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Abstract—Novel formulas are presented that allow the rapid
estimation of the number of terms L that needs to be taken into account
in the translation operator of the vectorial Nondirective Stable Plane
Wave Multilevel Fast Multipole Algorithm (NSPWMLFMA). This is
especially important for low frequencies, since the L needed for error-
controllability can be substantially higher than the L required in the
scalar case. Although these formulas were originally derived for use in
the NSPWMLFMA, they are equally useful in at least three other fast
matrix multiplication methods.

1. INTRODUCTION

When integral equations for electromagnetic scattering are iteratively
solved, the computationally most intensive step is the multiplication
of the system matrix with a vector. In essence, this is the calculation
of the fields generated by a collection of sources. When there are
N sources and N points where the fields need to be calculated
(observation points), N? operations are needed. In the past, many
fast matrix multiplication methods (FMMMs) have been developed
to perform this task more efficiently, usually reducing the complexity
to O(N) or O(NlogN) [1-7]. This reduction of the complexity is
achieved by subdividing the geometry of the problem into a hierarchy
of boxes (usually called a tree) and invoking a decomposition of the
Green function to let the boxes interact as a whole. Figure 1 shows
such a possible configuration of boxes.
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Figure 1. An example box configuration.

Because a decomposition of the Green dyadic is used instead of the
Green dyadic itself, an error is introduced, making FMMDMSs inherently
approximate. Therefore, it is of the utmost importance that the error
introduced by decomposing the Green dyadic is tightly controlled.
This error-control takes different forms in different FMMMSs. For
example, in multipole or Taylor series decompositions, the number
of terms in the series is increased to obtain a higher accuracy. In
plane wave based FMMMs, the number of radiation pattern samples is
increased. However, some FMMDMs have certain commonalities. More
specifically the Multilevel Fast Multipole Algorithm (MLFMA), its
multipole-based equivalent [8], the Nondirective Stable Plane Wave
Multilevel Fast Multipole Algorithm (NSPWMLFMA) [9, 10] and the
pseudospherical harmonic-based FMMM [11-12] are all based on the
following fundamental addition theorem

L

WS (k) = S (=D m(ra, re) I(L £ a, 1, ), (1)
(=0

with I(l,t4,l,77) given by (B2) from Appendix B and

204+ 1)(20 +1 ,
mutrarr) = CEDEED0 oy iy ). )

Here k is the wavenumber, rr = Ry — R, is the translation vector and
rqa = ro —ry —rp is called the aggregation vector. Normalized vectors
are denoted with a hat, and the norm of a vector is denoted by the
same symbol as the vector but non-bold, so for example rq = rat4
and rp = rprp. Also, r = rg + rp is the sum of the aggregation

and translation vector and j; () and hl(2) () are the spherical Bessel
and Hankel functions. Since these four FMMMs all derive from the
same addition theorem, their number of multipoles or sample points
can be obtained from the truncation bound of (1), i.e., L. For example
in the MLFMA, the number of plane waves is (L + 1)(2L + 1) while
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in the NSPWMLFMA the number of plane waves is (L + 1)2. In
the pseudospherical harmonic-based FMMM, the maximum order of
the pseudospherical harmonics is L and finally, in the multipole-based
FMMM, the maximum order of the spherical Hankel functions in the
translation matrices is L. Therefore, an efficient and simple way to
estimate L is very useful for at least four FMMMSs. First of all, having
an estimate for L is very valuable from a theoretical point of view for
understanding of the error behavior of an FMMM. Also, it is useful
in a solver if L is calculated on-the-fly. Indeed, in such a solver L
is usually determined by means of a numerical testing approach, i.e.,
the truncation bound is set at an initial estimate, and then gradually
adjusted until the error in some testing scenario has been reduced
to just below the target accuracy €. This numerical testing yields
quasi-optimal results but can take a long time in the setup phase if
the initial estimate for L is not close to the final value. Therefore, if a
good initial estimate of the truncation bound can be found quickly, this
entire process can be sped up by an order of magnitude. A considerable
amount of literature is devoted to finding dedicated formulas for initial
estimates of L in various frequency ranges. For example, the excess
bandwidth formula, presented in [13] provides an initial estimate for
the high-frequency (HF) case. In [14, 15], the excess bandwidth formula
is supplemented with additional formulas such that L can be estimated
for medium frequencies also. For low frequencies (LF), dedicated
formulas can also be derived.

However, these approximate formulas only guarantee the
requested relative precision when evaluating the Green function.
Clearly, if serious cancelation occurs between two evaluations at
slightly different positions, the final result can have a much higher
relative error. Unfortunately, this is exactly what happens when
evaluating the electric and magnetic Green dyadic arising from
Maxwell’s equations. Indeed, the spatial derivatives occurring in the
electric and magnetic Green dyadic can be interpreted as the limit of

(2) _p(® _
hy (kr)=hg (Kllr=AdlD) . vanishing A. The vector d is the direction

in which %he derivative is taken. Clearly this process entails serious
numerical cancelations.

The aim of this paper is the development of formulas for the
estimation of L when evaluating the electric and magnetic Green
dyadic. For the HF case, this work has already been accomplished
in [8] (see pages 88-92). The conclusion was that the scalar L had to
be increased by 1 and 2 for the magnetic and electric Green dyadic
respectively. However, to the best knowledge of the authors, no work
has to this date been published that treats the L determination in the
medium and low frequency ranges for the magnetic and electric Green
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dyadic. In the following, it will be shown that simply adding 1 or 2 to
the scalar L does not lead to a controlled error.

To avoid developing a patchwork of approximate formulas, each
of them wvalid in a specific frequency range, we will not extend the
estimation formulas from the literature to the dyadic case but rather
start from a slightly modified version of an approach proposed in [9].
This approach works for all frequencies, hence we only need to extend
one formula to the dyadic case. In the slightly modified version of the
approach in [9], L is chosen such that the relative error on (1), defined

by

EAL . ’héQ) (k’?”) - EZLZO(_l)lTl,l(TAarT)I(laf‘AaLf‘T)‘
s(Lyra,rr) = ’héz) (k'r’)’

Y (3)

is smaller than the target accuracy €. The values for r 4 and r7 must be
chosen such that any other choice would result in a smaller error, i.e.,
they must be the worst case scenario. In practice, it turns out that the
error F is maximal if r4 and rp are aligned (and otherwise arbitrarily
oriented), because then the Legendre polynomial in (B2) attains the
maximal amplitude. As a consequence, ry = rgé, and rp = rpeé, is
usually a very good choice, with rp the maximal value r4 can attain,
i.e., /3 times the side of the boxes in Figure 1. Clearly, checking
at which value for L the error (3) drops below the target accuracy
is an algorithm of O (L) computational complexity, which is very
computationally cheap. The result obtained by means of formula (3)
provides an excellent estimate for L that can, if wanted, be refined
using a numerical testing scheme.

The layout of this paper is as follows: In Section 2, the electric
and magnetic Green dyadics are briefly introduced, along with their
plane wave representation as used in the MLFMA. In Section 3, the
cancelation that leads to the loss of precision will be more thoroughly
demonstrated, taking the electric field integral equation (EFIE) as an
example. It will also be shown that it is possible to compensate for
the deleterious effects of cancelation by using a higher L than the one
obtained from Equation (3). In Section 4, formulas similar to (3) are
presented for the approximate determination of this new L. Finally, in
Section 5, some numerical results will be reported and discussed.

It will be assumed that the reader is familiar with the MLFMA
or related techniques. For a detailed discussion of the method we refer
to [8,9]. Also, a €/“! time dependence will be assumed and suppressed
throughout this paper.
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2. THE VECTORIAL MULTILEVEL FAST MULTIPOLE
ALGORITHM

The Green function of the scalar Helmholtz equation is given by

_e ko)
GU(r) - 47‘”" - 47Th (k,r) 9 (4)
and satisfies
V2Go(r) + kE*Go(r) = —6(r). (5)

The electric and magnetic Green dyadics used in this paper are given
by

Go (kr) = {]1 + zvv] WD (kr), (6)

k

and
Gon (Fr) = %v < [1h?) (k)] (7)

In the above, 1 is the 3 by 3 identity matrix.

We now turn to constructing plane wave integral representations
for the Green dyadics (6) and (7). For this, the vector r is again seen
as the sum of r4 and rp. The scalar MLFMA is based on the following
integral representation of the spherical Hankel function of the second
kind

W (kr) ~ [ Tulhrr, k)eIkkra g, (8)

Am

with the so-called translation operator defined by

Ty (krr, k Z]—l 2l +1)h )(krT)Pl(fT : 1}). (9)
The integral with subscrlpt S5 denotes integration over the unit sphere
A 2w pmw N
F(k)dk = / F(k(0, ) sin 0d0d, (10)
So 0 JO
with the wavevector

. cos ¢ sin f

k(0,¢) = |sin¢gsind | . (11)
cos 6

Expression (8) is approximate because of the truncation of the series
in (9).
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Following [8], substituting the integral representation of the scalar
Green function (8) into (28) and (29) yields integral representations of
the electric and magnetic Green dyadics

1 ~ ~ o~ o1 ~
Ge(kr) ~ —— [ Ty (krp, k) [1 — ki e 7Fkradk, (12)
4 Js,
and
Gu(kr) & = | Ty (ke k) [1 x k| e77Meradic (13)
am Js,

These expressions have been used in the literature to construct a fully
vectorial MLFMA which uses only two radiation patterns for each
MLFMA box [8].

For the HF case, the excess bandwidth formula can be adjusted [8]
to give an L that is appropriate for the vectorial case. For the LF case,
however, this adjustment is not sufficient.

3. CANCELLATION IN THE EFIE

To demonstrate the occurrence of numerical cancelation, we will
consider the calculation of electric field integral equation (EFIE)
matrix elements. These matrix elements are defined as

z], = / £(r) - / Ge(r — ') - by (r')dS"dS. (14)

with t,,(r) and by, (r’) the test and basis functions respectively. In this
section, we will use the familiar RWGs [16]. Due to the div-conformity
of these functions, the EFIE matrix elements can be cast in the mixed-
potential form

//h (ke —|)) 6 (r')ds'ds
) [v-tn<r>Jh02><k||r 1)V b)) 4505, (15

The surface divergence of the RWGs consists of two adjacent triangular
patches on which an equal but opposite charge is uniformly distributed.
The proximity of the two patches and the fact that they have an
opposite sign causes a cancelation between the contributions from these
two patches, leading to a severe deterioration of the accuracy.

As a numerical example, consider the RWGs depicted in Figure 2.
The boxes depicted in solid lines have a total of 16 RWGs associated
with them, i.e., 2 RWGs on every vertex. For example, on the vertex
with location % (€, + &, + &.], the first RWG is defined by the triangles
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A (a1, ag,a3) and A (ag, a3, ay4), while the second RWG is defined by
the triangles A (aj, a2, a4) and A (aj, a3, ay), with

=

a; = 71;(90 + 99, ¢0), (16a)
ap = \ggl;(l%,qbo +04), (16b)
az = \g?:f{(eo,d)o — (5¢), (160)
ay = \fl;((% — 09, $0), (16d)
0y = arccos (%) ) (16e)
¢O = Z? (16f)
(59 = 5¢ =0.2 (16g)

In this way, the two RWGs are sensitive to two orthogonal field
components. In addition, all the RWGs are on the edge of the
range where the addition theorem (1) is supposed to have controllable
accuracy, hence they provide a suitable worst case testing scenario.

4 4
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Figure 2. The used RWGs.
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Figure 3. The calculated error on the electric Green dyadic, given in
Eq. (18), does not converge as predicted by formula (3).

The RWGs in the lower box will be taken as the basis functions
b, (r') while the RWGs in the upper box will be the test functions
t,(r). The EFIE matrix elements are both computed exactly using (6)
and using the NSPWMLFMA for the case k = 0.01m~!. To evaluate
the worst-case error between the two matrices, we will define an error
associated with a so-called vertex pair. Such a pair consists of one of
the 8 vertices of the lower box and one of the 8 vertices of the upper
box. Obviously, there are in total 64 such vertex pairs. Also, there are
two RWGs located at each vertex, which allows us to compute a 2 x 2
EFIE matrix Z,,, p, for each vertex pair (n; and ng denote the indices
of the two vertices in their respective boxes). The error on this EFIE
matrix will be defined as

7NSPWMLFMA _ zExact

ni,n2 ni,n2

ni,n2 _ H
D" =

(17)

ni,n2

‘ ‘ZExact

The worst-case error will now be evaluated as the maximum error over
all possible vertex pairs

D, = maxy, n, (DZ*"?). (18)
Figure 3 shows the actual calculated error on the matrix and the
predicted error E,(L,+/3é.,3é.) for various values of L. Clearly,
the actual error decreases much more slowly than the error predicted
by (3). The fact that we used the mixed-potential formulation of the
EFIE is not the cause of this, since numerical experiments show that
the slow convergence still occurs when the dyadic formulation is used.
This leads us to conclude that the electric Green dyadic itself converges
more slowly to the correct result, and that a suitable L can be found
for which the target accuracy is obtained.
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In the next section, we will search for a formula of similar
simplicity as Equation (3) for the determination of L for the electric
and magnetic Green dyadic. For some basic mathematical properties
of the Legendre polynomials and spherical harmonics, to be used in
the sequel, the reader is referred to Appendix A.

4. DETERMINING L FOR THE DYADIC GREEN
FUNCTIONS

Using the orthogonality of the spherical harmonics (A8) and the spher-
ical harmonic addition theorem (A9), the integral representation (8) is
easily shown to reduce to (1). Clearly, if L is chosen large enough such
that (1) has converged with a tolerance ¢, then (8) has also converged
with the same accuracy. In practice, there are other sources of errors
such as numerical interpolation error, integration error, roundoff error,
etc. However, these errors can always be assumed to be of the same
magnitude as €. Indeed, if one source of error would greatly dominate,
it would be advantageous to make the other sources of error larger as
well, since doing so reduces the computational burden. Therefore, we
will assume that these other error generating mechanisms are not dom-
inant. Under this assumption, it is clear that (3) yields a reasonably
good approximation for L in the scalar case.

In the vectorial case the following question naturally arises: can
the integral representations (12) and (13) be reduced to an expression
as simple as (1)7 In the following, this question will be answered in
the affirmative.

4.1. The Magnetic Green Dyadic

Equation (13) is a plane wave decomposition of the magnetic Green
dyadic. Using the well-known Jacobi-Anger expansion of a plane wave

e~ IHTa = N (20 1) (kra) B (f{ : f‘A) ) (19)
=0

and the explicit expression of the translation operator (9), the following
result is easily obtained

L
G (kr) ~ 1 x Z(—l)lGﬁn, (20)
with G/ given by

G, = @+ DA (k) Yo (21 + 1)
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<y (krA)/ (i &) kPy (k- £4) dk. (21)
Sa
In Appendix B, the remaining integral has been evaluated analytically.

The result is given by (B3) and allows the elimination of the sum in (21)

G'lrn:Tl,l+1(TA7 TT)IIA((l—i-l, f‘A, l, f'T)_Tl,l—l(TA, TT)IIA{(Z—L f‘A, l, f‘T). (22)

4.2. The Electric Green Dyadic

For the plane wave representation of the electric Green dyadic, given
n (12), we can again use expansion (19) to evaluate the integral as a
series

L
~ 3 (-1)6L, (23)
1=0
with

Z] ) [ Pu(er ) [0 k] P (i £) die @29

The remalmng integral can again be evaluated analytically, albeit
through significantly more effort. The result is given in Appendix B
((B2) and (B10)) and again allows to reduce the infinite sum in (23)
to a finite one

GL = muo(ra, rr)lpp (I + 2,84, 1, Br)
+Tl,l(TA7 T’T) [I(l, f‘A, l, f‘T)]l - |f{f{(l, f‘A, l, f‘T)]
+10—2(ra, rr)l (I — 2,84, 1, T7). (25)

4.3. Convergence Criteria

Checking whether series (20) or (23) have converged to the prescribed
precision requires a way of comparing the right and left hand side. The
problem is that we are dealing with dyadics, and it is not immediately
clear which component to choose for calculating the error. Indeed,
some components may become exactly zero, such that the relative error
of one component is meaningless. To avoid this problem we will use the
matrix 2-norm, i.e., the largest singular value, to test the convergence.
For more information about the definition of the matrix norm, see [17]
from page 54 onwards. Now define the following measures of error

G (k) = 1 x $Eo(-1)'G H
Fnllxarer) = ] 2
Ge(kr) — SF (—=1)'GL
R X > -

[1Ge ()|
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The matrix norms occurring in these expressions can be computed
using SVDs of the 3 by 3 matrices. Surprisingly enough, however, it
is possible to find simple and explicit formulas for the matrix norms
in the denominators. Indeed, the derivatives occurring in (6) and (7)
can be evaluated using (4) and the recurrences for the spherical Hankel
functions. For the electric Green dyadic this yields [§]

Ge (k) =h® (kr) Kz‘; + k:i)2> £+ <1 _ é - k1)2> (1 —ff)] . (28)

while the magnetic Green dyadic becomes
1
Gkr) = b7 (k) eso — &08s) (- +3) . (29)

with r, €, and €y the unit vectors in spherical coordinates. The
(unsorted) singular values of the Green dyadics are easily found from
these formulas, since the singular values of a matrix A are nothing else
than the square roots of the eigenvalues of A A. By means of (28) we
get the singular values of the electric Green dyadic

o¢(kr) = o5 (kr) = [B? (kr) (1 _ ﬁ _ (ki)2> , (30)
(k) = [ k) (2 + (ki)g) , (31)

while for the magnetic Green dyadic, the following singular values are

obtained
m 2 L
o' (kr) = o5 (kr) = |hy~ (kr) . +7), (32)
3 (kr) = 0. (33)
From this, the denominators in (26) and (27) are found to be
1Gm (kr)|| = 07" (kr), (34)
|1Ge(kr)|| = max (o7 (kr), o5 (kr)) . (35)

The matrix norm in the numerator of (26) can also be found
without using SVDs. Indeed, the matrix norm of an expression of the
form 1 x v, with v a vector, is simply the vector norm of v. Clearly
this allows E,, to be calculated more easily as

1A”h((JZ) (kr) (ﬁ +j) Yio(—1)'G! H
ol (kr)

The matrix norm in the numerator of (27) should be computed
using the SVD of the 3 by 3 dyadics, as no analytical simplification

Em(L7 ry, rT) -

(36)
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was found by the authors. However, if one allows an error of a factor
/3, the Frobenius norm ||-|| » (see [17] on page 55) may be used, since
it is an equivalent norm for 3 by 3 matrices with bounds

1
EHAHFSHAHSHAHF' (37)

5. NUMERICAL RESULTS

As a first test, the L obtained using formulas (3), (26) and (27) are
compared to the excess bandwidth formula and the formula presented
in [15]. Figure 4 shows the required L as a function of the wavenumber.
The parameters for the L calculation are r4 = v/3é., rr = 3é, and the
target accuracy is € = 107°. It can be seen that, for low frequencies,
formula (3), the excess bandwidth formula and the approach from [15]
give different results. The difference with the excess bandwidth formula
is caused by the fact that the excess bandwidth formula is essentially
a high frequency asymptotic approximation for L. The difference
with the approach in [15] is caused by the fact that it is focused on
the MLFMA. Therefore it has to deal with the MLFMA’s inherent
numerical instability (low frequency breakdown), which influences the
obtained L. For high frequencies, all the L curves approximately go to
the same asymptotic limit, i.e., the excess bandwidth formula.

The convergence formulas (26) and (27) will now be numerically
tested using the benchmark box configurations shown in Figure 5. The

—Scalar Green funélion.

_ _ Magnetic Green dyadic

- - - Electric Green dyadic
Excess bandwidth

_||—— Approach from [16]

0

10

102 10° 10° 10' 10°

Wavenumber k
Figure 4. The required L as a function of the wavenumber. The line
for the approach from [15] is only shown for wavenumbers for which the

MLFMA does not suffer from the low-frequency breakdown (according
to [15]).



Progress In Electromagnetics Research, Vol. 111, 2011 283

* %
** -
*

** ***

Figure 5. The used benchmark box configurations. The arrows on
the vertices of the lower and upper boxes are the dipoles sources and
observers respectively.

boxes have sides of 1 m. The box configuration on the left depicts the
worst-case interaction when two buffer boxes are used, whereas the
configuration on the right is the worst-case interaction when only one
buffer box is used. Both situations will be studied here.

To compute the error, three elementary dipole sources and
observers were put on the vertices of the source and observer boxes
in Figure 5. The electric and magnetic fields generated by the source
dipoles on the observer dipoles were computed both directly and
by means of the NSPWMLFMA (as a function of L). Since these
interactions are nothing else than the components of the electric and
magnetic Green dyadic, it is possible to compute the following error
measures:

o HGm(nla ny) — GESPWMLFMA(nl, nQ)H N

m( ,77,1,77,2) - HGm(’I’Z]_,TLg)H ) ( )
HGe(nla ny) — GSISPWMLFMA(nl, nQ)H

Fe(L,n1,n2) = (39)

||Ge(n1, n2)| ’

where ny and ng are the indices of the vertices in the source and
observer box. To get the worst-case error, the maximum error is taken

Fo (L) = maxy, pn, [Fn(L,n1,n2)], (40)
F.(L) = maxy, n, [Fe(L,n1,n2)]. (41)
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A similar error measure for the scalar case is also introduced

Golny,na) — GONSPWMLFMA(

Go(n1,n2)

ni,ng)

Fy(L) =maxy, n, (42)

In Figure 6 the calculated error is shown for the two buffer box
case. The predicted error E.(L,v/3é.,3¢é,) is also plotted. The
value k = 0.01m~! was used for the wavenumber. It is clear that
formulas (26) and (27) much better capture the convergence behavior
of the magnetic and electric Green dyadic than formula (3). This
better approximation of the true behavior also translates into better
estimates for L. For example, if one wants an accuracy of 10™%, then
(3) would imply L ~ 16, while (27) implies L ~ 31. From Figure 6, it
is seen that L = 30 would be chosen if L were determined numerically,
which is very close to the result obtained using (27).

In Figure 7, the same analysis is performed, with the sole difference
being the number of buffer boxes used in the NSPWMLFMA. As can
be seen, convergence is very slow. In fact, the result first diverges
before slowly starting to converge. The slow convergence is not due
to the NSPWMLFMA, since formulas (26) and (27) also predict this
behavior. It can also be seen that the scalar Green function converges
slowly, but steadily. The slow convergence of the scalar Green function
can be traced back to the fact that the spheres circumscribing the
source and observer box almost touch. A quick analysis shows that
applying derivatives to the scalar Green function to obtain the electric

2 °
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Figure 6. Convergence as a Figure 7. Convergence as a

function of the truncation bound
L for the scalar Green function,
magnetic Green dyadic and the
electric Green dyadic for the case
where two buffer boxes are used.

function of the truncation bound
L for the scalar Green function,
magnetic Green dyadic and the
electric Green dyadic for the case
where only one buffer box is used.



Progress In Electromagnetics Research, Vol. 111, 2011 285

or magnetic Green dyadic adds factors proportional to L (for the
magnetic Green dyadic) or L? (for the electric Green dyadic) to the
error. These factors are the cause of the diverging error behavior for
small L. For large L, the exponential convergence as a function of
L is regained, but by then L is impractically large. Therefore, we
can conclude that using an FMMM based on spherical modes for the
vectorial (dyadic) case at low frequencies and using only one buffer

box leads to a huge truncation bound L or, alternatively, to inaccurate
results.

—— Calculated error F; ‘

o [| -o- Calculated error F,,

f - e - Calculated error F, %
Predicted error E;

Iy

10"} - - Predicted error E,, /S,’

- - - Predicted error E, g
)

logy (Error)

‘Wavenumber &

Figure 8. The predicted and calculated error for L = 20 as a function
of the frequency for the scalar Green function, magnetic Green dyadic
and the electric Green dyadic.

The behavior of the error as a function of the wavenumber has also
been investigated. Figure 8 shows the calculated and predicted errors
for the electric Green dyadic, magnetic Green dyadic and scalar Green
function for L = 20, using the dipole arrangement with two buffer
boxes from Figure 5. As can be seen in Figure 8, the predicted and
calculated errors have a very similar behavior which further validates
(27) and (26). An interesting phenomenon is the ‘dip’ that occurs
around k¥ = 4m~"! in the error curves for E,, F,., E,, and F,,. It
appears that, for low frequencies, the truncation bound L decreases
with increasing frequency. The same effect can also be observed in
Figure 4, where the required L for the magnetic and electric Green
dyadic exhibits a dip around k = 4m~'. Up to this point, the authors
have found no physical or intuitive explanation for this phenomenon.
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6. CONCLUSION

Novel formulas were presented that allow the rapid estimation of
the number of terms in the translation operator of the vectorial
NSPWMLFMA. In contrast to existing estimates for the scalar case,
these formulas are tailored to the Green dyadic that is used (electric
or magnetic). Some interesting results were obtained. For example, it
is shown that the truncation bound obtained from the scalar case is
too low when used for the vectorial case at low frequencies. Also at
low frequencies, it turns out that the electric Green dyadic requires a
higher truncation bound than the magnetic Green dyadic. Hence, when
the NSPWMLFMA is used on the EFIE or MFIE at low frequencies,
these novel estimates yield a much better error control than estimates
for the scalar case. Also, these novel estimates are valuable from a
theoretical point of view for understanding of the error behavior of the
NSPWMLFMA. In addition, the use of these estimates is not limited
to the NSPWMLFMA, since they are useful in at least three other fast
matrix multiplication methods.

APPENDIX A. SPHERICAL HARMONICS

The Legendre polynomials Pj(t) are defined as
1 d

_ 4 d e oy
and satisfy the following recurrence relations
20+ )tP(t) = (I + 1) Py (t) + 1P (1) , (A2)
d
(21 +1)R(E) = < [Pa(t) ~ Ba(0)],
= P (t) — Py(). (A3)
The derivative of the Legendre polynomial is denoted as
d
F(t) = LR, (A4)

For the stable numerical calculation of the Legendre polynomials,
recurrence (A2) should be used with starting values Py(t) = 1 and
Pi(t) =t.

The spherical harmonics Y; ,, (f{) are defined as

Vim (k) = (—1)l+m§§—ﬁ (e + iky) " T (E-) (A5)
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Here, | and m are integers such that [ € [0,00] and m € [—[,]].
Furthermore

2041 (1 —m)!

K, = A
Lm 47 (I +m)V (A6)
and
I+m 5
Z(t):w{l—t}7 (A7)

The spherical harmonics satisfy the following orthogonality relation

/ }/21 my -Yl-Q mo (f{) dR = 511,125m1,m2' (AS)

The spherical harmonics also satisfy the so-called spherical harmonic
addition theorem

Al ) = 57 Vi (k) Vi (). (9

APPENDIX B. USEFUL INTEGRALS

In this Appendix, the necessary mtegrals for this paper are given. For

brevity, the dot products t4 - 7, T4 - k and ¢ rr - k will be denoted as
v, 74 and 7 respectively. The first integral is

(L4, 7, F7) = /S Py (vr) iy () dk. (B1)
2

By means of the spherical harmonic addition theorem (A9) and the
orthogonality (A8) of the spherical harmonics, the following result is
easily obtained

. R 47
I(la, 2 a, 17, 1) = 014007 At 1PZA( 7). (B2)
Remember that v =14 - £7. The second integral of interest is
L (la,ta,lr, tr) = /S Py (yr) kP, (v4) dk. (B3)
2

This integral could be readily evaluated using the spherical harmonic
addition theorem and the recurrences of the spherical harmonics.
However the result still contains a sum of 2/ + 1 terms, with each
term containing a complicated square root. Instead we will derive a
closed form for I;. As a starting point, the following can be shown by
means of (A3)

[L —tata] kP, (v4) =

. 1 VA[ P i1(va) — P ,—1(va)], (B4)
A+
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where V4 = ﬁ, %, &]. Since the dot product of r4 and k in the

left hand side can be absorbed into the Legendre polynomial by means
of (A2), the following is found
(2la + kP, (v4) = Va [P (va) = Pry-1(34)]
+ 1A [(la+1)Prs1(va) +1aPy-1(va)] . (B5)

This result, combined with (B2), allows us to construct the following
closed form expression for I

47
20 +1)(2l4 + 1)

< { A+ 10141100 + a0t —100] E4Pip (7)

I (Ia,Ta,l7, 7)) = (

+ [61A+1JT - 5ZA*171T] VP, (7) } (BG)
This expression is not very symmetrical but can be simplified using
VP () = [Er — vEa] P, (7) (B7)

and the various recurrences of the Legendre polynomials. The result
then becomes

tr P () —tal;,(7)
(2la+1)(2lp+ 1)
The third and final integral is

'Mmmmwhéﬁwm&mmmm (BY)

IR(ZAv ta,lp, Br)=Xx4m [5ZA+17IT _51A,lT+1] . (B8)

The rightmost k can again be removed by means of expression (B5).
The remaining integral is expressible in terms of I (l4,Ta,lr,T7)
and derivatives thereof. After a lengthy calculation and various
simplifications, the following symmetrical form is obtained

4
(la+lp—1)(la+ip+1)(la+1r+3)

X { {foTPz/} (V) 4Tt AP (7)}

X 014 0p+2 =201, 10+ 0144200 ] + [ETTA + TATT]
% 61000 (2P0 () + Pp(7)
_51A7ZT+2PII1/~+1(’Y) - 6lA+2,lT‘Pl/:1+1(7):|

+1 [cm,zT (27P[A () = P, ('y))

=012 Pl 1(7) = a2 Pl ()] b (B10)

lpp(la,Ta,lp,t7) =
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In (B2), (B8) and (B10), the first and second derivatives of the
Legendre polynomials need to be evaluated. Calculating these could
in principle be done by means of the following recurrence

(1= 2)P{(t) = —U(tPi(t) = Pra (D). (B11)

However, this calculation is not numerically stable when the argument
t is close to £1. For a fully stable and robust calculation of P/(t) and
P/'(t) for I € [0, L], all the Legendre polynomials P,(t) for [ € [0, L — 1]
should be calculated first. Then recurrence (A3) can be used to
determine the first derivatives. For the second derivatives,

20+ )P (t) = Pa(t) — PLy (1), (B12)
can be used. It is worthwhile to point out that using these techniques,
both the Legendre polynomials and their first and second derivatives
can be calculated in O (L) operations. An obvious consequence is that

calculating I, Iy and Iy for [4 < L and Ip < L takes only O (L)
operations.
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