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Abstract—Based on the vectorial angular spectrum representation
and the method of stationary phase, internal vectorial structures of
a phase-flipped Gauss (PFG) beam diffracting in the far field are
derived in analytical forms. The energy flux for the TE term, TM term
and the whole beam are derived and depicted by numerical examples.
Influences of the f parameter on the whole energy flux distributions are
analyzed. Discrepancies of the whole energy flux distributions between
the paraxial and non-paraxial cases are shown in detailed manners.
Furthermore, influences of the f parameter on discrepancies between
two cases are also studied.

1. INTRODUCTION

In has been known for a long time that, although most single-
mode laser sources, such as the TEM00 Gaussian mode as well
as its standard output beam, have been widely utilized in various
experimental aspects. However, generally speaking, it requires very
strict to beam profiles in applications such as high precise optical
measurements and laser beam shaping. Based on these facts, it
has been demonstrated that some special beam profiles are required
to improve the efficiency in applications of optical measurements.
Very recently, a novel optical technique that the generation of a
TEM00 Gaussian beam which owns a π phase flip between two halves
of the beam profile is proposed. It has been presented that such
beams can be generated by utilizing a special wave plate and a
masked Sagnac interferometer [1]. The phase-flipped Gaussian (PFG)
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beam has been shown to have potential applications in high precise
resolution measurements within one dimensional spatial domain. Since
then, N. Treps et al. demonstrated the experimental method for
the displacement measurement by utilizing multimode squeezed light
within internal phase flips, in order to surpass the standard quantum
limit [2]. Subsequently, based on the Huygens-Fresnel diffraction
integral and decompositions of the flipped mode into infinite sum of
odd Hermite-Gaussian modes, the closed-form analytical expressions
for a PFG beam are derived and its propagation properties through
a paraxial ABCD optical system have been known [3]. The non-
paraxial diffraction properties of a linearly polarized PFG beam have
been studied by using the Rayleigh-Sommerfeld diffraction integral [4].
Furthermore, an extended work has been made to reveal the recurrence
propagation expressions for the multi-mode Hermite-Gaussian beams
with a π phase flip between two halves of the beam profile [5]. It
has been indicated that the propagation of the PFG beam should
be treated as a special case of that of the phase-flipped Hermite-
Gaussian beams. On the other hand, the internal vectorial structures
of laser beams have attracted much attention. It has been proved
that, for an arbitrary polarized electromagnetic beam, which can be
expressed in terms of vectorial angular spectrum, is approximately
composed of the transversal electric (TE) term and the transversal
magnetic (TM) term [6–8]. Many investigations have been carried
out dealing with vectorial structural characteristics of various laser
beams in the far field [9–18], by means of the method of stationary
phase [19, 20]. Based on these studies, a question may arise: what
impact would a π flip phase have on the TE term, TM term and
the whole beam in the far field? However, to the best of our
knowledge, there has been no report conducting the investigation of
the internal vectorial structure of the PFG beam in the far field. Due
to above statements, this paper is aim to reveal the characteristics for
the internal structures of the PFG beam. The far-field energy flux
distributions of a linearly polarized vectorial PFG beam are expressed
and corresponding results are illustrated by numerical examples.
Subsequently, influences of the f parameter on the whole energy flux
distributions are analyzed. Discrepancies of the whole energy flux
distributions between the paraxial and non-paraxial cases are shown
in detailed manners. Finally, the influence of the f parameter on these
discrepancies is also investigated. Some comparisons are also made, in
order to show behaviors of the PFG beam in a much detailed manner.
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2. ANALYTICAL EXPRESSIONS FOR THE FAR-FIELD
TE AND TM TERMS

At the initial plane z = 0, assuming that the electric field of a PFG
beam is linearly polarized along the x direction in the two-dimensional
transversal Cartesian coordinate system, which takes the following
analytical form [1–5]

E (x0, y0, 0) = θ (x0) θ (y0) E0 (x0, y0, 0) êx, (1)

With

θ (x0) =
{−1 x0 < 0,

1 x0 ≥ 0,
θ (y0) =

{−1 y0 < 0,

1 y0 ≥ 0,
(2)

E0 (x0, y0, 0) =

√
2/π

w0
exp

(
−x2

0 + y2
0

w2
0

)
, (3)

where w0 denotes the waist width of the Gaussian beam at the plane

z = 0, êx is the unit vector along the x direction.
√

2/π

w0
is the

normalized factor whose action is to retain invariant laser powers at the
plane z = 0. Fig. 1 shows the amplitude of the electric field component
E(x0, y0, 0) in the transversal plane z = 0. It can be observed that, at
the axis line x = 0 or y = 0, there exists a π phase flip. As a result,
the amplitude of the electric field takes rapid transitions. The similar
phenomenon of the PFG beam can also be observed from Fig. 1 of
Ref. [1, 3].

Figure 1. Contour plots for amplitude of the electric field E(x0, y0, 0)
of the PFG beam within π flip phase at x = 0 and y = 0.
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Based on the vectorial angular representation of the Maxwell’s
equations, the diffracted electric field in the half space z > 0 turns out
to be [6–8]

E (r̂) =
∫ +∞

−∞

∫ +∞

−∞
A (p, q, m) exp[ik (px + qy + mz)] dpdq, (4)

With

A (p, q, m) = Ax (p, q)
(̂
i− p

m
k̂
)

, (5)

m=

{(
1− p2 − q2

)1/2

i
(
p2 + q2 − 1

)1/2 ,
p2 + q2 ≤ 1
p2 + q2 > 1 , (6)

where r̂ = x̂i + yĵ + zk̂ is the positional vector in the output plane, k
is the wave number which is related with the wavelength as k = 2π/λ.
The main result of this paper is based on Eq. (5), the vectorial angular
spectrum representation of an arbitrary electromagnetic wave on a
given plane.This result is an approximation which is only suitable for
the far-field region of electromagnetic beams, of which effects of the
evanescent wave can be neglected. Whereas, in the near diffraction
field, effects of the evanescent wave should be considered, the method of
the vectorial angular spectrum used in this paper can not be applicable
anymore. In this situation, a more rigorous approach, i.e., the disposal
based on vector potentials of electromagnetic Hertz vector, can be
performed. This method shows little precision than the method of
vectorial angular spectrum utilized in this paper, because the weight of
the evanescent wave is so trivial compared to that of the homogeneous
one, in general. In a word, the method of the vectorial angular
spectrum is not only precise in calculations here but also shows explicit
in its final analytical form. Eq. (6) indicates that the inequality
p2 + q2 ≤ 1 corresponds to the homogeneous wave on diffraction.
Comparably, the inequality p2 + q2 > 1 corresponds to the diffraction
of the evanescent wave. p and q are two orthogonal components defined
in the frequency domain. In Eq. (5), the component Ax(p, q) can be
determined by the Fourier transformation of the x component of the
initial electric field [9–18]

Ax (p, q) =
1
λ2

∫ +∞

−∞

∫ +∞

−∞
Ex (x0, y0, 0) exp[−ik (px0 + qy0)] dx0dy0,

(7)
Noted that in Eqs. (4) and (7), the time-dependent factor exp(−iωt)
is omitted, in which ω denotes the angular frequency. Eq. (4) means
that, during the diffraction of beams in free space, the longitudinal
electric field component may arise which results from the divergence
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theorem of the electric field [20]. In the far-field transversal plane, the
TE and TM terms are perpendicular to each other. Based on these
facts, in the frequency domain, there exist two unit vectors ê1 and ê2

which can be defined as [6–8]

ê1 =
q

(p2 + q2)1/2
êx − p

(p2 + q2)1/2
êy, (8a)

ê2 =
pm

(p2 + q2)1/2
êx +

qm

(p2 + q2)1/2
êy −

(
p2 + q2

)1/2 êz, (8b)

where êy and êz are the unit vectors along the y and z directions defined
in the three dimensional Cartesian coordinate system. Then three unit
vectors ŝ, ê1, ê2 should form a mutually perpendicular right-handed
system

ŝ× ê1 = ê2, ê1 × ê2 = ŝ, ê2 × ŝ = ê1, (9)

where ŝ = pêx + qêy + mêz. According to Eqs. (8) and (9), in the
far-field region, the diffracted electric field can be expressed as a sum
of the TE and TM terms [9–15]

E (r̂) = ETE (r̂) + ETM (r̂) , (10)

with ETE(r̂) and ETM(r̂) given by

ETE(r̂)=
∫ +∞

−∞

∫ +∞

−∞
[A(p, q)·ê1]ê1×exp[ik (px+qy+mz)]dpdq, (11a)

ETM(r̂)=
∫ +∞

−∞

∫ +∞

−∞
[A(p, q) ·̂e2] ê2×exp[ik (px+qy+mz)]dpdq, (11b)

Similarly, the diffracted magnetic field can also be expressed as a sum
of the TE and TM terms

H (r̂) = HTE (r̂) + HTM (r̂) , (12)

with HTE(r̂) and HTM(r̂) given by

HTE(r̂)=
∫ +∞

−∞

∫ +∞

−∞
[A (p, q)·ê1] ê2×exp [ik (px+qy+mz)]dpdq, (13a)

HTM(r̂)=
∫ +∞

−∞

∫ +∞

−∞
[A (p, q)·ê2] ê1×exp[ik (px+qy+mz)]dpdq, (13b)

Substituting Eqs. (1)–(3) into Eq. (7), the vectorial angular spectrum
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component Ax(p, q) can be expressed as

Ax (p, q) =

√
2/π

w0

∫ +∞

−∞
θ (x0) exp

(
−x2

0

w2
0

−ikpx0

)
dx0

∫ +∞

−∞
θ (y0)

exp
(
−y2

0

w2
0

−ikqy0

)
dy0 =

√
2/π

w0

{∫ +∞

0
exp

(
− x2

0

w2
0

−ikpx0

)
dx0

−
∫ +∞

0
exp

(
−x2

0

w2
0

+ikpx0

)
dx0

}
×

{∫ +∞

0
exp

(
−y2

0

w2
0

−ikqy0

)
dy0

−
∫ +∞

0
exp

(
−y2

0

w2
0

+ikqy0

)
dy0

}
, (14)

Recalling the following integral formula [21]∫ +∞

0
exp

(
−x2

4β
− γx

)
dx =

√
πβ exp

(
βγ2

){
1− erf

(
γ
√

β
)}

,

Re β > 0, (15)
After tedious but straightforward integral calculations, Eq. (14) can
be further arranged into the following analytical form

Ax(p, q) =
1

4
√

2πλf
exp

{
− 1

4f2

(
p2+q2

)}{
erf

(
− i

2f
p

)
− erf

(
i

2f
p

)}

×
{
erf

(
− i

2f
q

)
− erf

(
i

2f
q

)}
, (16)

where the sign “erf” denotes the error function. f = 1/kw0 is the f
parameter which has been defined in [4, 5]. In general, the f parameter
is commonly utilized to describe how paraxial degree of a laser beam
evaluates, upon propagation. Subsequently, substituting Eqs. (5) and
(16) into Eq. (11), after tedious vectorial performances, the diffracted
electric field for the TE and TM terms can be further rewritten as

ETE (r̂) =
1

4
√

2πλf

∫ +∞

−∞

∫ +∞

−∞
exp

{
− 1

4f2

(
p2+q2

)}{
erf

(
− i

2f
p

)

−erf
(

i

2f
p

)}
×

{
erf

(
− i

2f
q

)
− erf

(
i

2f
q

)}
q

p2+q2
(qêx−pêy)

× exp[ik (px+qy+mz)] dpdq, (17a)

ETM (r̂) =
1

4
√

2πλf

∫ +∞

−∞

∫ +∞

−∞
exp

{
− 1

4f2

(
p2+q2

)} {
erf

(
− i

2f
p

)

−erf
(

i

2f
p

)}
×

{
erf

(
− i

2f
q

)
− erf

(
i

2f
q

)}(
p2

p2+q2
êx+

pq

p2+q2
êy

−p

m
êz

)
× exp[ik (px+qy+mz)] dpdq, (17b)
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Similarly, Substituting Eqs. (5) and (16) into Eq. (13), the diffracted
magnetic field for the TE and TM terms can be expressed as

HTE (r̂) =
1

4
√

2πλf

∫ +∞

−∞

∫ +∞

−∞
exp

{
− 1

4f2

(
p2+q2

)}{
erf

(
− i

2f
p

)

−erf
(

i

2f
p

)}
×

{
erf

(
− i

2f
q

)
− erf

(
i

2f
q

)}
q

p2+q2
{pmêx+qmêy

−(
p2+q2

)
êz

}× exp[ik (px+qy+mz)] dpdq, (18a)

HTM (r̂) =
1

4
√

2πλf

∫ +∞

−∞

∫ +∞

−∞
exp

{
− 1

4f2

(
p2+q2

)}{
erf

(
− i

2f
p

)

−erf
(

i

2f
p

)}
×

{
erf

(
− i

2f
q

)
− erf

(
i

2f
q

)}
p

(p2+q2) m
(qêx−pêy)

× exp[ik (px+qy+mz)] dpdq, (18b)

For the diffraction of the PFG beam in the far field, integrations
in Eqs. (17) and (18) can be performed by utilizing the method of
stationary phase [19, 20]. In this paper, the utilization of this method
indicates that, the integrals in Eqs. (17) and (18) should be restricted
within the range of 0 ≤ p2 + q2 ≤ 1. Therefore, in the following
derivations, the condition kr = k(x2 + y2 + z2)1/2 → ∞ is fulfilled.
After tedious integral calculations, the electric and magnetic field
components for the TE and TM terms can be respectively derived
as

ETE (r̂) =−i
yz

4
√

2πfρ2r2
exp

(
− ρ2

4f2r2

){
erf

(
− i

2fr
x

)
− erf

(
i

2fr
x

)}

{
erf

(
− i

2fr
y

)
− erf

(
i

2fr
y

)}
× (yêx−xêy) exp(ikr) , (19a)

ETM (r̂) =−i
x

4
√

2πfρ2r2
exp

(
− ρ2

4f2r2

){
erf

(
− i

2fr
x

)
− erf

(
i

2fr
x

)}

{
erf

(
− i

2fr
y

)
− erf

(
i

2fr
y

)}
× (

xzêx+yzêy−ρ2êz

)
exp(ikr) , (19b)

HTE (r̂) =−i
yz

4
√

2πfρ2r3
(ε0/µ0)

1/2 exp
(
− ρ2

4f2r2

){
erf

(
− i

2fr
x

)

−erf
(

i

2fr
x

)}
×

{
erf

(
− i

2fr
y

)
− erf

(
i

2fr
y

)}

(
xzêx+yzêy−ρ2êz

)
exp(ikr) , (19c)
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HTM (r̂) = i
x

4
√

2πfρ2r
(ε0/µ0)

1/2 exp
(
− ρ2

4f2r2

){
erf

(
− i

2fr
x

)

−erf
(

i

2fr
x

)}
×

{
erf

(
− i

2fr
y

)
−erf

(
i

2fr
y

)}
(yêx−xêy)exp(ikr), (19d)

where r = (x2 +y2 +z2)1/2, ρ = (x2 +y2)1/2. ε0 and µ0 are the electric
permittivity and the magnetic permeability of vacuum, respectively.
Observing from Eq. (19), it is found that, in the far field region, the TE
and TM terms for both the electric and magnetic fields are orthogonal
to each other. On the other hand, analytical forms such as Eqs. (18)
and (19) are based on the validity of the vectorial angular spectrum
representation, since the range of the f parameter has not been limited,
the analytical TE and TM terms of the PFG beam are applicable not
only to the paraxial case, but also to the non-paraxial case.

3. ENERGY FLUX DISTRIBUTIONS OF THE PFG
BEAM IN THE FAR FIELD

As the non-paraxial case should be taken into considerations, in
order to study the characteristics of the PFG beam in the far
field, the intensity distributions should be replaced by the energy
flux distributions. The energy flux distribution is defined by the z
component of the time-average Poynting vector

〈Sz〉 =
1
2
Re [E (r̂)×H∗ (r̂)]z , (20)

where Re denotes taking the real part and the asterisk means the
complex conjugation. The angle bracket indicates taking the ensemble
average with respect to the time variable t. Accordingly, the energy
flux distributions of TE and TM terms in the far field are respectively
given by

〈Sz〉TE =
1
2
Re [ETE (r̂)×H∗

TE (r̂)]z

=
y2z3

32πf2ρ2r5
(ε0/µ0)

1/2 exp
(
− ρ2

2f2r2

)
×

∣∣∣∣erf
(
− i

2fr
x

)
−erf

(
i

2fr
x

)∣∣∣∣
2

×
∣∣∣∣erf

(
− i

2fr
y

)
−erf

(
i

2fr
y

)∣∣∣∣
2

, (21)
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〈Sz〉TM =
1
2
Re [ETM (r̂)×H∗

TM (r̂)]z

=
x2z

32πf2ρ2r3
(ε0/µ0)

1/2 exp
(
− ρ2

2f2r2

)
×

∣∣∣∣erf
(
− i

2fr
x

)
−erf

(
i

2fr
x

)∣∣∣∣
2

×
∣∣∣∣erf

(
− i

2fr
y

)
−erf

(
i

2fr
y

)∣∣∣∣
2

, (22)

The total energy flux distribution of the PFG beam yields

〈Sz〉 = 〈Sz〉TE+〈Sz〉TM

=
z

32πf2ρ2r3

(
x2 +

z2

r2
y2

)
exp

(
− ρ2

2f2r2

)
×

∣∣∣∣erf
(
− i

2fr
x

)
−erf

(
i

2fr
x

)∣∣∣∣
2

×
∣∣∣∣erf

(
− i

2fr
y

)
− erf

(
i

2fr
y

)∣∣∣∣
2

, (23)

Noted that Eqs. (21)–(23) are applicable for the general non-paraxial
case of the PFG beam in the far field region. Some more special cases
can be extracted from these analytical forms. In the paraxial case, the
following approximation can be made [20]

r ≈ z +
ρ2

2z
≈ z, (24)

Substituting Eq. (24) into Eq. (23), the total energy flux distribution
for the paraxial case reduces to the form

〈Sz〉p =
1

32πf2ρ2z2
exp

(
− ρ2

2f2z2

) ∣∣∣∣erf
(
− i

2fz
x

)
− erf

(
i

2fz
x

)∣∣∣∣
2

×
∣∣∣∣erf

(
− i

2fz
y

)
− erf

(
i

2fz
y

)∣∣∣∣
2

, (25)

It should be pointed out that, the result of Eq. (25) is derived from
Eq. (23), under the paraxial approximation (see Eq. (24)). Generally
speaking, the method of stationary phase utilized in calculating the
integrals in Eq. (17) and Eq. (18) can be applicable to both the paraxial
and non-paraxial cases [19, 20], in the far-field region. Therefore, the
analytical form of Eq. (23) stands for the energy flux distribution
of the beam for both the paraxial and non-paraxial cases. On the
other hand, Eq. (24) is also only valid in the far region; this is the
same as the application of the method of stationary phase before.
However, the paraxial approximation should be further required to
the result of Eqs. (24) and (25), which indicates that the non-paraxial
case can not be applicable to Eq. (25) anymore. In a word, these two
approximations used in solving Eq. (17) and that of Eq. (24) are totally
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different, because the latter one only applies to the paraxial case,
comparably the former one can be applicable for both the paraxial and
non-paraxial cases. For these two approximations, their differences can
be further compared in Figs. 6, 7 as values of the f -parameter increase.
This phenomenon would be elaborated in detail, in the next section
below. Observing from Eqs. (21)–(25), one can conclude that, for the
PFG beam diffracting into the far field, the energy flux distributions
for the TE term, TM term and the whole beam would compose
of a fundamental Gauss function and absolute values of the error
functions. Comparing these analytical forms with previous ones [3–
5], it demonstrates that the error functions shown in Eqs. (21)–(25)
are induced by the π flip phase of the initial laser beam. This means
that the far-field beam profile is affected by the flip phase of laser
sources, which have an additional impact on diffraction patterns other
than roles of Gauss functions. In the following part, some numerical
simulations are performed to reveal the influence of the π flip phase of
sources on the far-field energy flux distributions.

4. NUMERICAL EXAMPLES

Firstly, the energy flux distributions of the TE term, TM term and
the whole PFG beam are depicted in Figs. 2–4, for different values of
the f parameter. It has been known from previous reports [4, 5, 22]
that, a PFG beam within larger f parameter may show more non-
paraxial characteristics. To define a paraxial Gaussian beam, namely,
f ≤ 0.18 should be required at the plane z = 0 [22]. It is also
found that, for a PFG beam diffracting in free space, the paraxial
approximation holds true if f ≤ 0.04 [4]. Figs. 2–4 show the energy flux
distributions of the TE term, TM term and the whole PFG beam at the
plane z = 500λ, while the f parameter is chosen as 0.32, 0.16, 0.03,
respectively. A common phenomenon observed from these contour
figures is that, after diffraction in free space for long distances, energy
flux distributed profiles of the PFG beam would split into four separate
side-lobes within axial shadows along the x and y axis. Causes for this
phenomenon might be explained like this: The PFG beam carries π
flipped phases at the cross line x = 0 and y = 0 of the plane z = 0 (see
Fig. 1). The π flipped phase may cause discrepant properties between
several parts of the PFG beam when it diffracts in free space. As a
result, it may induce the discontinuity or even singularity of energy
flux distributions. In another point of view, this phenomenon can also
be explained in the analytical approach. In the vicinity of the axis
x = 0 and y = 0, the error function in Eqs. (23) and (25) can be
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approximately expressed as [4, 21]

erf(x) =
2x√
π

+ O
(
x3

)
, for |x| → 0, (26)

within the approximation of Eq. (26), Eqs. (23) and (25) can be
respectively rewritten as

〈Sz〉 =
x2y2z

2π3f6ρ2r7

(
x2 +

z2

r2
y2

)
exp

(
− ρ2

2f2r2

)
, (27)

〈Sz〉p =
x2y2

2π3f6z6
exp

(
− ρ2

2f2z2

)
, (28)

If |x| → 0 or |y| → 0 is satisfied in Eqs. (27) and (28), the energy flux
distributions for both the paraxial and non-paraxial cases tend to zero.
This is why the axial shadows occur in Figs. 2–4.

(a) (b)

(c)

Figure 2. Energy flux distributions of the PFG beam at the plane
z = 500λ, beam parameter f = 0.32. (a) TE term. (b) TM term.
(c) The whole beam.
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(a) (b)

(c)

Figure 3. Energy flux distributions of the PFG beam at the plane
z = 500λ, beam parameter f = 0.16. (a) TE term. (b) TM term.
(c) The whole beam.

Secondly, one can observe that the energy flux distributions show
discrepancies in their profiles, for different values of the f parameter.
When f = 0.32, edges of profiles show more Gaussian characteristics,
which is shown in Fig. 2. Conversely, while decreasing the f parameter,
it would induce more linear characteristics appearing in edges of
profiles, which are shown in Figs. 3, 4. This phenomenon can be also
explained in analytical aspects. By expanding the error functions in
to power series [21]

erf(x) =
2√
π

∞∑

k=1

(−1)k+1 x2k−1

(2k − 1) (k − 1)!
, (29)

Eqs. (23) and (25) can be respectively rewritten into the following
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(a) (b)

(c)

Figure 4. Energy flux distributions of the PFG beam at the plane
z = 500λ, beam parameter f = 0.03. (a) TE term. (b) TM term.
(c) The whole beam.

forms

〈Sz〉= 8z

π3f2ρ2r3

(
x2+

z2

r2
y2

)
exp

(
− ρ2

2f2r2

)
×L (k1, x, r)×L (k2, y, r),(30)

〈Sz〉p=
8

π3f2z2
exp

(
− ρ2

2f2z2

)
×L (k1, x, z)×L (k2, y, z) , (31)

where the factor L(kj , u, l) in Eqs. (30) and (31) is represented by

L (kj , u, l) =





∞∑

kj=1

(−1)2kj+1

(
x

2fl

)2kj−1

(2kj − 1) (kj − 1)!





2

,

(j = 1, 2; u = x, y; l = r, z), (32)

Observing Eqs. (30) and (31), it is found that, the total energy flux
distributions of the PFG beam can be represented by the product
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of Gaussian parts and sums of linear combinations with respect to
powers of x and y. Therefore, the decrement of the f parameter
would simultaneously induce the decrement of Gaussian parts and the
increment of the linear combined factor L. As a result, the edges of
profiles show more linear characteristics in Figs. 3, 4.

Figure 5 shows comparisons of the total energy flux distributions
between the paraxial and non-paraxial cases, for different values of the
f parameter. Among these subfigures, (a), (c) and (e) are calculated
by Eq. (23). Comparably, (b), (d) and (f) are calculated by Eq. (25).
One can conclude from these contour plots that, when f = 0.03, the
paraxial result coincides well with the non-paraxial result. Whereas,
as the f parameter subsequently increases, the discrepancy between
two cases begins to show up. To demonstrate this discrepancy in a
more detailed approach, Figs. 6, 7 show comparisons of the normalized
energy flux distributions of the PFG beam at the cross section x = y,
for different values of the f parameter. These figures indicate that, the
paraxial approximation holds true if the f parameter is in the vicinity
of or lower than 0.05. When f > 0.05, the discrepancy between the
paraxial and non-paraxial cases turns out to be in evidence. This
result corresponds well to requirements of the f parameter in Ref. [4].
Here, one can demonstrates that, while increasing the f parameter, the
basic physical cause for these differences is the applications of different
approximations, the method of stationary phase and the paraxial
approximation, respectively. The method used in solving Eq. (17)
is the method of stationary phase, which is applicable to both the
paraxial and non-paraxial case. However, Eq. (25) is derived under the
validation of paraxial approximation Eq. (24), which is only applicable
to the paraxial case. When the value of the f parameter increases, the
PFG beam is more alike a paraxial beam. Finally, the results by using
two different approximations deviate from each other, which have been
shown in Figs. 6, 7. Therefore, in practical applications, one can freely
manipulate diffraction patterns of the PFG beam by choosing different
f parameters of the initial laser source.

Figure 8 depicts the comparison between the results calculated by
the direct FFT method [23–26] and the numerical result (see Eq. (23)),
for different reference distances from the source plane. The f parameter
is chosen as f = 0.53. The principle of the fast Fourier transform
(FFT) method has been explicitly introduced in Refs. [25, 26]. In our
paper, we can utilize this method to directly perform the integrals in
Eqs. (17) and (18) instead of using the method of stationary phase.
In Fig. 8, the red line is calculated by the analytical form Eq. (23),
while the blue line is directly calculated by Eqs. (17) and (18) by using
the FFT method. From comparisons of two lines, one can observe
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Comparisons of the total energy flux distributions between
the paraxial and non-paraxial cases, at the plane z = 500λ, for different
values of the f parameter. (a), (c), (e): paraxial result (calculated by
Eq. (25)). (b), (d), (f): non-paraxial result (calculated by Eq. (23)).
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(a) (b)

Figure 6. Comparisons of the normalized transversal energy flux
distributions (cross section x = y) between the paraxial and non-
paraxial cases, at the plane z = 500λ. (a) f = 0.05, (b) f = 0.16.

(a) (b)

Figure 7. Comparisons of the normalized transversal energy flux
distributions (cross section x = y) between the paraxial and non-
paraxial cases, at the plane z = 500λ. (a) f = 0.53, (b) f = 0.80.

that, in the far field (z = 500λ), the result by using the FFT method
corresponds well with that by utilizing the method of stationary phase,
which confirms that the utilization of the method of stationary phase
is valid in our paper. However, in the short distance depart from the
source (z = 50λ), results calculated by two methods can not match
with each other. This is because in short distances, the evanescent wave
play a major role in the diffracted wave field, thus, the result directly
calculated by Eqs. (17), (18) is more precise than that calculated by
Eq. (23).
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Figure 9 shows the comparison between the energy density W (r̂) =
E(r̂) + H(r̂) and the energy flux 〈Sz〉 at the reference plane z = 500λ.
The distributions of the energy and the energy flux are both normalized
to their maximal values, respectively. Fig. 9 indicates that, in the far
field, distributions of the energy density and energy flux gradually differ
in their patterns when the f parameter increases from 0.08 to 0.53.
This is because, at large f -value, the z component of the diffracted
field hardly exists; the transversal electric/magnetic components play
major roles in distributions of the energy density (flux). Therefore,

(a) (b)

Figure 8. Comparison between the results calculated by the direct
FFT method (the blue line) and the numerical result (the red line).
The f parameter is chosen as f = 0.53. (a) z = 500λ, (b) z = 50λ.

(a) (b)

Figure 9. Comparisons between the energy density W (r̂) = E(r̂) +
H(r̂) and the energy flux 〈Sz〉 of the PFG beam, for different values
of the f parameter. The diffraction distance is chosen as z = 500λ.
(a) f = 0.08, (b) f = 0.53.
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the value of the z component of the time-averaged Poynting vector is
smaller than that of the transversal energy density vectors.

Finally, our vectorial results such as Eqs. (21)–(24) can be
compared with some scalar cases (see Refs. [3–5]). Observing Figs. 1–
3 of Ref. [4], one can conclude that, the intensity of scalar PFG
beams for both the paraxial and non-paraxial cases are continually
distributed in the transversal plane upon propagation. However, in
our numerical examples such as Figs. 2–5 illustrate, for the vectorial
case, there exist phase singularity in the cross-section x = 0 and y = 0
due to the effect of phase flip in the source plane. This means that
the energy flux distributions for the vectorial case (polarized along
the x axis) are not continually distributed in the transversal plane.
This difference between the vectorial theoretical case and the scalar
theoretical case not only exists under the paraxial approximation,
but also are applicable for the non-paraxial case. As we know, this
difference has not been introduced in previous reports such as [3–5].

5. CONCLUSIONS

In this paper, based on the vectorial angular spectrum representation
and the method of stationary phase, internal vectorial structures of
the phase-flipped Gauss (PFG) beam in the far field are derived in
analytical forms. Energy flux distributions for the TE term, TM term
and the whole beam are depicted by numerical examples. Influences
of the f parameter on the energy flux distributions are analyzed
in a detailed approach. Besides, discrepancies of the total energy
flux distributions between the paraxial and non-paraxial results are
illustrated and analyzed by expansions of the error function into power
series. It is found that, for the PFG beam diffracting in free space, the
paraxial approximation holds true if the f parameter is in the vicinity of
or lower than 0.05. These results may provide potential applications for
productions and manipulations of the PFG beam in free space optical
communications.
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