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Abstract—We prove a theorem on the magnetic energy minimum in
a system of perfect, or ideal, conductors. It is analogous to Thomson’s
theorem on the equilibrium electric field and charge distribution in
a system of conductors. We first prove Thomson’s theorem using a
variational principle. Our new theorem is then derived by similar
methods. We find that magnetic energy is minimized when the current
distribution is a surface current density with zero interior magnetic
field; perfect conductors are perfectly diamagnetic. The results agree
with currents in superconductors being confined near the surface. The
theorem implies a generalized force that expels current and magnetic
field from the interior of a conductor that loses its resistivity. Examples
of solutions that obey the theorem are presented.
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1. INTRODUCTION

Thomson’s theorem states that electric charge density on a set of fixed
conductors at static equilibrium is distributed on the surface of the
conductors in such a way that the interior electric field is zero and
the surface electric field is normal to the surface. Here, we will prove
an analogous theorem on the magnetic field and current distribution
in ideal conductors. We find that a stationary current density must
distribute itself on the surface of the conductors in such a way that
the interior magnetic field is zero while the surface magnetic field is
perpendicular to both the current density and the surface normal.

When W. Thomson (Lord Kelvin) derived his theorem in 1848 a
magnetic analog did not seem interesting since conductors with zero
resistivity were unknown. Since the discovery of superconductivity in
1911 this has changed and stationary current distributions in type I
superconductors, below the critical field, indeed obey our theorem.
In spite of this the theorem is not stated, hardly even hinted at, in
the literature. We wish to emphasize that even though the theorem
applies to superconductors, phase transitions, statistical mechanics, or
thermodynamics are irrelevant. Zero resistivity is simply assumed, not
explained or derived. The theorem is purely a consequence of classical
electromagnetism.

The outline of this article is as follows. We start by deriving
Thomson’s theorem using a variational principle. We then derive our
minimum magnetic energy theorem in an analogous way and discuss
previous work on the problem. After that an illuminating example is
presented in which the energy reduction due the interior field expulsion
can be calculated explicitly. Two Appendices give further motivation
and explicit solutions illustrating the theorem for simple systems.

2. ENERGY MINIMUM THEOREMS

Electromagnetic energy can be written in a number of different ways.
Since we will be interested in conductors and superconductors we will
assume that microscopic dipoles play no essential role. The source
of electric and magnetic fields from conductors and superconductors
are known to be due to the distribution and motion of conduction
electrons relative to the positive ion background†. Distinguishing
between the D, H and E, B fields is then unnecessary. That this is
valid when treating the thermodynamics of the Meissner effect in type I
superconductors is stressed by Carr [1]. Relevant energy expressions
† We return to the experimental evidence for this in Appendix B.
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are then,

Ee + Em =
1
8π

∫
(E2 + B2)dV (1)

=
1
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∫ (
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1
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j ·A

)
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1
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|r− r′|

)
dV dV ′. (3)

Here, the first form is always valid while the two following assume quasi
statics, i.e., essentially negligible radiation.

According to Thomson’s theorem, the electric charge on a set
of conductors distributes itself on the conductor surfaces thereby
minimizing the electrostatic energy. W. Thomson did not present a
formal mathematical proof but such proofs may be found in most
classic textbooks [2–5]. A recent derivation of the theorem in its
differential form is by Bakhoum [6]. A derivation based on a variational
principle can be found in the textbook by Kovetz [7]. A different
approach also based on a variational principle, is presented below.
Thomson’s result is widely known and is useful in many applications.
It has, e.g., been used to determine the induced surface charge
density [8, 9], and in the tracing and the visualization of curvilinear
squares field maps [6]. Other applications range from interesting
teaching tools [10] to useful computational methods such as Monte
Carlo energy minimization [11].

There are various similarities between electrostatics and magne-
tostatics, or quasi-statics, but for resistive media the magnetic field
due to current dissipates‡. For perfect, or ideal conductors, however,
there should be something corresponding to the magnetic version of
Thomson’s theorem. Indeed, below we will prove a theorem analogous
to that of Thomson: Magnetic energy is minimized by surface current
distributions such that the magnetic field is zero inside while the sur-
face field is normal to the current and the surface normal. Energy
conservation is assumed restricting the validity to perfect, or ideal,
conductors. Previously somewhat similar results have appeared in the
literature [12, 13] and we discuss those below.
‡ Note that we are not concerned with magnetism due to microscopic dipole density.
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2.1. Thomson’s Theorem

In equilibrium, the electrostatic energy functional for a system of
conductors surrounded by vacuum, may be written as§,

Ee =
∫

V

[
%φ− 1

8π
(∇φ)2

]
dV, (4)

by combining the electric parts of (1) and (2) and using E = −∇φ.
We now split the integration region into the volume of the conductors,
Vin, the exterior volume, Vout, and the boundary surfaces S,

Ee =
∫

Vin

[
%φ− 1

8π
(∇φ)2

]
dV −

∫

Vout

1
8π

(∇φ)2 dV +
∫

S
σφ dS, (5)

where σ is the surface charge distribution.
We now use, (∇φ)2 = ∇ · (φ∇φ) − φ∇2φ, and rewrite the

divergencies using Gauss theorem. The energy functional then
becomes,

Ee =
∫
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[
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1
8π
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8π
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)]
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where ∇+ and ∇− are the gradient operators at the surface in the
outer and inner limits, respectively. The total charge in each conductor
is constant and restricted to the conductor volume and surface.
We handle this constraint by introducing a Lagrange multiplier λ.
Infinitesimal variation of the energy then gives,

δEe =
∫

Vin

[
δφ

(
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1
4π
∇2φ

)
+ δ% (φ− λ)

]
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∫
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1
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{
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1
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)]

+ δσ (φ− λ)
}

dS. (7)

From this energy minimization, the Euler-Lagrange equations become:

Vin :
{
∇2φ = −4π%
φ = λ

(8)

S :
{ −n̂ · (∇+φ−∇−φ) = 4πσ

φ = λ
(9)

Vout : ∇2φ = 0 (10)
§ The ultimate motivation for this specific form of the energy functional, and the
corresponding one in the magnetic case, is that they lead to simple final equations.
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According to Equations (8) the potential is constant inside the
conductor in the minimum energy state, and therefore % = 0 there.
Equations (9) mean the electric charge is distributed on the surface
in such a way that the potential is constant there. The second of
Equations (8) implies that ∇−φ = 0 and the first of Equations (9)
then implies that n̂ ·E+ = 4πσ. This concludes the proof of Thomson’s
theorem.

2.2. Minimum Magnetic Energy Theorem

A similar procedure will now be applied to the magnetic field. We
write the magnetic energy functional for a time independent magnetic
field as,

Em =
∫

V

[
1
c
j ·A− 1

8π
(∇×A)2

]
dV, (11)

i.e., as two times the form (2) of the magnetic energy minus the
form (1), using B = ∇ × A. As before we split the volume into the
volume interior to conductors, the exterior vacuum, and the surface at
the interfaces, and write,

Em =
∫
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1
c
j ·A− 1

8π
(∇×A)2

]
dV

−
∫
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1
8π
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1
c

∫

S
k ·AdS, (12)

where k is the surface current density. We now use the identity,

(∇×A)2 = ∇ · [A× (∇×A)] + A · [∇× (∇×A)] , (13)
and then use Gauss theorem to rewrite the divergence terms. The
energy functional then becomes:

Em =
∫
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{
1
c
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8π
A · [∇× (∇×A)]

}
dV

−
∫
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1
8π
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+
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{
1
c
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8π
A · [n̂× (∇+ ×A−∇− ×A

)]}
dS.

As in the electric case, constraints must be imposed. Due to charge
conservation, the electric current density must obey the continuity
equation, for zero charge density, both inside and on the surface of
the conductors [14]:

∇ · j = 0 (15)
∇S · k = 0 (16)
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where ∇S is the surface gradient operator. Notice that these
constraints are local, not global. In other words, the relevant
Lagrange multiplier is not constant but a scalar field λ(r). Using this,
infinitesimal variation of the magnetic energy gives,

c δEm =
∫

Vin

{
δA ·

(
j− c

4π
[∇× (∇×A)]

)
+ δj · (A−∇λ)

}
dV

−
∫
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δA· c
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Equating this to zero we find that,

Vin :
{
∇× (∇×A) = ∇×B = 4π

c j ,
A = ∇λ ,

(18)

and,

S :
{

k = c
4π n̂× (∇+ ×A−∇− ×A) ,

A = ∇Sλ ,
(19)

and,
Vout : ∇× (∇×A) = ∇×B = 0, (20)

are the Euler-Lagrange equations for this energy functional.
According to Equation (18) B = ∇ × ∇λ = 0, so the magnetic

field must be zero in Vin. Consequently also the volume current density
is zero, j = 0, inside the conductor, in the minimum energy state.

2.2.1. Surface Currents

Now consider the results for the surface, Equation (19). Our results
from Vin show that ∇− ×A = 0, so the equation reads,

k =
c

4π
n̂× (∇+ ×∇Sλ

)
. (21)

Let us introduce a local Cartesian coordinate system with origin on
the surface, such that the surface is spanned by x̂, ŷ with unit normal
n̂ = ẑ = x̂ × ŷ. Assuming that the surface is approximately flat we
then have that,

∇S = x̂
∂

∂x
+ ŷ

∂

∂y
, and, ∇+ = x̂

∂

∂x
+ ŷ

∂

∂y
+ n̂

∂

∂z+
= ∇S + n̂

∂

∂z+
.

(22)
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Figure 1. Some of the results of our theorem on the current density
and magnetic field of an ideal conductor at minimum energy are
illustrated here. Here B+ is the magnetic field on the outside of the
surface S with surface unit normal n̂. The bulk current density j is
zero, only the surface current density k is non-zero.

Since, A = ∇Sλ, the vector potential is tangent to the conducting
surface and we get,

4π

c
k = n̂×

[(
∇S + n̂

∂

∂z+

)
×∇Sλ(x, y, z)

]
(23)
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∂
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for the surface current density. Rewriting the triple vector product we
find,

4π

c
k =

∂

∂z+
[(n̂ ·A)n̂− (n̂ · n̂)A] = − ∂A

∂z+
, (25)

so the surface current density is parallel to the outside normal
derivative of the vector potential. We note that this agrees with the
well known result [5],

4π

c
k = n̂× (B+ −B−), (26)

for the case of zero interior field (B− = 0). Our results are summarized
in Fig. 1.

2.2.2. External Fields

Neither Thomson’s theorem nor our minimum magnetic energy
theorem are formally valid for conductors in constant external fields. In
both cases, however, such a situation can be regarded as a limiting case.



194 Fiolhais et al.

In the case of Thomson’s theorem one can include two large, distant,
and oppositely charged parallel conducting plates. A small system of
conductors between these can then approximately be regarded as in an
electric field that approaches a constant external field at large distance.
In a similar way the set of perfect conductors can be thought of as inside
two large perfectly conducting Helmholtz coils (tori) which provide an
approximately constant external magnetic field at large distance.

2.3. Previous Work

The fact that there is an energy minimum theorem for the magnetic
energy of ideal, or perfect, conductors, analogous to Thomson’s
theorem, is not entirely new. In an interesting, but difficult and
ignored, article by Karlsson [12] such a theorem is stated. Karlsson,
however, restricts his theorem to conductors with holes in them. In the
electrostatic case charge conservation prevents the energy minimum
from being the trivial zero field solution. In our magnetic ideal
conductor case the corresponding conservation law is the conservation
of magnetic flux through a hole [15, 16]. As long as one conductor of
the system has a hole with conserved flux there will be a non-trivial
magnetic field. To require that all conductors of the system have holes,
as Karlsson does, therefore seems unnecessarily restrictive. One of
Karlsson’s results is that the current distribution on a superconducting
torus minimizes the magnetic energy.

A result by Bad́ıa-Majós [13] comes even closer to our own and
we outline it here. The current density is assumed to be of the form,

j = qnv, (27)

where q is the charge of the charge carriers and n is their number
density. The time derivative is then given by,

dj
d t

=
qn

m
m

dv
d t

=
qn

m

(
qE +

q

c
v×B

)
=

q2n

m
E +

q

mc
j×B, (28)

assuming that only the Lorentz force acts (ideal conductor). We now
recall Poynting’s theorem [17] for the time derivative of the field energy
density of a system of charged particles,

d
d t

(
E2 + B2

8π

)
= −j ·E−∇ ·

( c

4π
E×B

)
. (29)

The first term on the right hand side normally represents resistive
energy loss. Here, we use the result for E from Equation (28),

E =
m

q2n

dj
d t

− 1
qnc

j×B, (30)
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and get,

j ·E =
m

q2n

dj
d t

· j =
d
d t

(
m

2q2n
j2

)
. (31)

This is thus the natural form for this term for perfect conductors. We
insert it into (29), neglect radiation, and assume that E2 ¿ B2. This
gives us,

d
d t

(
1
8π

B2 +
m

2q2n
j2

)
= 0. (32)

Finally inserting, j = (c/4π)∇×B, here, gives,

EB =
1
8π

[∫

V
B2dV +

∫

Vin

mc2

4πq2n
(∇×B)2dV

]
, (33)

for the conserved energy, after integration over space and time.
Bad́ıa-Majós [13] then notes that this energy functional implies

flux expulsion from superconductors. Variation of the functional gives
the London equation [18],

B +
1
4π

mc2

q2n
∇× (∇×B) = 0. (34)

Bad́ıa-Majós, chooses not to point out that this classical derivation of
flux expulsion is in conflict with frequent text book statements to the
effect that no such classical result exists. Further work by Bad́ıa-Majós
et al. [19] on variational principles for electromagnetism in conducting
materials should be noted.

Finally, we should mention the pioneering work by Woltjer [20] on
energy extremizing properties of, so called, force free magnetic fields.
In plasma physics a lot of further work has been done in that tradition.
It has, however, not been concerned with currents and fields inside or
on the boundary of bounded domains separated by vacuum, as we are
here.

3. IDEALLY CONDUCTING SPHERE IN EXTERNAL
FIELD

We now know that magnetic energy minimum occurs when current
flows only on the surface and the magnetic field is zero inside. Let us
consider a perfectly conducting sphere surrounded by a fixed constant
external magnetic field. Here, we will calculate the surface current
needed to exclude the magnetic field from the interior and how much
the total magnetic energy Em is then reduced. In order to exclude a
constant external field Be from its interior the currents on the sphere
must obviously produce an interior magnetic field Bi = −Be, thereby



196 Fiolhais et al.

making the total field B = Be+Bi zero in the interior. We will use that
a constant field is produced inside a sphere by a current distribution
due to rigid rotation of a constant surface charge density [21].

3.1. Energy of the External Field

For the total magnetic field to have a finite energy Em, we can not
assume that the constant external field extends to infinity. Instead
of using Helmholtz coils to produce it, we simplify the mathematics
and produce our external field by a spherical shell of current that is
equivalent to a rigidly rotating current distribution on the surface.
This can be done in practice by having as set of rings representing
closely spaced longitudes on a globe with the right amount of current
maintained in each of them. Such a spherical shell of rigidly rotating
charge produces a magnetic field that is constant inside the sphere and
a pure dipole field outside the sphere (see Fig. 2):

Be(r) =





2m
R3

for r ≤ R

3(m · r̂)r̂−m
r3

for r > R

(35)

Here r = |r| and the center of the sphere is at the origin. If Q is the
total rotating surface charge and ω its angular velocity,

m =
QR2

3c
ω, (36)

Figure 2. The field lines of the field of Equation (35) for a
nonmagnetic sphere with a rigidly rotating homogeneous surface charge
density.
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see Equation (A6) below. It is now easy to calculate the magnetic
energy of this field. One finds‖,

E0
m =

1
8π

(∫

r<R
B2

e dV +
∫

r>R
B2

e dV

)
=

(
2
3

+
1
3

)
m2

R3
=

m2

R3
. (37)

Inside this sphere, which is assumed to maintain a constant current
density on its surface, we now place a smaller perfectly conducting
sphere.

3.2. Magnetic Energy of the Two Sphere System

We assume that the small sphere in the middle of the big one has
radius a < R and that it also produces a magnetic field by a rigidly
rotating charged shell on its surface. We denote its dipole moment by
mi so that its total energy would be,

Ei
m =

m2
i

a3
=

m2
i

a3
, (38)

if it was far from all other fields, according to our previous result (37).
We now place the small sphere inside the large one and assume that
mi makes an angle α with m = m m̂,

m ·mi = mmi cosα. (39)
The total energy of the system is now,

Em =
1
8π

∫
(Be + Bi)2dV = E0

m + Ei
m + Ec, (40)

where the coupling (interaction) energy is,

Ec =
1
4π

∫
Be ·Bi dV. (41)

This integral must be split into the three radial regions: 0 ≤ r < a,
a ≤ r < R, and R ≤ r. The calculations are elementary using spherical
coordinates. The contribution from the inner region is,

Ec1 =
1
4π

∫

r<a
Be ·Bi dV =

4
3

mmi

R3
cosα. (42)

The middle region, where there is a superposition of a dipole field from
the small sphere and a constant field from the big one, contributes zero:
Ec2 = 0. The outer region gives Ec3 = (2/3)mmi cosα/R3. Summing
up one finds,

Ec = 2
mmi

R3
cosα, (43)

for the magnetic interaction energy of the two spheres.
‖ If (36) is inserted for m here we get E0

m = (ω/c)2RQ2/9 which is equal to Em of
Equation (A8) below, for ξ = 1, corresponding to surface current only, as it should.
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3.3. Minimizing the Total Magnetic Energy

The total magnetic energy of the system discussed above is thus,

Em(mi, α) = E0
m + Ei

m + Ec =
m2

R3
+

m2
i

a3
+ 2

mmi

R3
cosα. (44)

We assume that m and mi are positive quantities. This means that as
a function of α this quantity is guarantied to have its minimum when
cosα = −1, i.e., for α = π. Thus, at minimum, the dipole of the inner
sphere has the opposite direction to that of the constant external field,
mi = −mim̂.

Now, assuming α = π, we can look for the minimum as a function
of mi. Elementary algebra shows that this minimum is attained for,

mi =
( a

R

)3
m ≡ mi min. (45)

The magnetic field in the interior of the inner sphere (r < a) is then,

Be + Bi =
2m
R3

+
2mi min

a3
=

(
2m

R3
− 2mi min

a3

)
m̂ = 0, (46)

so it has been expelled. The minimized energy (44) of the system is
found to be,

Em min = Em(mmin, π) =
m2

R3

[
1−

( a

R

)3
]

. (47)

The relative energy reduction is thus given by the volume ratio of the
two spheres.

Using E0
m from (37), the energy lowering is now found to be:

E0
m − Em min =

m2

R3

a3

R3
=

B2
e

4
a3 = 3

(
B2

e

8π

)(
4πa3

3

)
. (48)

This result is independent of the radius R of the big sphere introduced
to produce the constant external field. It shows that the energy
lowering corresponds to three times the external magnetic energy in
the volume 4πa3/3 of the perfectly conducting interior sphere.

4. THE MECHANISM OF FLUX EXPULSION

In 1933 Meissner and Ochsenfeld [22], discussing their experimental
discovery, stated that it is understandable that an external magnetic
field does not penetrate a superconductor¶ but that the expulsion
¶ Eddy currents induced in accordance with Lenz law do not dissipate because of zero
resistivity.
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of a pre-existing field at the phase transition cannot be understood
by classical physics. This statement has since been repeated many
times. We are not aware, however, of any deeper investigations of what
classical electromagnetism predicts regarding the behavior of perfect
conductors in this respect, at least not prior to the work of Karlsson [12]
and Bad́ıa-Majós [13]. Our theorem strengthens the conclusion of
Bad́ıa-Majós that a magnetic field is expelled according to classical
electromagnetism. Hirsch [23] has pointed out that the Meissner effect
is not explained by BCS theory. Here we briefly speculate on the
microscopic physical mechanism of this expulsion.

Assume that a resistive metal sphere is penetrated by a constant
magnetic field. Lower the temperature until the resistance vanishes.
How does the metal sphere expel the magnetic field, or equivalently,
how does it produce surface currents that screen the external field?
According to Forrest [24] this can not be understood from the point
of view of classical electrodynamics since in a perfectly conducting
medium the field lines must be frozen-in. This claim is motivated thus:
When the resistivity is zero there can be no electric field according to
Ohm’s law, since this law then predicts infinite current. But if the
electric field is zero the Maxwell equation, ∇×E−∂B/∂ t = 0, requires
that the time derivative of the magnetic field is zero. Hence it must be
constant.

This argument is flawed since Ohm’s law is not applicable. Inertia,
inductive or due to rest mass, prevents infinite acceleration. Instead
the system of charged particles undergoes thermal fluctuations and
these produce electric and magnetic fields. These fields accelerate
charges according to the Lorentz force law. In the normal situation
the corresponding currents and fields remain microscopic. When there
is an external magnetic field present the overall energy is lowered if
these microscopic currents correlate and grow to exclude the external
field. According to standard statistical mechanics the system will
then eventually relax to the energy minimum state consistent with
constraints. We note that Alfvén and Fälthammar [25] state that
“in low density plasmas the concept of frozen-in lines of force is
questionable”.

Another argument by Forrest [24] is that the magnetic flux
through a perfectly conducting current loop is conserved. Since one
can imagine arbitrary current loops in the metal that just lost its
resistivity with a magnetic field inside, the field must remain fixed,
it seems. It is indeed correct that the flux through an ideal current
loop is conserved, but the actual physical current loop will not remain
intact unless constrained by non-electromagnetic forces. There will be
forces on a loop of current that encloses a magnetic flux that expands
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it [5]. This is the well know mechanism behind the rail gun, see, e.g.,
Essén [26]. All the little current loops in the metal will thus expand
until they come to the surface where the expansion stops. In this
way the interior field is thinned out and current concentrates near the
surface. So, the flux is conserved through the loops, but the loops
expand.

It was noted early in the history of superconductivity that the
Meissner flux expulsion is necessary if superconductors obey normal
thermodynamics. Gorter and Casimir [27] observed that the final
thermal equilibrium state of a superconductor must be independent
of whether the external magnetic field existed inside the body prior to
the phase transition or if it was added after the transition already had
occurred. Our theorem indicates that it is perfectly natural that an
interior magnetic field is expelled in the approach to thermodynamic
equilibrium.

5. CONCLUSIONS

It is amazing that the theorem derived here has not been stated before.
Zero resistivity conductors have been known since 1911 and zero
resistivity is also considered a good approximation in many plasmas,
so the ideal, or perfect conductor, is a well known concept and its
magnetic energy minimum state ought to be of great importance.
The well known symmetry between source free electric and magnetic
fields, as revealed by Maxwell’s equations, indicates that a magnetic
analog of Thomson’s theorem might exist. In a relativistic context the
scalar Lagrangian density ∼ Aµjµ also implies a symmetry between
electricity and magnetism but the fact that space is three-dimensional
and time one-dimensional implies a vector source for the magnetic
field, as compared to the scalar electric case. This explains why our
derivation for the magnetic theorem is somewhat more complicated.

It is clear from our results above, and further motivated by the
examples in the Appendices below, that type I superconductors below
their critical field obey the theorem, and the reason that these only
have surface current and zero interior field is simply minimization
of magnetic energy. Naturally there is some other energy involved
that is responsible for the phase transition to a zero resistivity state.
But apart from being implicitly assumed constant in our variations its
nature and origin is irrelevant to the current investigation.
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APPENDIX A. MAGNETIC ENERGY MINIMIZATION
IN SIMPLE ONE DEGREE OF FREEDOM MODEL
SYSTEMS

We investigate two simple one degree of freedom model systems and use
them to illustrate how the minimum magnetic energy theorem works.
We take systems in which the magnetic energy Em can be calculated
exactly so that energy minimization amounts to minimizing a function
of a single variable. The systems are both related to a system used by
Brito and Fiolhais [10] to study electric energy.

A.0.1. Magnetic Energy of Coaxial Cable

The minimum magnetic energy theorem can be illustrated in such a
simple system as a coaxial cable. The cable can be modeled by an
outer cylindrical conducting shell with radius b, carrying an electric
current I, and a concentric solid cylindrical conductor with radius
a < b, carrying the same electric current in the opposite direction.
We now assume that the total current on the inner cylinder is the sum
of surface current Is and bulk interior current Iv. See Fig. (A1).

Here, we use cylindrical coordinates, ρ, ϕ, z and put Is = (1−η)I
at ρ = a for the surface current, and Iv = ηI for the bulk current in

b
a

L I

I

I

I

s

v

Figure A1. Notation for the coaxial cable. Magnetic energy is
minimized when the current on the inner conductor is pure surface
current Is = I, and Iv = 0.
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0 ≤ ρ < a. Then I = Is + Iv, and we get the magnetic field,

B(ρ, η) =
2I

c
·





ηρ

a2
ϕ̂ 0 ≤ ρ < a

1
ρ

ϕ̂ a ≤ ρ ≤ b

0 b < ρ

(A1)

using Ampère’s law. Thus, the magnetic field energy for a length L of
the cable is given by:

Em(η) =
1
8π

∫

V
B2dV

=
1
8π

(
2I

c

)2
[∫ a

0

(ηρ

a2

)2
L2πρ dρ +

∫ b

a

(
1
ρ

)2

L2πρ dρ

]

=
LI2

c2

[
η2

4
+ ln

(
b

a

)]
. (A2)

This magnetic energy reaches its minimum for zero bulk current, η = 0,
corresponding to surface current only, and zero field for 0 ≤ ρ < a.

A.0.2. Current in Sphere Due to Rigidly Rotating Charge

Consider an ideally conducting sphere of radius R. Assume that there
is a circulating current in the sphere which can be seen as the rigid
rotation of a charge Q evenly distributed in the thick spherical shell
between r = a < R and r = R. The charge density,

%(r) =





0 for 0 ≤ r < a

3Q

4π(R3 − a3)
for a ≤ r ≤ R

0 for R < r

(A3)

is assumed to rotate with angular velocity ω = ω ẑ relative to a an
identical charge density of opposite sign at rest. The current density
is then,

j(r) = % (r) ω × r, (A4)

and the current, I = Q
2πω, passes through a half plane with the z-axis

as edge.
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The vector potential produced by this current density can be found
using the methods of Essén [28], see also [29–31]. If we introduce
ξ = a/R, we find,

A(r)=
Q

c
(ω × r) ·





(1− ξ2)
2(1− ξ3)R

for 0 ≤ r < a

R2

10(1−ξ3)

(
5

R3
−3

r2

R5
−2

ξ5

r3

)
for a ≤ r ≤ R

(1− ξ5)
5(1− ξ3)

R2

r3
for R < r

(A5)
The parameter ξ = a/R is zero, ξ = 0, for a homogeneous ball of
rotating charge, while ξ = 1 corresponds to a rotating shell of surface
charge, see Fig. A2. Comparing with the vector potential for a constant
field, A = 1

2B0 × r we see that,

B0 =
Qω

cR

(1− ξ2)
(1− ξ3)

=
Qω

cR

(1 + ξ)
(1 + ξ + ξ2)

(A6)

is the field in the central current free region 0 ≤ r < a.

Ra= Rξ 

ω

Figure A2. Some notation for the system considered here. Current
density flows in a thick spherical shell as a rigid rotation of constant
charge density between r = a = ξR and r = R.
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A.0.3. Magnetic Energy of Rotating Spherical Shell Current

We now calculate the magnetic energy of this system using the formula,

Em =
1
2c

∫
j ·A dV. (A7)

Performing the integration using spherical coordinates gives,

Em(ω, ξ) =
(

Rω

c

)2 Q2

R
f(ξ), (A8)

where,

f(ξ) =
2 + 4ξ + 6ξ2 + 8ξ3 + 10ξ4 + 5ξ5

35(1 + ξ + ξ2)2
, (A9)

is a function of the dimensionless parameter ξ. Note that f(0) = 2/35,
that f(1) = 1/9, and that f(ξ) is monotonically increasing, by a factor
of almost 2 in the interval 0 to 1.

This expression for the energy is the Lagrangian form of a kinetic
energy which depends on the generalized velocity ω = ϕ̇,

Lm(ϕ̇, ξ) =
R2

c2

Q2

R
f(ξ) ϕ̇2. (A10)

Since the generalized coordinate ϕ does not appear in the
Lagrangian Lm the corresponding generalized momentum (the angular
momentum),

pϕ =
∂Lm

∂ϕ̇
= 2

R2

c2

Q2

R
f(ξ) ϕ̇, (A11)

is a conserved quantity. The corresponding Hamiltonian, and relevant,
expression for the magnetic energy is then Hm = pϕϕ̇−Lm, expressed
in terms of pϕ,

Em(ξ) = Hm(pϕ, ξ) =
c2

4
p2

ϕ

Q2f(ξ)R
. (A12)

The function 1/f(ξ) is plotted in Fig. A3. We now consider the two
energy expressions (A10) and (A12) separately.

Case of constant current: We first consider the case that the
current, I = Qω/2π, is constant. Changing ξ then means changing
the conductor geometry while keeping a constant total current, or,
equivalently, angular velocity ω = ϕ̇. One might regard the total
current as flowing in a continuum of circular wires. Changing ξ from
zero to one means changing the distribution of these circular wires from
a bulk distribution in the sphere to a pure surface distribution, while
maintaining constant current. According to a result by Greiner [32] a
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system will tend to maximize its magnetic energy when the conductor
geometry changes while currents are kept constant. This has also been
discussed in Essén [26]. In conclusion, if currents are kept constant
the magnetic energy (A10) will tend (thermodynamically) to a stable
equilibrium with at a maximum value and we note that this corresponds
to a pure surface current ξ = 1.

Case of constant angular momentum: Assume now that we
pass to the Hamiltonian (canonical) formalism. Thermodynamically
this type of system should tend to minimize its phase space energy
(A12) in accordance with ordinary Maxwell-Boltzmann statistical
mechanics. As a function of ξ this Hamiltonian form of the energy
Em(ξ) clearly has a minimum at ξ = 1, see Fig. A3, corresponding
to pure surface current. In this case, therefore, there will be current
density only on the surface in the energy minimizing state. This is in
accordance with our minimum magnetic energy theorem. It is notable
that both the assumption of constant current and the assumption of
constant angular momentum lead to a pure surface current density as
the stable equilibrium.

Figure A3. A graph of the function 1/f(ξ) which is proportional
to the Hamiltonian form of the magnetic energy (A12) of our model
system. Note that ξ = 0 corresponds to volume (bulk) current and
ξ = 1 to pure surface current.
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APPENDIX B. EXPLICIT SOLUTIONS WITH
MINIMUM MAGNETIC ENERGY

To further illustrate our theorem we present here three explicit
solutions for current distributions and magnetic fields that minimize
the magnetic energy. We do not repeat the solution for a torus
since it is a bit lengthy and has been published several times already,
probably first by Fock [33], but, independently, several times since
then, see, e.g., [34–39]. Karlsson [12], however, was probably the first
to notice that the solution minimizes magnetic energy for constant
flux. Dolecek and de Launay [15] verified experimentally that a type I
superconducting torus behaves exactly as the corresponding classical
perfectly diamagnetic system for field strength below the critical field.
Here we treat three cases all involving a constant external field. For
a cylinder, perpendicular to the field, and for a sphere, analytical
solutions are found. Finally, for a cube with a space diagonal parallel
to the field, we present a numerical solution.

B.0.4. Cylinder in External Perpendicular Magnetic Field

Consider an infinite cylindrical ideal conductor with radius R in a
external constant perpendicular magnetic field. To get the vector
potential one must solve the following differential equation,

∇×B = ∇× (∇×A) = 0. (B1)

To solve this one should look for the symmetries of the system. We
assume that the external constant magnetic field points in the y-
direction and that the cylinder axis coincides with the z-axis. There
will then be no dependence on the z-coordinate so the magnetic field
is,

B =
1
ρ

∂Az

∂ϕ
ρ̂− ∂Az

∂ρ
ϕ̂ +

1
ρ

(
∂

∂ρ
(ρAϕ)− ∂Aρ

∂ϕ

)
ẑ. (B2)

Moreover, due to the symmetry of the system, the z-component of the
magnetic field must be zero,

∂

∂ρ
(ρAϕ)− ∂Aρ

∂ϕ
= 0. (B3)

These assumptions and constraints transform Equation (B1) into,

∇×B = −
(

1
ρ2

∂2Az

∂ϕ2
+

∂2Az

∂ρ2
+

1
ρ

∂Az

∂ρ

)
ẑ = 0 (B4)

which simply is Laplace equation in cylindrical coordinates (ρ, ϕ, z).
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Before writing down the general solution, let us consider the
boundary conditions. As ρ →∞, the magnetic field must approach the
external one: B0 = B0ŷ = B0(ϕ̂ cosϕ + ρ̂ sinϕ). Furthermore, since
the magnetic field is zero inside the perfect conductor, one concludes
from Equation (B2) that the vector potential vector must be constant
inside the cylinder. Therefore, the solution is,

Az = const. + B0

(
R2

ρ
− ρ

)
cosϕ, (B5)

for ρ > R. The magnetic field outside the cylinder becomes,

B = ρ̂B0

(
1− R2

ρ2

)
sinϕ + ϕ̂B0

(
1 +

R2

ρ2

)
cosϕ, (B6)

which implies that,

B(ρ = R) = 2B0 cosϕϕ̂ (B7)

The magnetic field on the cylinder’s surface determines the surface
current according to Equation (26), so we get,

k =
c

2π
B0 cosϕẑ. (B8)

The total current obtained through integration of the surface current is
zero as expected, otherwise the energy would diverge. A more detailed
analysis on this problem can be found in [40].

B.0.5. Superconducting Sphere in Constant Magnetic Field

Similar calculations can be performed for a superconducting sphere
with radius R in a constant external magnetic field pointing in the
direction of the z-axis. As for the cylinder case, Equation (B1) is
considerately simplified using the symmetries of the system. Since the
external constant magnetic field points along the z-axis, there won’t
be any dependence on the ϕ coordinate and the magnetic field along
this coordinate must be zero. Therefore, the magnetic field simplifies
to,

B =
1

r sin θ

∂

∂θ
(Aϕ sin θ) r̂− 1

r

∂

∂r
(Aϕr) θ̂, (B9)

where we use spherical coordinates r, θ, ϕ. Again, using these
assumptions and constraints Equation (B1) becomes,

∇×B = −1
r

[
∂

∂r

(
∂

∂r
(rAϕ)

)
+

1
r

∂

∂θ

(
1

sin θ

∂

∂θ
(Aϕ sin θ)

)]
ϕ̂ = 0

(B10)
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Since the magnetic field is zero inside the sphere, Equation (B9) implies
that the vector potential has the form,

Aϕ(r < R) =
C

r sin θ
, (B11)

where C is a constant. To prevent the vector potential from diverging
at r = 0 and θ = 0, the constant C must be zero. Furthermore, as
r → ∞, the magnetic field must go to the external field, B0 = B0ẑ =
B0(r̂ cos θ− θ̂ sin θ). Therefore, the solution of Equation (B10) for this
case is,

Aϕ(r > R) =
B0

2

(
r − R3

r2

)
sin θ, (B12)

which leads to the following magnetic field outside the sphere,

B = r̂B0

(
1− R3

r3

)
cos θ − θ̂ B0

(
1 +

1
2

R3

r3

)
sin θ. (B13)

The magnetic field at the sphere surface is thus,

B = −3
2
B0 sin θθ̂. (B14)

One notes that this is the same field as that of Section 3.2 at the surface
of the inner sphere when energy is minimized.

Using Equation (26), the surface current density becomes,

k = − 3c

8π
B0 sin θϕ̂. (B15)

Unlike the infinite cylinder in a perpendicular external field, the sphere
must have a total non-zero electric current, I = 3c

4πRB0, to keep the
magnetic field from entering. A similar approach to this problem can
be found in [41].

B.0.6. Perfectly Conducting Cube in Constant Magnetic Field

Starting from the magnetic energy functional we have made finite
element calculations of the current and magnetic field produced when
a perfectly conducting cube is placed in a (previously) constant field.
The constant external field is produced by given currents on the surface
of a sphere that encloses the cube, as in Section 3.1. The cube is placed
inside this sphere with one of its space diagonals parallel to the external
field. The calculations verify the results of the variational principle:
current density and magnetic field become zero inside the cube and
the surface current density adjusts to achieve this. In Figures B1 and
B2, we show results for the current distribution of the surface of the
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Figure B1. Result of finite el-
ement calculation of the current
distribution on an ideally con-
ducting cube in a constant mag-
netic field. The external field is
along a space diagonal of the cube
and points up from the figure.
The current is on the surface and
is indicated by arrowheads.

Figure B2. Same as Figure B1
but with a sideways view of
the cube. The current is seen
to concentrate along the edges
that form a closed path round
the cube. The induced surface
current expels the external field
from the interior of the cube.

cube as seen first from the top (the direction of the external field) and
then from the side. One observes that the current density concentrates
along the edges that form a closed path round the cube.

We also calculated the magnetic flux through the circular surface
enclosed by the equator of the enclosing sphere, which we take to have
radius R = 1 and to produce the constant magnetic field Be = 1 in the
interior, when empty. For this case the flux becomes,

Φ0 = BeπR2 = π ≈ 3.1416 (B16)
When an ideally conducting sphere of volume V = 1, i.e., radius

a = 3

√
3
4π , is placed inside (as in Section 3) the flux is reduced to,

Φsp = π

(
1− 3

4π

)
≈ 2.3916 (B17)

When the sphere is replaced by a cube of volume V = 1 and a space
diagonal parallel to the external fields we find the magnetic flux,

Φcu ≈ 2.2733 (B18)
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numerically. One notes that such a cube excludes more flux than a
sphere of the same volume.
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treatment of electromagnetic phenomena in conducting materials:
variational principles,” J. Phys. A: Math. Gen., Vol. 39, 14699–
14726, 2006.

20. Woltjer, L., “A theorem on force-free magnetic fields,” Proc. Nat.
Acad. Sci., Vol. 44, 489–491, 1958.

21. Griffiths, D. J., Introduction to Electrodynamics, 3rd edition,
Prentice Hall, New Jersey, 1999.

22. Meissner, W. and R. Ochsenfeld, “Ein neuer Effekt bei eintritt
der Supraleitfähigkeit,” Naturwiss., Vol. 21, 787–788, 1933.

23. Hirsch, J. E., “Charge expulsion, spin Meissner effect, and charge
inhomogeneity in superconductors,” J. Supercond. Nov. Magn.,
Vol. 22, 131–139, 2009.

24. Forrest, A. M., “Meissner and Ochsenfeld revisited,” Eur. J.
Phys., Vol. 4, 117–120, 1983. Comments on and translation into
English of Meissner and Ochsenfeld.

25. Alfvén, H. and C.-G. Fälthammar, Cosmical Electrodynamics, 2nd
edition, Oxford University Press, Oxford, 1963.

26. Essén, H., “From least action in electrodynamics to magnetome-
chanical energy,” Eur. J. Phys., Vol. 30, 515–539, 2009.

27. Gorter, C. J. and H. Casimir, “On supraconductivity I,” Physica,
Vol. 1, 306–320, 1934.

28. Essén, H., “Magnetic fields, rotating atoms, and the origin of
diamagnetism,” Phys. Scr., Vol. 40, 761–767, 1989.

29. Essén, H., “Darwin magnetic interaction energy and its
macroscopic consequences,” Phys. Rev. E, Vol. 53, 5228–5239,
1996.

30. Essén, H., “Magnetic dynamics of simple collective modes in a
two-sphere plasma model,” Phys. of Plasmas, Vol. 12, 122101–1–
7, 2005.

31. Essén, H., “Electrodynamic model connecting superconductor
response to magnetic field and to rotation,” Eur. J. Phys., Vol. 26,
279–285, 2005.

32. Greiner, W., Classical Electrodynamics, Springer, New York, 1998.



212 Fiolhais et al.

33. Fock, V., “Skineffekt in einem Ringe,” Phys. Z. Sowjetunion,
Vol. 1, 215–236, 1932.

34. De Launay, J., “Electrodynamics of a superconducting torus,”
Technical Report NRL–3441, Naval Research Lab, Washington
DC, 1949.

35. Carter, G. W., S. C. Loh, and C. Y. K. Po, “The magnetic field
of systems of currents circulating in a conducting ring,” Quart.
Journ. Mech. and Applied Math., Vol. 18, 87–106, 1965.

36. Bhadra, D., “Field due to current in toroidal geometry,” Rev. Sci.
Instrum., Vol. 39, 1536–1546, 1968.

37. Haas, H., “Das Magnetfeld eines gleichstromdurchflossenen
Torus,” Arch. f. Elektrotech., Vol. 58, 197–209, 1976.

38. Belevitch, V. and J. Boersma, “Some electrical problems for a
torus,” Philips J. Res., Vol. 38, 79–137, 1983.

39. Ivaska, V., V. Jonkus, and V. Palenskis, “Magnetic field
distribution around a superconducting torus,” Physica C, Vol. 319,
79–86, 1999.

40. Zhilichev, Y. N., “Superconducting cylinder in a static transverse
magnetic field,” IEEE Trans. Appl. Supercond., Vol. 7, 3874–3879,
1997.

41. Matute, E. A., “On the superconducting sphere in an external
magnetic field,” Am. J. Phys., Vol. 67, 786–788, 1999.


