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Abstract—We present here the solution of the eigenvalue problems
for the open metamaterial square and circular rod waveguides. The
Maxwell’s equations for the electrodynamical analysis of the open
waveguides were solved by the Singular Integral Equations’ (SIE)
method and partial area method. Our SIE method is pretty universal
and let us rigorously analyze open waveguides electrodynamically
with any arbitrary cross-sections taking into account of the edge
condition. The false roots did not occur applying the SIE method.
The waveguide media can be of strongly lossy materials. The signs of
the complex permittivity and permeability can be positive or negative
in different combinations. We used our computer algorithms based
on the two mentioned methods with 3D graphical visualization in
the MATLAB language. We present here our numerical calculations
of the metamaterial square waveguide with sides equal to 5 · 10−3 m
and the metamaterial circular waveguide with the diameter equal to
5 · 10−3 m. We present dependences of phase constant and attenuation
constant of metamaterial waveguides at the frequency range from
75GHz till 115GHz. We have compared the three dimension (3D)
electric field distributions of the main mode and the first higher mode
propagating in the square and circular metamaterial waveguides. The
calculations of the electric fields were fulfilled at approximately 10000
points in every cross-section. We discovered that the electric field
is concentrated at the waveguide boundary. The distribution of the
electric field along the perimeter of the waveguide is not uniform. There
are two areas on the perimeter of the square and circular waveguides
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where the electric field has maximum values. These areas are shifted
relative to each other on π radians.

1. INTRODUCTION

Large stream of articles on investigations of waveguide structures made
from novel materials points that there is a need for development
devices possessing unique characteristics, as multifunctionality,
reconfigurability, superwide frequency bandwidth, ability to operate
at high-temperatures, high-powers and high-radiation conditions. In
order to create a new microwave device it is necessary to know the main
electrodynamical characteristics of waveguide on the basis of which
the device is supposed to be created. The main characteristics are
the phase and attenuation (losses) constants of the main and higher
waveguide modes, frequency bandwidth, distribution of electric or
(and) magnetic fields. Knowledge about the electric or (and) magnetic
field distribution lets us properly excite a desired mode in a waveguide.
In addition, the field distribution becomes important to solve the
problems about the active interaction between devices that are in the
vicinity with each other, including issues of compatibility.

The technological potential of metamaterials for developing novel
devices offers a very promising alternative that could potentially
overcome the limitations of current technology. The metamaterial
waveguides can operate as different devices. In article [1], the
characteristics of phase modulator that is created on the base of a
metamaterial planar slab are presented. In [2], the metamaterial
anomalous behaviors and the potential utilization of metamaterial
exotic properties in many electromagnetic applications are described.
In [3], the modified open metamaterial waveguide radiator with
abnormal antenna pattern diagram and the maximal radiation in
the backside direction is demonstrated. A controllable metamaterial
absorbing structure is presented in [4].

The complete review of articles on the electromagnetic theory
and recent progress in the metamaterials with simultaneously negative
permittivities and permeabilities is given in [5]. The authors examined
literature about electromagnetics and physics of metamaterials and
metamaterial structures, including the aspects of wave propagation in
waveguides. There are explanations of three waveguide cases when
the propagating modes’ transverse wavenumber outside and inside of
metamaterial waveguide is real, imaginary or complex number. It is
noted that solutions with the complex transverse wavenumber also
exist but the wave propagates along the guide with some losses [5].

A number of articles that are devoted to the study of EM wave
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propagation in the metamaterial waveguides are limited. Articles
in which the most consistently investigated metamaterial waveguides
can be presented [6–12]. In [6], theoretical analysis of two layered
1D slab waveguides when materials have the constitutive parameters
with signs of all combinations, i.e., with negative real permittivity,
but positive real permeability (epsilon-negative (ENG)); with negative
real permeability, but positive real permittivity (mu-negative (MNG));
with both negative real permittivity and permeability (double-negative
(DNG)), and conventional material with both positive real permittivity
and permeability (double-positive (DPS)) are presented. There are
dispersion equations and diagrams for the transverse electric (TE ) and
transverse magnetic (TM ) modes dependent on the layer thicknesses
and layer material constitutive parameters in the article. The
calculations were fulfilled for lossless materials. In [7], dispersion
characteristics of the 1D slab waveguides of lossless DPS and DNG
materials were investigated and compared. In the article, the TMm

modes with m = 0, 1, 2 . . . 5 are analyzed.
Mode analysis in 1D asymmetric slab waveguides of DNG

metamaterial is given in [8]. The slab metamaterial waveguide is
surrounded by the different dielectric materials from the top and
the bottom. The metamaterial permittivity and permeability were
independent on the frequency and are taken equal to −2. The
dispersion characteristics’ dependencies are analyzed on the normalized
frequency, propagation constant and the rations of the surrounding
waveguide material permittivities. Dispersion dependencies of TEm

modes at the index m = 1–4 and the surface wave modes are
investigated. There are distributions of electric field Ey(x) component
of TE1, TE2, TE3 modes. The power flux along the transverse profile
of the DNG asymmetric waveguide is also shown in [8]. Articles [9, 10]
focused on investigations of the grounded metamaterial waveguides.
In [9], dispersion equations of such a waveguide are obtained. The
solution dependent on the normalized frequency, thickness of the
infinite plate and the constitutive parameters of materials is given.
There are two tables with investigations of TE and TM modes.
Ref. [10] presented the relative phase constant and the power of
TE0, TE1, TM1, TM2 modes. In [11], wave propagations in a 2D
planar dielectric waveguide covered by the MNG metamaterial layers
were considered. Here the waveguide thickness when the forward
and backward modes can propagate was theoretically found. The
waveguide can support TE modes, which were analyzed in the article.
In [12], the TE modes propagation through a 1D slab waveguide
of uniaxial anisotropic dispersive metamaterial was shown. In the
article, the solution of problem, guidance conditions and dispersion
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characteristics for bulk TE2, TE4, TE6 and surface modes dependent
on the operating frequency and the thickness of metamaterial slab
waveguide were given.

It is interesting to note that the authors of [6–12] indicated that
transverse TEm, TMm and surface modes can only propagate in the
examined 1D and 2D isotropic and uniaxial anisotropic metamaterial
waveguides. It means that the longitudinal components of EM waves
are equal to zero. The waveguide metamaterial structures can possess
some unique properties and be used for the development of state-of-
the-art microwave devices [13–18].

Here, we present the investigations of the 2D open metamaterial
square and circular waveguides. In the present work, we have used
the SIE method to analyze the rectangular waveguides and the partial
area method to investigate the circular waveguides. We have created
computer software to make the electrodynamical analysis of the lossy
waveguides. We carried out the testing of our algorithms by comparing
our calculations with data from other authors’ articles. One of these
comparisons is given in [19].

We would like to draw your attention to the fact that the
hybrid waves propagate in our investigated metamaterial waveguides.
This statement is supported by the table data in the present work.
The transverse wavenumbers outside and inside of the metamaterial
waveguides are complex numbers because the longitudinal propagation
constants of eigenmodes have complex values. It is also important to
note that we tried to simulate an electrodynamical situation which
would be close to practice. Therefore, we took constitutive parameters
of the metamaterial from the experimental data of article [20]. In [20],
the metamaterial complex values of permittivities and permeabilities
at the frequency range from 75 GHz to 115 GHz are given. For this
reason, we have numerically investigated the metamaterial waveguides
at the same frequency range.

We have discovered several particularities in the dispersion
characteristics of metamaterial waveguides as well as in their field
distributions. These specific metamaterial waveguide behaviors can be
used in various technical microwave applications. Our research results
are described in Sections 2 and 3 of the present article.

2. INVESTIGATIONS OF THE SQUARE WAVEGUIDE
BY THE SIE METHOD

Here the metamaterial square rod waveguide with sizes (5×5) ·10−3 m
is investigated by the SIE method [21]. We discovered the particularity
in the electric field distribution on the cross-section of the open
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metamaterial square waveguide at f = 95GHz. We found the
frequency range (f = 105–115 GHz) where the losses were very small.

2.1. The Integral Representation of Solution to Maxwell’s
Equations

The Maxwell’s equations for this boundary problem have been solved
by the electrodynamically rigorous SIE method. This method attracts
much attention due to its positive features. The shape of the cross-
section of the investigated waveguide structure may be arbitrary
(Fig. 1).

In Fig. 1, the contour L separates materials with different
permittivities and permeabilities. We assume that the area S− is
the waveguide surrounding media. All the boundary conditions in
our solution are satisfied. We present here our researches of the
square waveguide which boundary surfaces are parallel to the x- and
y-axes. At the boundary which is parallel to the x-axis we assume
that E+

x |Lx = E−
x |Lx . At the boundary which is parallel to the y-

axis, we assume that E+
y |Ly = E−

y |Ly , where contour L is composed
from segments Lx and Ly. At all the boundaries we assume that
E+

z |L = E−
z |L . The analogical boundary conditions are satisfied

for the magnetic field. The longitudinal components of the electric
Ez(~r ) and magnetic Hz(~r ) fields at the contour L have the integral
representation:

Ez(~r )=
∫

L

µe(~rs)H
(2)
0 (k⊥r′)ds, Hz(~r )=

∫

L

µh(~rs)H
(2)
0 (k⊥r′)ds, (1)

L

S
−

S 
+

r'

ε µm
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Figure 1. Geometry of an arbitrary cross-section rod waveguide and
the SIE method notations.
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where H
(2)
0 is the Hankel function of the zeroth order and the second

kind. Here, the magnitude s is the arc abscissa, and ds is an element
of contour L. The magnitudes µh(~rs) and µe(~rs) are the unknown
functions satisfying the Höder condition [21]. We apply the Krylov-
Bogoliubov method whereby the contour is divided into n segments
and the integration along a contour L is replaced by a sum of integrals
over the segments. The expressions of all electric field components are
presented below.

The longitudinal components of the electric field for the area S+

and S− are:

E+
z =

n∑

j=1

µ+
e (sj)

∫

∆L

H
(2)
0 (k+

⊥r′)ds,

E−
z =

n∑

j=1

µ−e (sj)
∫

∆L

H
(2)
0 (k−⊥r′)ds.

(2)

After substitution of the longitudinal field components (2) in the
transverse component formulae [22], we obtain the expressions at the
contour points:

(Ex)+ = −2µ0µ
m
r ω cos θ(
k+
⊥

)2 µ+
h (sj)

−V+


k+

⊥

n∑

j=1

(
µ+

h (sj)
) ∫

∆L

H
(2)
1 (k+

⊥r′)
yS − y0

r′
ds




+Q+


k+

⊥

n∑

j=1

(
µ+

e (sj)
) ∫

∆L

H
(2)
1 (k+

⊥r′)
xS − x0

r′
ds


 , (3)

(Ex)− =
2µ0µ

a
rω cos θ(
k−⊥

)2 µ−h (sj)

−V−


k−⊥

n∑

j=1

(
µ−h (sj)

) ∫

∆L

H
(2)
1 (k−⊥r′)

yS − y0

r′
ds




+Q−


k−⊥

n∑

j=1

(
µ−e (sj)

) ∫

∆L

H
(2)
1 (k−⊥r′)

xS − x0

r′
ds


 , (4)
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(Ey)
+ = −2µ0µ

m
r ω cos θ(
k+
⊥

)2 µ+
h (sj)

−Q+


k+

⊥

n∑

j=1

(
µ+

e (sj)
) ∫

∆L

H
(2)
1 (k+

⊥r′)
ys − y0

r′
ds




−V+


k+

⊥

n∑

j=1

(
µ+

h (sj)
) ∫

∆L

H
(2)
1 (k+

⊥r′)
xs − x0

r′
ds


 , (5)

(Ey)
− =

2µ0µ
a
rω cos θ(
k−⊥

)2 µ−h (sj)

−Q−


k−⊥

n∑

j=1

(
µ−e (sj)

) ∫

∆L

H
(2)
1 (k−⊥r′)

ys − y0

r′
ds




−V−


k−⊥

n∑

j=1

(µh (sj))−
∫

∆L

H
(2)
1 (k−⊥r′)

xs − x0

r′
ds


 , (6)

where χ+ = iε0ε
m
r ω

/(
k+
⊥

)2, χ− = iε0ε
a
rω

/(
k−⊥

)2, V+ =

iµ0µ
m
r ω

/(
k+
⊥

)2, V− = iµ0µ
a
rω

/(
k−⊥

)2, Q+ = ih
/(

k+
⊥

)2, Q− =

ih
/(

k−⊥
)2, h = h′ − h′′ i is the complex longitudinal propagation

constant where h′ is the real part (phase constant), and h′′ is the
imaginary part (attenuation constant) of the value h. The field
components and the values of the unknowns functions µh(sj) and
µe(sj) are noted in the upper-right corner with the sign corresponding
to different areas S+ or S−, i.e., the unknowns functions inside
of waveguide are µ+

e (sj) µ+
h (sj) and outside of waveguide µ−e (sj),

µ−h (sj). These functions at the same contour point are different for the
field components in the areas S+ and S−, i.e., µ+

e,h(sj) 6= µ−e,h(sj).
Magnitudes k+

⊥ =
√

k2εm
r µm

r − h2 and k−⊥ =
√

h2 − k2εa
rµ

a
r are

the transversal propagation constants of the metamaterial medium
in the area S+ and in the air area S−, correspondingly (Fig. 1).
Magnitudes εm

r = Re(εm
r ) − Im(εm

r ) and µm
r = Re(µm

r ) − Im(µm
r )

are the complex permittivity and permeability of the metamaterial
medium. Magnitudes εa

r and µa
r are the permittivity and permeability

of air around the waveguide. The value k = ω/c is the wavenumber
in air, ω = 2πf , where f is an operating frequency. The contour L
is divided into n segments, and the length of a segment is ∆L = L/n
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where the limits of integration in the formulas (2.6) are the ends of
each segment ∆L. H

(2)
1 is the Hankel function of the first order and

the second kind. The angle θ is equal to g · 90◦ with g from 1 till 4
for rectangular contours in the formulae (3)–(6). The expressions for
the magnetic field components are similar. The system of the algebraic
equations obtained from the boundary conditions is homogeneous. The
condition of solvability is obtained equalizing the determinant of the
system to zero. The determinant is our dispersion equation. We have
used the Müller’s method to find the complex roots. The roots of
the dispersion equation give the propagation constants of waveguide
modes. After obtaining the propagation constants of the desired modes
we can determinate the EM field of these modes (see formulae (2)–(6)).
For the correct formulated problem the solution is one valued and
stable with respect to small changes of the coefficients and contour
form [21].

2.2. Numerical Investigations of Square Metamaterial
Waveguide

The dispersion characteristics and 3D electric field distributions are
presented here (Figs. 2–4). The values of εm

r and µm
r are different

at every frequency [20]. The real part of the permittivity is always
negative at the frequency range 75–115GHz. The imaginary part of
the permittivity is negative when 90 ≤ f ≤ 100GHz. The real part of
the permeability is negative when 100 ≤ f ≤ 105 GHz. The imaginary
part of the permeability is always positive at the mentioned frequency
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Figure 2. The dispersion characteristics of the metamaterial
rectangular waveguide: (a) the dependence of the normalized phase
constant, (b) the attenuation constant.
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(a) (b)

Figure 3. The 3D electric field distribution of the main mode
propagating in the rectangular metamaterial waveguide: (a) −f =
95GHz, (b) −f = 110 GHz.

(a) (b)

Figure 4. The 3D electric field distribution of the first higher
mode propagating in the rectangular metamaterial waveguide: (a)
−f = 95 GHz, (b) −f = 110 GHz.

range. The dependencies of complex longitudinal propagation constant
h = h′−h′′i on the frequency is presented in Fig. 2. The main mode is
denoted with points, and the first higher mode is denoted with circles.

In Fig. 2(a), we see dependencies of the normalized phase constant
h′/k on the frequency, where h′ = 2 · π/λw and λw is the wavelength
of microwave in the metamaterial waveguide. The curves of the
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main mode and the first higher mode are not smooth. We see that
magnitudes h′/k < 1 for both modes (Fig. 2(a)). It means that the
main and first higher modes are the fast waves. Fig. 2(b) shows the
dependencies of the waveguide losses h′′ on the frequency. We see that
the values of the main and higher mode losses are commensurate, and
the losses are not high in all frequency range. It is important to remark
that the losses of the main modes are very small at the frequency range
from 105GHz to 115 GHz. This feature could be used in practice for the
creation of feeder lines and specific devices that require low distortions
in a signal transmission.

The 3D electric field distributions of the main mode at f = 95 GHz
and 110 GHz are shown in Fig. 3. The metamaterial has εm

r =
−35−2.5i and µm

r = 2.25+0.25i at f = 95 GHz. And the metamaterial
has εm

r = −10.83− 0.02i and µm
r = 0.5− 0.01i at f = 110 GHz.

The metamaterial is an ENG medium at these frequencies. We
see that the waveguide losses are relatively large at f = 95 GHz, and
they are small at f = 110GHz (Fig. 2(b)). In Fig. 3(a), we see that
the electric field is very small in the center of the waveguide cross-
section. The electric field concentrates near the waveguide border.
Such distribution can be explained by the large loss at f = 95GHz,
and the EM wave does not deeply penetrate into the metamaterial.

In Tables 1 and 2, we demonstrate the values of complex EM
field components of the main mode and the first higher mode at two
frequencies. Based on the table data we can see that both modes on
these frequencies are hybrid modes.

Table 1. The EM field components of the main mode at the point
with coordinates x = 4mm and y = 4 mm when f = 95 GHz and
f = 110 GHz.

f = 95 GHz

Ez [V/m] Ex [V/m] Ey [V/m]

3.765 · 10−1 − 6.411 · 10−1i 1.5099− 2.1941i −0.9943 + 1.9673i

Hz [A/m] Hx [A/m] Hy [A/m]

−3.39 · 10−2 + 7.51 · 10−2i −7 · 10−4 + 1.1 · 10−3i 2.6 · 10−3 − 3.9 · 10−3i

f = 110GHz

Ez [V/m] Ex [V/m] Ey [V/m]

−1.2766 · 10−5

−1.6592 · 10−5i
0.0134 + 0.0211i −0.0291 + 0.0702i

Hz [A/m] Hx [A/m] Hy [A/m]

−3.0 · 10−3 − 2.9 · 10−3i
1.3048 · 10−4

−3.0558 · 10−4i

5.9501 · 10−5

+1.0936 · 10−4i
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Table 2. The EM field components of the first higher mode at the
point with coordinates x = 4 mm and y = 4 mm when f = 95 GHz and
f = 110 GHz.

f = 95 GHz

Ez [V/m] Ex [V/m] Ey [V/m]

3.932 · 10−1

−6.181 · 10−1i
1.3730− 1.8577i −9.535 · 10−1 + 1.6598i

Hz [A/m] Hx [A/m] Hy [A/m]

−3.20 · 10−2

+6.36 · 10−2i
−8 · 10−4 + 1.4 · 10−3i 2.5 · 10−3 − 3.4 · 10−3i

f = 110GHz

Ez [V/m] Ex [V/m] Ey [V/m]

1.3083 · 10−6

−1.2678 · 10−5i
−4.6 · 10−3 + 2.30 · 10−2i −2.63 · 10−2 + 4.31 · 10−2i

Hz [A/m] Hx [A/m] Hy [A/m]

−1.9 · 10−3

−2.4 · 10−3i

1.0715 · 10−4

−1.7759 · 10−4i

−2.7720 · 10−5

+1.0632 · 10−4i

In Figs. 3(a)–4(a), we see that the electric field at f = 95 GHz for
the main and first higher modes is concentrated near the metamaterial
borders and that the strongest field is at two diagonal corners of the
cross-section, i.e., at the right upper corner and the left bottom corner.
There is a strong asymmetry of the electric field distribution on the
perimeter of the waveguide. It happenes because at this frequency the
real and imaginary parts of permittivity are negative and relatively
large. The corners also have strong influence on the electric field
distribution. Examining the field lines near the upper right corner (or
the left bottom corner) we see that the electric field lines are directed
clockwise or counter-clockwise to the right and left of the top corner.
We will further see the very similar effect of the electric field asymmetry
on the waveguide perimeter for the circular metamaterial waveguide.

In Figs. 3(b)–4(b), we see that the electric field distributions of the
main and first higher modes have a more homogeneous picture in the
waveguide cross-section at f = 110 GHz. This happenes because the
electric field penetrates deeper into the metamaterial at this frequency
because the waveguide loss is small at f = 110GHz (Fig. 2(b)). The
projections of the vector electric fields on the waveguide sides are
depicted along the waveguide (Figs. 3–4). The calculations of the
electric fields were fulfilled at approximately 10000 points in every
cross-section.
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3. INVESTIGATIONS OF THE CIRCULAR
METAMATERIAL WAVEGUIDE BY THE PARTIAL
AREA METHOD

Here, the open metamaterial circular rod waveguide is investigated
by the partial area formulae [19]. We discover the particularity in the
electric field distribution on the cross-section of the open metamaterial
circular waveguide at the operating frequency 95 GHz. We assume that
this waveguide could be used as a narrowband filter at frequencies 102–
102.5GHz.

The representation of longitudinal components of the electric
Em

z and magnetic Hm
z fields that satisfy Maxwell’s equations in the

metamaterial medium is in the form:

Em
z = A1Jm

(
k+
⊥ r

)
exp(imϕ), Hm

z = B1Jm

(
k+
⊥ r

)
exp(imϕ), (7)

where A1, B1 are unknown arbitrary amplitudes. Jm is the Bessel
function of the m-th order. k+

⊥ is the transverse propagation
constant of the metamaterial medium. r is the radius of the circular
metamaterial waveguide. m is the azimuthal index characterizing
azimuthal variations of the field. ϕ is the azimuthal angle. The electric
field Ea

z and magnetic field Ha
z components that satisfy Maxwell’s

equations in air are:

Ea
z = A2H

(2)
m

(
k−⊥ r

)
exp(imϕ), Ha

z = B2H
(2)
m

(
k−⊥ r

)
exp(imϕ) (8)

where A2, B2 are unknown arbitrary amplitudes. H
(2)
m is the Hankel

function of the m-th order and the second kind. k−⊥ is the transverse
propagation constant of air medium. As far as the circular waveguide
is researched in the cylindrical coordinate system we have to satisfy
the boundary conditions only for two components of the electric field
(Eϕ, Ez) and the magnetic field (Hϕ, Hz). After the substitution
of expressions (7) and (8) in the transverse components expressed in
terms of the longitudinal components [22] we obtain the expressions of
all transverse EM field components. A further solution is carried out
under the scheme of Section 2.1 of present work. The result of solution
is the dispersion equation in the determinant form.

The circular metamaterial waveguide with r = 2.5mm is
researched. The dispersion characteristics and the 3D electric and
magnetic field distributions are presented (see Figs. 5–9). The
dispersion characteristics are shown in Fig. 5. The main mode is
denoted with points, and the first higher mode is denoted with circles.
In Fig. 5(a), we see that the normalized phase constants of the main
and first higher modes are fairly flat and smooth and only have a one
small protrusion at frequencies between 97 GHz and 102 GHz.
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Figure 5. The dispersion characteristics of the metamaterial
rectangular waveguide: (a) the dependence of the normalized phase
constant, (b) the attenuation constant.

(a) (b)

Figure 6. The 3D electric field distributions of the main mode
at f = 95GHz: (a) the electric field strength lines outside the
waveguide, (b) the 143 times zoomed electric field strength lines inside
the waveguide.

There is a large peak of the main mode losses at frequency f
= 101.25GHz. At this frequency metamaterial is DNG with εm

r =
−9.17 − 0.83i and µm

r = −0.75. We see that losses of the main mode
are very small at the frequency ranges 75–100 GHz and 102.5–115 GHz,
while the losses of the first higher mode are significantly higher at
the frequency ranges (Fig. 5(b)). Therefore, the investigated circular
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(a) (b)

Figure 7. The 3D electric field distributions of the main mode
at f = 110 GHz: (a) the electric field strength lines outside the
waveguide, (b) the 14 times zoomed electric field strength lines inside
the waveguide.

(a) (b)

Figure 8. The 3D electric field distributions of the first higher
mode at f = 95 GHz: (a) the electric field strength lines outside the
waveguide, (b) the 143 times zoomed electric field strength lines inside
the waveguide.

metamaterial waveguide can be used as a filter at the frequencies 100–
102.5GHz and as a one mode lossless waveguide at the frequency ranges
75–100GHz and 102.5–115 GHz.

The 3D electric field distributions of the main mode are calculated
at frequencies 95GHz and 110 GHz (Figs. 6 and 7) as well as the first
higher mode at the same frequencies (Figs. 8 and 9). The electric
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(a) (b)

Figure 9. The 3D electric field distributions of the first higher
mode at f = 110GHz: (a) the electric field strength lines inside the
waveguide, (b) the 14 times zoomed electric field strength lines outside
the waveguide.

Table 3. The electromagnetic field components of the main mode at
the point with coordinates r = 2 mm, ϕ = 45◦ when f = 95 GHz and
f = 110 GHz.

f = 95 GHz

Ez [V/m] Ex [V/m] Ey [V/m]

−2.5897 · 10−5

+2.7266 · 10−i

−2.8425 · 10−5

+1.9342 · 10−5i

4.5991 · 10−6

−3.3487 · 10−5i

Hz [A/m] Hx [A/m] Hy [A/m]

2.5111 · 10−7

−2.0158 · 10−7i

−2.3843 · 10−8

−2.8570 · 10−1i

2.5496 · 10−6

+1.8364 · 10−1i

f = 110GHz

Ez [V/m] Ex [V/m] Ey [V/m]

0.0067 + 0.0067i −0.0027 + 0.0027i −7.8928 · 10−4 − 7.8928 · 10−1i

Hz [A/m] Hx [A/m] Hy [A/m]

3.1409 · 10−12

−1.1109 · 10−5i

−3.3354 · 10−6

−3.3354 · 10−6i

7.1930 · 10−5

−7.1930 · 10−5i

field inside the circular metamaterial waveguide is much smaller than
outside of the waveguide. For this reason, we have increased (zoomed)
the electric field strength lines inside waveguide in order to see them
(Figs. 6(b)–9(b)). Because the metamaterial has a relatively large
loss at 95 GHz in comparison with the metamaterial at 110 GHz, the
electric field inside of waveguide is weaker at 95 GHz (see Tables 3 and
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Table 4. The EM components of the first higher mode with
coordinates at the point with coordinates r = 2 mm, ϕ = 45◦ when
f = 95 GHz and f = 110GHz.

f = 95 GHz

Ez [V/m] Ex [V/m] Ey [V/m]

1.6760 · 10−4

−3.3526 · 10−4i

3.5399 · 10−5

−1.2553 · 10−5i

−2.7112 · 10−5

−1.2042 · 10−6i

Hz [A/m] Hx [A/m] Hy [A/m]

−1.8851 · 10−7

−1.9128 · 10−7i

4.6704 · 10−8

+8.1377 · 10−8i

−3.1731 · 10−6

−1.4861 · 10−6i

f = 110GHz

Ez [V/m] Ex [V/m] Ey[V/m]

−0.0053− 0.0122i 0.0041− 0.0021i −3.2013 · 10−4 + 9.6358 · 10−4i

Hz [A/m] Hx [A/m] Hy[A/m]

−1.0713 · 10−5

+9.0740 · 10−7i

7.1766 · 10−6

+9.3919 · 10−6i

−1.3582 · 10−4

+5.6938 · 10−5i

4) compared to the inner electric field at 110 GHz. For this reason, we
have zoomed the electric field strength lines at 95 GHz in the 143 times
and at 110GHz in the 14 time. The calculations of the electric fields
are fulfilled at approximately 10000 points in every cross-section.

In Figs. 6–9, we see that the electric field is asymmetrical on the
waveguide perimeter of the cross-section whilst the cross-section of
the waveguide is a circle. We see that the most part of the electric
field localizes outside of the waveguide. The outer electric field is the
strongest when ϕ is 0 or π radians. The electric field lines are directed
clockwise or counter-clockwise to the right and left of the points with
ϕ equal to π/2 or 3π/2 radians (Figs. 6(a)–9(a)). We see that at the
points when the electric field outside of the metamaterial waveguide
has the maximum value the field inside of the waveguide is minimal.
In Figs. 6(b)–9(b), the maximum electric field inside the metamaterial
waveguide is when ϕ is equal to π/2 or 3π/2 radians. We can see that
the electric field along the waveguide changes periodically (Figs. 6–9).

Comparing Figs. 6(a) and 7(a), we see that the main mode’s
electrical field at 110 GHz is twice as large and has a little different
distribution in the longitudinal direction in comparison with the
electrical field at 95 GHz. Since the losses of the main mode at
frequencies 95 GHz and 110GHz are small, the electric field amplitudes
vary slightly in the longitudinal direction. Comparing Figs. 8 and 9, we
also see that the larger is the electrical field outside of the waveguide the
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smaller is the electrical field inside of waveguide. The last statement
is true for all the investigated cases. The electric field amplitude of
the first higher mode becomes smaller in longitudinal direction with
increasing of coordinate z. We observe the wave attenuation (Figs. 8(b)
and 9(b)). The attenuation happens because the losses of the first
higher mode at 95 GHz and 110 GHz are large enough (Fig. 5(b)). The
electrical field inside of the waveguide is very small at all frequencies.
However, the observable electric field strength lines appear at the
waveguide boundary.

We would like to draw attention to the fact that the feature of the
asymmetric distribution of electric field in the cross-section of square
and circular metamaterial waveguides at 95 GHz is very similar.

4. CONCLUSION

1. We present here two simple effective algorithms that let us analyze
dispersion characteristics and 3D electric field distributions of the open
square and circular metamaterial waveguides.

2. We discover that the electric field is concentrated at
the metamaterial waveguide boundary and has the asymmetrical
distribution on the waveguide perimeter at frequency 95GHz when
the metamaterial is a single negative matter with the relatively large
negative complex permittivity. There are two areas on the perimeter of
the square (Figs. 3(a), 4(a)) and circular (Figs. 6(a)–9(a)) waveguides
where the electric field has the maximum value. These areas are shifted
relative to each other on π radians.

3. We demonstrate here values of six EM field components in
the point x = 2 · 10−3 m, y = 2 · 10−3 m of square waveguide and
r = 2 ·10−3 m, ϕ = 45◦ of circular waveguide (Tables 1–4) for the main
and first higher modes at two frequencies. We see that the hybrid
modes propagate in the metamaterial waveguides.

4. We find that the losses of square metamaterial waveguide are
very small at the frequency range from 105GHz to 115 GHz.

5. We find that the circular waveguide could be used as a
narrowband filter at frequencies 100–102.5GHz. The waveguide is
characterized by excellent properties, since the main mode has very
small losses at the frequency ranges 75–100 GHz and 102.5–115 GHz,
while the first higher mode has large losses at the same frequency
ranges.
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