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Abstract—We present a novel approach for adjoint transient
sensitivity analysis with respect to discontinuities with space-
dependent materials exhibiting known distribution. Our approach
integrates the Time Domain Transmission-Line-Modeling (TD-TLM)
with the Adjoint Variable Method (AVM). Using only one extra TD-
TLM simulation, the sensitivities of the observed response with respect
to all the parameters of the Gaussian distribution are obtained. The
accuracy of our sensitivity analysis approach is illustrated through
a number of different 2D and 3D examples. Using the previous
sensitivities, gradient–based optimization technique is applied to
exploit in the location and profile of various inhomogeneous material
Gaussian distribution for inverse problems. This method can be
repeated for any continuous or discontinuous distributions that exist
in electromagnetic imaging for space dependent materials like cancer
detection.

1. INTRODUCTION

The sensitivity analysis of large-scale systems governed by both
ordinary differential equations (ODEs) and partial differential
equations (PDEs) has been the subject of extensive research [1–4].
The sensitivity analysis generates information essential in different
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applications such as model development, optimization, parameter
estimation, model simplification, optimal control, uncertainty analysis,
and experimental design [5]. Forward sensitivities can be computed
reliably and efficiently via automatic differentiation. However, the
forward sensitivity approach is intractable in systems having large
number of parameters [3]. It is thus preferable to use adjoint sensitivity
algorithms that efficiently calculate the derivatives of an objective
function with respect to all parameters using at most one extra
simulation.

The applications of adjoint sensitivity analysis have been discussed
in many areas [6, 7]. Recently, the use of AVM has been extended
to sensitivity analysis with numerical electromagnetic techniques [8–
11]. Using only one extra electromagnetic (EM) simulation, the
sensitivities of the desired response can be estimated with respect to all
parameters. Novel adjoint-based sensitivity analysis algorithms were
introduced [12–17]. These algorithms efficiently estimate the objective
function sensitivities for different EM structures with different time
domain techniques. In [18], it was shown that the sensitivity of any
field components E(t) can be estimated with respect to all the desirable
parameters using only one EM simulation regardless of the number of
parameters for all time steps.

The adjoint technique is used as a tool for efficiently determining
the optimal solutions in different domains [19–21]. One of the
main applications of AVM method is the efficient solution of inverse
problems. These problems aim at determining the location and
material properties of different discontinuities using the EM responses
and their available sensitivities.

An important inverse problem is the detection of host medium
within the human body [22–24]. However, all these techniques assume
that the profile of the host-medium is constant versus space to
reduce the optimization variables, or solving for the permittivity and
conductivity at each voxel in the computational domain. This large
number of optimization variables may also cause non unique solutions.

In this paper, the technique proposed in [18] is extended for
space-dependent permittivity and conductivity. We assume a Gaussian
distribution for both the relative permittivity and the conductivity. We
show that the sensitivities of any desired response with respect to the
parameters of these Gaussian distributions are obtained using only one
extra adjoint simulation. Also, we demonstrate that this approach is
applicable for different excitation sources, different discontinuities, and
different observation points. Our approach also limits the optimizable
parameters to only the parameters of the Gaussian distribution. This
paper is organized as follows; In Section 2, we briefly review the basics
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of the Gaussian distribution, the TLM method, and the AVM with
the TLM method. Our algorithm is introduced in Section 3. The
application of our technique to sensitivity analysis of several structures
is illustrated in Section 4. In Section 5, our sensitivity analysis
estimates are utilized in the solution of a number of inverse scattering
problems. Then, conclusion is given in the last section.

2. GENERAL BACKGROUND

2.1. The Gaussian Distribution

Different fields of science utilize the Gaussian distribution to
approximate non uniform distributions. Here, we assume that
the considered discontinuities have relative permittivity εr and
conductivity σ varying according to such a distribution. For 2D and 3D
EM problems, the distribution of the relative permittivity, for example,
is given by:

εr(x, z) = εr,m + (εr,max − εr,m)

exp
(− (

a(x−xc)2 + 2b(x−xc)(z−zc) + c(z−zc)2
))

(1)
εr(x, y, z) = εr,m + (εr,max − εr,m)

exp
(
−
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2σ2
x
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2σ2
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2σ2
z

))
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where (xc, yc, zc) is the distribution central point. εr,m and εr,max are
the relative permittivity of the background medium and the maximum
value of the relative permittivity at the center, respectively. The
parameters (σx, σy, σz) are the standard deviations along the x, y, and
z directions, respectively. The parameters a, b and c in (1) are related
to the angle of rotation θ and the standard deviations as follows:
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2σ2
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+
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4σ2
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+
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+
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z

(3)

If the standard deviations are equal, i.e., σx = σz = σr then (1)
will be independent of θ. In this case, a = c = 1/(2σ2

r ), and b = 0. This
distribution is referred to as a polar Gaussian distribution. Expressions
similar to (1) and (2) can be written for the conductivity where σm and
σmax denote the conductivity of the host medium and the maximum
value of the conductivity at the distribution center, respectively. From
the different Gaussian functions, we see that the number of parameters
of the distribution is six for the 2D case and seven for the 3D case. The
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number of unknown parameters in an inverse modeling problem with
a Gaussian discontinuity is thus fixed regardless of the number of cells
in the computational domain.

2.2. Transmission-line-modeling (TLM)

In the TLM method, the medium is modeled by a network of
transmission lines where voltages and currents model electric and
magnetic fields. Fig. 1 shows the 2D-TLM shunt-node model and the
3D Symmetrical-Condensed-Node (SCN) [26]. The propagation of the
electromagnetic fields is simulated by the propagation and scattering
of voltage impulses. Every node receives incident voltage impulses that
scatter at the center of the node at each time step. The basic iteration
for a TLM problem with nondispersive boundaries is given by [27]:

V(k+1)=CSVk+Vs
k (4)

where Vk is the vector of incident impulses for all links at the kth
time step. The matrix S is a block diagonal matrix whose jth diagonal
block is the scattering matrix Sj of the jth node. The matrix C is the
connection matrix of the whole domain and the term Vs

k represents
the excitation vector at the kth time step.

2.3. Adjoint Variable Method (AVM)

The calculation of the response gradient using finite difference
techniques requires at least N extra EM simulations, where N is the
number of parameters. If N is relatively large or the simulation is
time-intensive, the finite difference techniques become inefficient. The

(a) (b)

Figure 1. The TLM nodes for: (a) the 2D case, and (b) the 3D case.
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theory of the Adjoint Variable Method (AVM) sensitivity analysis
offers an efficient alternative. Using at most one extra simulation, the
sensitivities of the objective function with respect to all parameters
can be efficiently estimated regardless of the number of parameters.
Several AVM techniques have been developed for sensitivity analysis
with different numerical approaches [8–21]. These include the
Finite-Element-Time-Domain (FETD) [8], Finite-Element-Frequency-
Domain (FEFD) [9], Method of Moments (MoM) [20, 21], Finite-
Difference-Time-Domain (FDTD) [15], Frequency Domain TLM (FD-
TLM) [11], and TD-TLM [13, 14, 18]. It was assumed in all these
techniques that the material properties are constants within the
discontinuity of interest.

2.4. AVM for Transient Analysis Using the TLM Technique

The application of the AVM method for sensitivity analysis of time
domain responses was presented in [18]. This approach estimates the
sensitivity of the temporal electric field calculated at the observation
point with respect to a parameter pi at time τ using the expression:

∂E(τ)
∂pi

≈ −∆t
∑

k

∑

j

λT
j,k,τηj,k,i, ηj,k,i = C

∆Sj

∆pi
Vj,k (5)

where ηj,k,i is a vector estimated through the original simulation. E(t)
is any field component, pi is the ith parameter, k is the time index,
and j is the index of cells affected by a change in pi. The vector λj,k,τ

is the adjoint response of the jth node at the kth time step [13]. The
vector λj,k,τ , for each τ , is a shifted version of the adjoint response λ
obtained through the adjoint simulation [18]:

λk−1 ≡ STCλk −∆t
∂E(k∆t)

∂V
δ(k∆t− Tm), λ(Tm) = 0 (6)

where Tm is the simulation time. From (5), it is obvious that ηj,k,i

depends on the sensitivity of the local scattering matrix with respect
to the parameter pi.

3. AVM FOR GAUSSIAN DISTRIBUTIONS

In this section, we show how the theory presented in [18] is extended
to sensitivity analysis with respect to discontinuities exhibiting a
Gaussian distribution.
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3.1. Our AVM Approach

The sensitivity analysis discussed in [18] addresses the case of a
single source, a single discontinuity, and a single observation point.
It also assumes that the material properties are uniform within
the discontinuity. This sensitivity analysis approach requires two
simulations, the forward simulation to calculate ηj,k,i and the adjoint
simulation to calculate λj,k,τ . Since the adjoint excitation in this case
is independent of the incident voltages Vk at any observation point, the
forward and the adjoint systems are independent. We can thus carry
out both simulations in parallel. We generalize this solution to apply
for any number of excitation points, multiple obstacles, and multiple
observation points. We assume that the properties of the objects inside
the computational domain can be expressed as a Gaussian distribution
of the form (1)–(3). More than 99% of the volume under the 3D
distribution (2) lies inside an effective domain given by:

RN = {(x, y, z) : |x− xc| ≤ 3σx, |y − yc| ≤ 3σy, |z − zc| ≤ 3σz} (7)

p =
[

AT rT
c σT

]T (8)

We aim in this work to estimate the gradient ∂E(k∆t)/∂pi, ∀i and
∀k using only one extra simulation. Here, p is the vector of parameters
of discontinuities with Gaussian material properties and is given by (8),
where A is the vector of the amplitudes of the Gaussian distributions,
rc is the vector of the centers of the different discontinuities, and σ is
the vector of the standard deviations.

Figure 2 shows the effect of a small perturbation of different
parameters on the original effective domain for the 2D case. Assuming
that σx 6= σz, the effective domain is a rectangle centered at (xc, zc)
with length 6σx and width 6σz as shown in the shaded region in
Fig. 2(a). Assuming a perturbation in xc of ∆xc, the new effective
area is shifted to the right by ∆xc as shown in the dotted region.
Because of the spatial dependence of the Gaussian function, the left
gray column is also affected by this perturbation. Fig. 2(b) shows the
new effective area in the case of a small perturbation in σx by a small
change of ∆σx = ∆L/3. In this case, the length of the effective area is
increased by 6∆σx = 2∆L equally from both sides. The center of the
Gaussian distribution does not change in this case.

In Fig. 2(c), a small change with ∆θ in the distribution orientation
results in a rotation of the original area. In the case of a polar
Gaussian distribution σx = σz = σr, the effective area is taken as
a circle of radius 3σr centered at (xc, zc). A small perturbation of
∆σr increases the radius of the effective area by 3∆σr as shown in
Fig. 2(d). As evident from Fig. 2, the perturbed area is different for
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Figure 2. The original discontinuity and its new affected areas for
different change of parameters such as (a) ∆xc = ∆L, (b) ∆σx =
∆L/3, (c) small ∆θ, (d) ∆σr = ∆L/3 in case of polar Gaussian
distributions, and (e) the effective area of interest in the case of
rectangular Gaussian distribution.

different parameter perturbations. All these affected areas, however,
are contained within a domain which is larger than RN from each
side by ∆L as shown in Fig. 2(e). Thus by storing the vectors λj,k,τ

and ηj,k,i in this area, all sensitivities can be calculated. Also, it is
emphasized that only one adjoint response λj,k,τ is required to estimate
the sensitivities with respect to all parameters.

We utilize analytical sensitivities of the nodal scattering matrices
(∂Sj/∂pi) instead of (∆Sj/∆pi) to improve the accuracy compared
to previous techniques. These analytical sensitivities are available if
pi is a parameter of the Gaussian distribution of either the relative
permittivity or the conductivity. The chain rule is applied where
the local scattering matrices are differentiated relative to the local
permittivity and this permittivity is differentiated relative to the
different distribution parameters.

The previous discussion dealt with the case where there is only
one discontinuity with Gaussian material distribution. Also, the field
sensitivity at only one probe was considered. This approach can be
extended to the case of multiple discontinuity and multiple observation
probes. We assume that a given structure has n observation points, and
m different discontinuities Wq, q = 1, 2, . . . , m. These discontinuities
are in different positions and each has a different Gaussian material
distribution with r parameters. The derivative (∂El(t)/∂pqv) is the
sensitivity of the probed field component E at the lth observation
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point with respect to the vth parameter of the qth obstacle. We thus
have n×m× r sensitivities. The number of extra simulations required
to estimate these sensitivities using finite difference approaches would
be very large. Using our algorithm, we are able to obtain all these
sensitivities by modifying the forward simulation. The sensitivity
formula will be:

∂El(τ)
∂pqv

≈ −∆t
∑

j

∑

k

(
λl,q

j,k,τ

)T
ηl,q

j,k,v (9)

where λl,q
j,k,τ is the adjoint variable calculated when the adjoint

excitation is applied at the lth observation point and saved in the
qth obstacle as shown in Fig. 2(e). All the vectors ηl,q

j,k,v are obtained
using the original simulation. A total of n adjoint simulations are
required to obtain all the sensitivities. Note that both the original and
adjoint simulations run in parallel. This feature allows for a possible
acceleration using parallel processing.

3.2. Algorithm

The algorithm of this method can be summarized in the following steps.

• Input data: Define the structure, the number of discontinuities,
observation probes, and excitations.

• Distribution functions: Define the parameters of the Gaussian
distribution of each material property for all discontinuities.

• Excitation function: Define the excitation sources of the original
problem. The Gaussian modulated sinusoid function is the
excitation function utilized in this paper and is defined by:

f(t) = A sin(2πfc (t− t̄ )) exp
(
−(t− t̄ )2

2σ2
t

)
(10)

• Forward Simulation: Carry out the original simulation (4)
with the excitation (10). Determine the vector ηl,q

j,k,v using
Equation (5).

• Adjoint Simulations: Carry out the adjoint simulations (5) to
obtain λl,q

j,k,τ .

• Sensitivity Estimation: Apply Equation (9) using the available
forward and adjoint vectors to estimate all the sensitivities
(∂El(τ)/∂pqv), ∀τ .
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4. SENSITIVITY ANALYSIS RESULTS

In this section, we test our approach through 2D and 3D examples.
For the 2D case, we consider the structure shown in Fig. 3(a). It
shows a rectangular dielectric discontinuity inside a parallel plate
waveguide. This domain is discretized into cells of dimensions ∆x =
∆z = ∆L = 0.5mm. The properties of the background medium
are given by (εr,m, σm) = (3.0, 0.5 S/m). The observation point is
r = [7.0mm 30.0mm]T . The number of time steps utilized for all 2D
cases is kmax = 5000. The excitation source is a Gaussian modulated
sinusoidal signal with center frequency 3.0 GHz and a bandwidth of
1.0GHz. The excitation has a uniform spatial distribution along the
first column of cells along the z coordinate. Due to space limitation,
we show only part of the sensitivity information obtained using our
algorithm. Our AVM sensitivity estimates are compared with those
obtained using the central finite difference (CD) approximation.

4.1. εr and σ with Different Gaussian Distribution

We consider in the first case where εr and σ have different Gaussian
distribution parameters. These parameters are given by xc1 = xc2 =
7.0mm, zc1 = zc2 = 15.0mm, σx1 = ∆L = 0.5mm, σz1 = (2/3) mm,
σx2 = (5/6) mm, σz2 = 0.5mm, εr,max = 5.0, θ1 = π/4, σmax =
0.5 S/m, and θ2 = π/6. The sensitivity analysis of any field component
can thus be estimated with respect to all 12 parameters. The sensitivity
of the electric field with respect to the maximum peaks {εr,max, σmax},

(a) (b)

Figure 3. The structure of: (a) a 2D dielectric discontinuity example
with a = 14.0mm and b = 30.0mm, and (b) the 3D dielectric
discontinuity example with L = 20.0mm.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. The sensitivities of Ey with respect to
εr,max, σmax, xc1, zc1, θ1, θ2, σx1, and σz1 in the case of 2D
structure where εr and σ have different Gaussian distributions.

angles {θ1, θ2}, center positions {xc1, zc1}, and the standard deviations
{σx1, σz1} using both our AVM approach and using the CD techniques
are shown in Fig. 4. The CD approach requires 24 extra TLM
simulations.

4.2. Polar Gaussian with Multiple Excitation Points

In this example, we consider the case where the standard deviations
are the same for both the x and z coordinates. We further assume that
εr and σ have the same spatial parameters xc = 7.0mm, zc = 15.0mm,
and σr = 0.5 mm. The amplitudes of the Gaussian distributions are
given by εr,max = 5.0 and σmax = 0.5 S/m. Two different excitations
are applied in this case. The first excitation is a Gaussian modulated
point source with a center frequency of 3.0GHz and a bandwidth
of 1.0GHz. The source is located at the point (0.5, 2.5)mm. The
second excitation is also a Gaussian modulated sinusoid with a center
frequency of 6.0GHz and a bandwidth of 2.0 GHz. It is located at
the point (0.5, 4.5)mm. The sensitivities of the temporal electric field
with respect to all the parameters of the Gaussian distribution of the
discontinuity are shown in Fig. 5. Our approach requires only one
extra TLM simulation while the CD approach requires 12 additional
TLM simulations.
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(a) (b) (c)

(d) (e) (f)

Figure 5. The electric field Ey and its sensitivity with respect to σr,
εr,max, σmax, xc, and zc for the 2D case with multiple excitations.

4.3. A 3D Example

We also consider the 3D structure shown in Fig. 3(b). This structure
represents a discontinuity with a cubic shape bounded by zero reflection
coefficient boundaries. We have only a single obstacle where εr and
σ have the same 3D polar Gaussian distribution as in the previous
example. The cell size is given by ∆x = ∆y = ∆z = 1.0mm.
A total of kmax = 3000 time steps are utilized. There is a single
excitation point with a center frequency of 3.0 GHz and a bandwidth of
1.0GHz. The excitation point is located at (1.0, 14.0, 20.0)mm. The
properties of the host medium are εr,m = 16.0 and σm = 0.16 S/m.
The observation point is located at (20.0, 10.0, 10.0) mm. We assume
that εr and σ have same 3D Gaussian distribution with parameters
(xc, yc, zc) = (10.0, 10.0, 10.0)mm, σmax = 1.08, εr,max = 41.0, and
σx = σy = σz = 1.0mm. Fig. 6 illustrates the sensitivities of the
electric field Ex at the observation point with respect to the eight
parameters εr,max, σmax, xc, yc, zc, σx, σy, and σz. Our technique
requires only one adjoint simulation while the CD approach requires
16 extra simulations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. The sensitivities of Ex with respect to εr,max, σmax, yc, σy,
xc, σx, zc, and σz for the 3D example.

5. OPTIMIZATION RESULTS

We utilize our estimated AVM sensitivities in the solution of inverse
problems related to microwave imaging. The objective of these inverse
problems is to determine the shape, location, and all electromagnetic
properties of an unknown scatterer. Many optimization techniques are
used for the solution of inverse problems [22–25].

We assume that the scatterer has material properties exhibiting
Gaussian distribution. This assumption reduces the number of
unknowns of a specific material property to six and seven for the
2D and 3D cases, respectively. Our optimization problem is to find
the unknown optimal vector p∗ whose components are a subset of the
Gaussian parameters {εr,max,σmax, xc, yc, zc, σx, σy, σz} that minimizes
the objective function:

p∗ = min
p
‖F(p, t)− Ftarget(t)‖ , ∀t ∈ [0, tmax] (11)

where F(p, t) is the simulator field and Ftarget is the target field.
The matlab [28] function fminimax is utilized in the solution of this
problem. Fig. 7 illustrates the geometry of the problem. There is single
Gaussian modulated sinusoidal excitation source at (35.0, 1.0) mm with
parameters fc = 3.0GHz and BW = 1.0GHz. The square area is a
local host with corners at (22.0, 22.0) mm to (44.0, 44.0) mm and with
uniform properties εr2 = 40.0, σ2 = 3.5 S/m. The observation point is
located at (35.0, 70.0) mm. The background medium has the material



Progress In Electromagnetics Research B, Vol. 27, 2011 13

Figure 7. The 2D optimization problem.

properties εr1 = 9.0 an σ1 = 0.4 S/m. We assume that εr and σ of
the tumor have polar Gaussian distribution. The effective area of the
tumor is approximated by a circle of radius r = 6σr. We consider the
following different optimization problems:

5.1. p = [εr,max σmax]T

Here, we fix xc, zc, and r. We optimize only for the amplitudes of
the Gaussian distribution of the relative permittivity and conductivity.
For this example, we have ∆L = 1.0 mm and kmax = 3000. The initial
value of the optimization vector p0 = [40.0 3.5 S/m]T . These are the
same values as those of the background medium. Table 1 describes two
different cases:

• Case 1: xc = zc = 30 mm, and r = 6.0mm.
• Case 2: xc = 40.0mm, zc = 30.0mm, and r = 9.0mm.

For both cases, using our AVM sensitivities, we are able to successfully
recover the amplitudes of the Gaussian distribution.

5.2. p = [εr,max σmax xc zc r]T with Noisy Data

To verify the robustness of our approach, we assume that the measured
field is contaminated with a Gaussian additive noise. Assume for
simplicity that the local host medium is the same as background
medium (εr2 = 9.0, σ2 = 0.4 S/m). The target material properties
are given by ptarget = [40.0 3.5 S/m 30.0mm 30.0 mm 9.0 mm]T . Here,
we use ∆L = 1.0mm, kmax = 1500, and initial values po = [9.0 0.4 S/m
26.0mm 26.0 mm 6.0mm]T . Fig. 8 shows the output optimization
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Table 1. Optimization results for the case p = (εr,max, σmax).

Target values Case 1 Case 2
εr,max t σmax t εr,max f σmax f εr,max f σmax f

42 3.7 41.999 3.6999 41.999 3.6999
42 6 42.000 6.0000 42.000 6.0000
45 4 44.999 4.0000 45.000 4.0000
45 5 44.999 4.9999 44.999 4.9999
48 4.3 48.000 4.3000 48 4.2999
50 3.7 49.999 3.6999 50.000 3.6999
50 4 50.000 3.9999 50.000 4.0000
50 4.3 50.000 4.3000 50.000 4.3000
55 4 55.000 4.0000 55.000 4.0000
60 6 60.000 6.0000 60.000 6.0000
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Figure 8. The optimal parameters [εr,max xc zc r]T and the maximum
error versus number of iterations in the case of additive Gaussian noise
of 1.0 m V/m.

parameters and the maximum error versus number of iterations in
the case of a Gaussian noise with amplitude 0.001 V/m. The final
optimal vector is popt = [39.999 3.4999 S/m 30mm 30 mm 9.0mm]T .
The correct Gaussian distribution is successfully recovered using our
adjoint variable sensitivities.
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5.3. p = [εr,max σmax xc zc r]T

For this case, we assume that the discontinuity has a polar distribution
and all of its parameters are unknown. We utilize the step size
∆L = 1.0mm and kmax = 1500. The initial value of the optimization
vector is p0 = [42.0 3.6 S/m 26.0 mm 26.0 mm 6.0 mm]T . Using
actual material properties of ptarget =[45.0 4.0 S/m 30.0mm 30.0 mm
9.0mm]T , the output result of the optimization algorithm is p∗ =[45.0
4.0 S/m 29.9 mm 30.0 mm 8.99mm]T . Also, when ptarget = [50.0
4.0 S/m 30.0mm 35.0mm 12.0 mm]T , the final result was p∗ = [50.0
4.0 S/m 30.0 mm 34.99mm 11.99 mm]T . Both results show that the
optimizer successfully recovered the material properties using our
adjoint sensitivities.

5.4. p = [εr,max σmax xc zc r]T “no tumor”

In this case, we test the optimization technique against the case of
“false detection”. The supplied values of the field are those of the case
where there is no discontinuity. We use ∆L = 1.0mm and kmax = 1500.
The initial values of the optimization vector p are chosen as in the
previous case. The optimal set of optimization parameters is p∗ = [40.0
3.5 S/m 26.06 mm 26.06mm 6.0 mm]T . The recovered amplitudes of
the discontinuity are identical to those of the surrounding local host.
This simply means that there is no discontinuity. The last three
values are meaningless because a discontinuity with the same material
properties as the surrounding medium can be placed anywhere.

5.5. p = [εr,max σmax xc zc r]T with No Local Host

The properties of the local host medium are identical to those of the
background medium (εr2 = 9.0, σ2 = 0.4 S/m). The target material
properties are given by ptarget = [30.0 2.5 S/m 32.0 mm 32.0 mm
9.0mm]T . Using ∆L = 1.0mm, kmax = 1500, and initial values
po = [9.0 0.4 S/m 25.0 mm 25.0 mm 6.0 mm]T , the vector of optimal
parameters is popt = [29.999 2.4999 S/m 31.99 mm 31.99 mm 9.0 mm]T .
The properties of the discontinuity are thus successfully recovered using
our adjoint variable sensitivities.

5.6. p = [εr,max σmax]T for the 3D Example

We also consider recovering the properties of the 3D discontinuity
shown in Fig. 4(b). The problem has the following parameters L =
20mm, ∆L = 0.1mm, kmax = 2000, εr,m = 40.0, and σm = 0.4 S/m.
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The excitation point source is at (1, 14, 20) mm, and the observation
point at (20, 10, 20)mm. The optimization problem utilizes the initial
parameter values p0 = [40.0 0.4 S/m]T . The target vector of material
properties is ptarget = [50.0 1.0 S/m]T . The optimal values are found
to be [49.999 0.999 S/m]T . Fig. 9 shows the maximum error and the
change in parameter values as functions of the optimization iterations.

(a) (b)

Figure 9. (a) The error in calculating ε, and (b) the maximum error
versus number of iterations.

Table 2. Optimization result for the 3D case p = (xc, yc, zc).

Iteration xc yc zc

1 9.0 9.0 9.0
2 9.0 9.0 9.0
3 10.928 9.538 10.129
4 10.928 9.538 10.129
5 9.842 9.734 9.799
6 9.842 9.734 9.799
7 9.762 9.870 9.746
8 9.762 9.870 9.746
9 10.001 9.990 10.003
10 10.001 9.990 10.003
11 9.999 9.999 9.999
12 9.999 9.999 9.999
13 10.000 10.000 10.000
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5.7. p = [xc yc zc]T for the 3D Example

In this example, we solve for the center of the Gaussian distribution.
We use the values εr,max = 57.0, σmax = 0.5 S/m, r = 6.0 mm, εr,m =
40.0, σm = 0.4 S/m, L = 30mm, kmax = 1000, and ∆L = 1.0mm. The
initial values of the optimization problem are p0 = [9.0 mm 9.0 mm
9.0mm]T . The target values of ptarget=[10.0mm 10.0 mm 10.0 mm]T .
Table 2 shows the output optimization vector at different iterations.

6. CONCLUSION

We present a novel adjoint variable method approach that obtains
the sensitivities of a transient time domain response with respect
to the dielectric discontinuities with Gaussian material properties.
We show that by using only one adjoint simulation, the sensitivities
with respect to all parameters of the Gaussian distribution are
obtained. We consider different cases for both 2D and 3D TLM
simulations. Excellent sensitivity estimates are obtained for a number
of examples. We exploit our adjoint sensitivities to recover the
unknown parameters of the dielectric discontinuities through given
transient field response. Same procedure can be applied to inverse
problems using electromagnetic imaging for 2D and 3D structures
having any numbers of obstacles or discontinues with different material
distributions.
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