accelerate the computation of the MoM for PEC bodies of revolution
in [17] and homogeneous dielectric bodies of revolution in [18]. Here
we extend this method to composite dielectric and PEC BOR.
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Figure 2. (a) The Sommerfeld integration path on the complex u
plane. Path I is (uR = 0 ∼ π

2 , uI = 0), the Path II is (uR = π
2 , uI =

0 ∼ ∞). (b) The division of groups in the z direction, where H is the
height of each group.
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Based on Weyl identity [27–29], the Green’s function can be
rewritten as

e−jkrpq

rpq
=

1
j

∞∫

0

dkρ
kρ

kz
J0(kρρpq)e−jkz |zpq |

=
k

j2π

2π∫

0

dv

∫

HSIP

du sinue−jkk̂·rpq

=
k

j2π

2π∫

0

dv

∫

HSIP

du sinue−jkk̂·(rpm+rmm′+rm′q)

=
∑

Ωs

Bpm(Ωs)Bm′q(Ωs)Tmm′(Ωs) (13)

where k̂ = x̂ sinu cos v+ ŷ sinu sin v+ ẑ cosu, kρ = k sinu, kz = k cosu,
and rpq = rp− rq. Here rq is the source point and rp is the field point;
the integration of the variable u in Equation (13) is computed along the
half Sommerfeld integration path (HSIP) in Figure 2. It is important
to note that the variable u = uR + juI is complex here. The term
e−jkk̂·rpq is called the inhomogeneous plane wave by Jackson [30]. The
basis functions are divided into M groups along the z direction as
shown in Figure 4, where rm and r′m are the centers of the groups
which contain the source point rq and field point rp respectively, and
rpq = rpm + rmm′ + rm′q. Furthermore, rmm′ has ẑ component only,
with rmm′ = ẑ|zm− zm′ |. This property will make the integrand decay
exponentially away from the real axis in the u plane. Note that the
expansion in Equation (13) works only when zmm′ is positive. If it is
negative, we can easily rotate zmm′ to make it positive. The detail can
be found in [28, 29]. In Equation (13),

Ωs = (us1 , vs2)

Bpm(Ωs) = e−jkk̂·rpm

Bm′q(Ωs) = e−jkk̂·rm′q

Tmm′(Ωs) = w1w2
−jk

2π
sinus1e

−jkzmm′ cos us1

us1 and vs2 are the integration points for u and v, w1 and w2 are the
weights for u and v, respectively. Equation (13) can be interpreted
as the summation of inhomogeneous plane waves translated from the
source group to the field group. Substituting Equation (13) into
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Equation (6), we obtain

P i
pq =

k2
i ηi

8π2

∫ 2π

0

∫

HSIP
ViP

fmpT
i
mm′ViP

sm′qdudv (14)

Qi
pq = − k2

i

8π2

∫ 2π

0

∫

HSIP
ViQ

fmpT
i
mm′ViQ

sm′qdudv (15)

where the aggregation factors ViP
sm′q, ViQ

sm′q and disaggregation factors

ViP
fmp, ViQ

fmp can be expressed as

ViP
sm′q(Ωs) =

∫

S
dsBi

m′q(Ωs)fq(rm′q) (16)

ViP
fmp(Ωs) =

∫

S
dsBpm(Ωs)[I− k̂k̂] ·Wp(rpm) (17)

ViP
sm′q = ViQ

sm′q, ViQ
fmp = k̂ ×ViP

fmp. After substituting the basis and
testing functions into Equation (16), the aggregation factors can be
derived as

ViP
sm′q(Ωs) =

∫
dt

∫ 2π

0
dφρq(t)Bm′q(Ωs)âαfq(t)ejnφ (18)

Using the integral representation of Bessel function, the above φ
integration can be carried out analytically, then the aggregation factors
of the t component can be simplified as

ViP t
fmp =

∫
dte−jkirme−jki cos uzp

·
{

cosu sin θ

[
π

jn+1
Jn+1(ζp) +

π

jn−1
Jn−1(ζp)

]
û

− sinu cos θ
2π

jn
Jn(ζp)û

+ sin θ

[
π

jn
Jn−1(ζp)− π

jn+2
Jn+1(ζp)

]
v̂

}
(19)

where ζi = kρi sinu. This will greatly reduce the CPU time. From
above it is clear that there is no variable v in the aggregation factor
because of the use of azimuthal mode orthogonality. The other
aggregation factors and disaggregation factors can also be derived
analytically. The detail can be found in [18]. For numerical integration
along the HSIP, Gauss-Legendre quadrature is used in Path I, while
Gauss-Laguerre quadrature is used in Path II. The number of the
sample points along Path I and Path II is decided by Mu = kD +
(kD)1/3. Numerical tests shows that H = 0.3λ is a good dividing
height for each group, see Figure 2.
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3. NUMERICAL RESULTS

In this section, several numerical results are presented to show the
validity of the proposed BOR-FIPWA. All problems are solved on the
same computer (Intel Core2 Duo CPU P8400 @ 2.26GHz with 1.92 GB
RAM) in order to make a fair comparison, with only one core being
used.

In order to test the accuracy of the proposed method, a coated
sphere in free space is simulated by the BOR-FIPWA. The radius of
the PEC sphere is 5 m, and the thickness of the homogeneous medium
(εr = 4, µr = 1) is 3 m. The frequency of the incident plane wave is
150MHz with horizontal polarization (θinc = 0◦, φinc = 0◦). In the
discretization, there are 197 segments on the meridian line of the PEC
surface and 315 segments on the meridian line of the dielectric surface.
So there are 196 triangular functions for J t

c , 196 triangular functions
for Jφ

c , 314 triangular functions for J t
d, 314 triangular functions for

Jφ
d , 314 triangular functions for M t

d, and 314 triangular functions for
Mφ

d . So totally 1648 unknowns are involved for each azimuthal mode
n. The number of basis functions per wavelength is about 12, which a
reasonable sampling density. As shown in Figure 3, the bistatic RCS
agrees well with Mie results [31]. The memory requirement is 20.7 MB,
the CPU time for computing the impedance matrix is about 983 s for
BOR-MoM [4, 6]. While for BOR-FIPWA, the memory requirement is
12.6MB, and the CPU time is 139 s.

After the accuracy has been verified, four coated cylinders with the
same radius (RPEC = 1 m), same thickness (t = 0.5m), same coated
dielectric medium (εr = 4, µr = 1) but with different heights (h1

PEC =
5m, h2

PEC = 10 m, h3
PEC = 20 m, h4

PEC = 50m) are simulated by the
BOR-FIPWA and BOR-MoM for testing the efficiency of the proposed

Figure 3. The bistatic RCS of the coated sphere with the inner radius
R2 = 5 m and outer radius R1 = 8 m.
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Figure 4. The CPU time and memory requirement for system creation
of the BOR-FIPWA and BOR-MoM.
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Figure 5. The geometry of the coated rocket. (a) The geometry of
dielectric part. (b) The geometry of PEC part.

method. The frequency of the incident plane wave is 150 MHz with
horizontal polarization. The CPU time and memory requirement for
system creation of the BOR-FIPWA and BOR-MoM are shown in
Figure 4. It is clear that the complexity of memory requirement for
BOR-MoM and BOR-FIPWA are O(N2) and O(N). Note that in
this case D (diameter) does not change, so the number of sample
points Mu = kD + (kD)1/3 does not change in BOR-FIPWA; thus,
the memory in BOR-FIPWA is only O(N). The CPU time complexity
for BOR-MoM and BOR-FIPWA are O(N2) and O(N), respectively.

Finally, a rocket coated by a dielectric (εr = 4, µr = 1) is
simulated by the BOR-FIPWA. The geometry is shown in Figure 5.
The frequency of the incident plane wave is 150MHz with horizontal
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Figure 6. The bistatic RCS of the coated rocket in Fig. 5.

polarization (θinc = 90◦, φinc = 0◦). The total number of unknowns
is 5802. As shown in Figure 6, the bistatic RCS agrees well with that
from Wavenology EM [32], a software tool based on the enlarged cell
technique [33, 34] in a conformal finite-difference time-domain method
(rather than MoM). The memory requirement is 256.8 MB, and the
CPU time for computing the impedance matrix is about 7956 s for
each mode by BOR-MoM. In contrast, for BOR-FIPWA, the memory
requirement is 36.5 MB, and the CPU time is 591 s.

4. CONCLUSION

In this paper, a fast inhomogeneous plane wave algorithm is applied to
solve the composite BOR scattering problem. Analytical expressions
for the aggregation and disaggregation factors are derived to save a
lot of CPU time over the BOR-MoM. Both CPU time and memory
requirement are saved by using BOR-FIPWA. For a coated rocket, the
improvement factors for memory and CPU time over the MoM are 7.03
and 13.5, respectively.
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