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CAN MAXWELL’S FISH EYE LENS REALLY GIVE
PERFECT IMAGING?

F. Sun and S. He †

Centre for Optical and Electromagnetic Research
JORCEP [KTH-ZJU Joint Research Center of Photonics]
Zhejiang University (ZJU), Zijingang Campus
East Building #5, Hangzhou 310058, China

Abstract—Both explicit analysis and FEM numerical simulation are
used to analyze the field distribution of a line current in the so-called
Maxwell’s fish eye lens [bounded with a perfectly electrical conductor
(PEC) boundary]. We show that such a 2D Maxwell’s fish eye lens
cannot give perfect imaging due to the fact that high order modes of the
object field can hardly reach the image point in Maxwell’s fish eye lens.
If only zeroth order mode is excited, a good image of a sharp object
may be achieved in some cases, however, its spot-size is larger than the
spot size of the initial object field. The image resolution is determined
by the field spot size of the image corresponding to the zeroth order
component of the object field. Our explicit analysis consists very well
with the FEM results for a fish eye lens. Time-domain simulation is
also given to verify our conclusion. Multi-point images for a single
object point are also demonstrated.

1. INTRODUCTION

Maxwell’s fish eye was proposed by Maxwell in1854 [1]. Maxwell’s fish
eye gives a good image with equal light paths from the viewpoint of
geometrical optics [1–3]. Recently, Leonhardt claimed that Maxwell’s
fish eye can give perfect imaging in wave optics and he modified the
original fish eye lens, which is infinitely large, so that the device
becomes finite [bounded with a perfectly electrical conductor (PEC)
boundary] [4, 5]. Leonhardt gave an explicit solution with very small
spot sizes of the object and image fields for such a fish eye lens with
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a line current source in the object point and a drain at the image
point [4]. However, this configuration is not practical for imaging. For
example, we do not know beforehand the distribution of fluorescent
points in bio imaging, and thus we cannot determine where to put
the drains in order to achieve an image of excellent resolution. If we
put many drains beforehand, it may degrade the image resolution,
particularly when some drains are located along the line connecting
the object and the image (this has been proved in our other numerical
simulation, which will be included in another paper). Apparently this
is not a conventional concept for imaging. In a conventional image,
we consider a very sharp field distribution (produced by some kind
of source) and see if a lens can give a very sharp field distribution at
another space point (without any drain). In this paper, we study the
imaging properties (in a conventional sense) of Maxwell’s fish eye lens
in the framework of wave optics. We show that perfect imaging can not
be achieved due to the fact that high order modes of the object field
will decay quickly before reaching the image point in Maxwell’s fish
eye lens. The image resolution is determined by the image field spot
size corresponding to the zeroth order component of the object field
and is related to the structure of Maxwell’s fish eye and the location of
the object. We also study the influence of the radius of Maxwell’s fish
eye (normalized to the wavelength) and the location of the object to
the image resolution. Both explicit analysis and numerical simulation
are given and they agree very well.

2. MODE ANALYSIS IN MAXWELL’S FISH EYE LENS

Maxwell’s fish eye lens has the following refraction index profile [2]:

n = 2n0/
[
1 + (r/R0)2

]
(1)

where n0 and R0 are the refraction index constant and radius of
the reference sphere, respectively, and r =

√
x2 + y2 is the distance

between a space point (x, y) and the center of Maxwell’s fish eye lens.
The Helmholtz equation for field Ek corresponding to a source at point
(0, 0) (with a vacuum wave number k = ω/c = 2π/λ0) in 2D space
can be written as:
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where g(r, θ) is the source term and g(r, θ) = 0 (when r 6= 0). Through
variables separation Ek(r, θ) = Uk(r)Θ (θ), we can obtain the following
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general solution to Eq. (2)
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2 = v(1 + v) (5)
Here Pm

v (ζ(r)) is the associated Legendre functions. We can see that
the field distribution in Maxwell’s fish eye lens can be expressed as a
superposition of different order modes. m = 0 and m 6= 0 represent
the zeroth order mode and the high order modes, respectively, and the
high order modes correspond to high angular frequency components.
Different sources may excite different modes.

3. ZEROTH ORDER MODE IN MAXWELL’S FISH EYE
LENS

In this section, we achieve an analytical solution for a line current
placed at any point within Maxwell’s fish-eye lens without any drain.
We set a line current at point (x0, y0) that can only excite the zeroth
order mode in Maxwell’s fish eye lens. The Helmholtz equation for
field Ek in 2D space can then be written as:

∆x,yEk + n2k2Ek = δ(x− x0, y − y0) (6)

We shall consider Eq. (6) in domain D = {(x, y)|x2 + y2 < R2
0}

and assume that (x0, y0) ∈ D. Let S = {(x, y)|x2 + y2 = R2
0} denote

the boundary of D. Note that the radius of PEC boundary R always
equates to the radius of the reference sphere R0, except in Section 5.
Let function Ek(x, y) satisfy on S the PEC boundary condition:

Ek|S = 0 (7)
Maxwell’s fish eye is obtained by projecting a spherical surface

onto a plane [4]. Translation of the source point on the plane
corresponds to rotation of the source on the spherical surface.
To express it mathematically, we introduce a subset of Möbius
transformations on the complex plane corresponding to rotations on
the spherical surface. Solution to the problem of Eqs. (6) and (7)
gives Green’s function to the Helmholtz equation with PEC boundary
condition, and this can be easily found through the construction
made by Leonhardt in [4], namely, through introducing complex plane
z = x + iy and Möbius transformation:

w(z) = −z∞(z − z0)/(z − z∞) (8)
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where z0 ≡ x0 + iy0 = R0 exp(iχ) tan γ and z∞ = −R2
0/z∗0 =

−R0 exp(iχ) cot γ. Furthermore, let v = v(k) be a root of Eq. (5)
and function ξ(w(z)) be determined by

ξ(w(z)) = (|w(z)|2 −R2
0)/(|w(z)|2 + R2

0) (9)

The solution to the problem of Eqs. (6) and (7) is given by

Ek(z) = [Pv(ξ(w(z)))− Pv(ξ(w(R2
0/z∗))]/4 sin vπ (10)

where the intensity Pv(ζ) is the Legendre functions and z∗ = x −
iy. Indeed it was demonstrated in [4] that both Pv(ξ(w(z))) and
Pv(ξ(w(R2

0/z∗))) are solutions to the source-free Helmholtz equation
for z 6= z0 and, moreover, Pv(ξ(w(z)))/4 sin(vπ) ∼ ln|z − z0|/2π as
z → z0 and is a bounded smooth function outside a small vicinity of z0,
while the second term in (10) is a bounded smooth function everywhere
in D [6]. Thus, Ek(z) given by Eq. (10) fulfills the necessary singularity
corresponding to a line current at z0. On the other hand, on boundary
S, we have z = R2

0/z∗, and thus Ek = 0.
Therefore, Eq. (10) gives a solution to the problem of Eqs. (6) and

(7). Point R2
0/z∗∞ ∈ D is the image of point z0. All rays emitted from z0

will be focused (after reflection on S) at the image point. This explains
the fact that was noted numerically (see below) that the electric field
has a local maximum at the image point. For example, if we choose
R0 = 5λ0, n0 = 1 and λ0 = 0.2m (the wavelength in vacuum), and set
a line current at z0 (−0.5m, 0), we can use Eqs. (8), (9) and (10) to
obtain the following field distribution in Maxwell’s fish eye lens:

Ek(z)=
[
Pv

(
3r2+8r cos θ−3

5r2 + 5

)
−Pv

(−3r2+8r cos θ+3
5r2 + 5

)]
/4 sin vπ (11)

The results of our analytical solutions (11) agree well with FEM
simulation results as shown in Fig. 1. Our FEM simulation result
is a stationary configuration without a drain at the image point. In
this special stationary configuration, we found that the time-averaged
power outflow of the line current at the object point is zero due to
the PEC boundary, i.e., a line current at the object point radiates
energy in the first half period (like a source) and absorbs energy in the
second half period (like a drain) in the stationary state. We can see
the spot size [i.e., full width at half magnitude (FWHM)] around the
image point is FWHM = 0.2925λ0 = 0.468λ, which is larger than the
spot size FWHM = 0.1825λ0 = 0.292λ around the source point. Here
λ = λ0/n is the “local” wavelength at point z0 (±0.5m, 0) in Maxwell’s
fish eye lens. For comparison, we also show in Fig. 1 Leonhardt’s
analytical solution for a special situation when one sets a drain at the
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image position with the same intensity of the original source of line
current [4]:

Ek(z)=
1

4 sin(vπ)
{[Pv(ξ(z))−Pv(ξ(R2

0/z
∗)]−eiπv[Pv(−ξ(z))−Pv(−ξ(R2

0/z
∗)]}

(12)

The solution (12) given in [4] corresponds to a linear combination
of delta-function sources localized at 2 points: z0 (source location)
and R2

0/z∗∞ (drain location) inside the PEC boundary (equivalent to
a linear combination of delta-function sources localized at 4 points:
z0, z∞, R2

0/z∗0 and R2
0/z∗∞ in the whole unbounded space), and is not

a Green’s function for Eqs. (6) and (7). From Fig. 1, we see that
Maxwell’s fish eye lens can still give a good image if only the zeroth
order mode is excited without any drain. However, the spot-size of the
image field is still larger than the spot size of the initial source field
(indicating that it can not give a perfect image). Adding a drain at
the image point [4] may sharpen the image spot size, and even recover
the object shape for a very special excitation of object field of only
zeroth order mode. However, it is not practical to add drains in a real
imaging application, as mentioned earlier. Furthermore, a simple line

(a) (b)

Figure 1. The absolute value of the normalized field distribution
around the line current (a) and its image (b) along x direction: blue
dashed line is from the FEM simulation result when we set a line
current at (−0.5m, 0); green line is our analytical result of Eq. (11);
red line is Leonhardt’s analytical result of Eq. (12) for a situation when
one sets a line current source at (−0.5m, 0) and a drain at (0.5m, 0).
The parameters for the fish eye lens are R0 = 5λ0 and n0 = 1. The
incident wavelength is λ0 = 0.2m.
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drain can not produce enough high order modes to make the image as
sharp as one wishes (for perfect image) though it can help to recover
roughly a very special object field distribution (of a finite spot size and
zeroth order mode) around the image position. We will not discuss the
situation of drains in this paper.

We should note that for a given structure of Maxwell’s fish eye
lens, if the position of the line current changes, the spot size around
the image point will also change. The results are shown in Fig. 2.
As abs (x0)/λ0 increases, the spot size (FWHM) of the image has
an over-all increasing trend (as the refractive index at the image point
becomes smaller), however, with some small oscillating behavior locally
(due to the introduction of the PEC boundary, as explained at the
end of Appendix). If we increase the size of the fish eye lens without
changing the normalized position of the line current, the spot size of
the image field around the image point will decrease. This is due to
the increase of local refraction index when we increase the size of the
fish eye lens (see Eq. (1)). Note that the spot size of the image field in
Fig. 2 is normalized by λ0 (instead of the “local” wavelength λ). The
smallest spot size of the image in Fig. 2 for x0 = 0.5λ0 and R0 = 5λ0

is FWHM = 0.225λ0 = 0.445λc, and thus still more or less diffraction-
limited.

We know that one can obtain two kinds of Green functions by
solving the stationary wave equation in Maxwell’s fish eye medium
filled in the whole space without any boundary. One is the retarded

Figure 2. Spot size of the image field around the image point (−x0, 0)
when the position of the line current (x0, 0) varies along the x direction
with y0 = 0. The horizontal axis indicates the normalized position of
the image. Lines of different colors indicate different sizes of the fish
eye lens.
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Green function which is casual, and the other is the advanced Green
function which is not causal [7]. Only the retarded Green function
is physically meaningful in Maxwell’s fish eye medium filled in the
whole space without any boundary. However, when we set a PEC
boundary in Maxwell’s fish eye medium, the advanced Green function
is associated to the wave reflected from the PEC boundary and thus
is also meaningful. The field distribution produced by a line current
in Maxwell’s fish eye with PEC boundary should be the superposition
of an advanced Green function and a retarded Green function. Our
analytical solution Eq. (10) is therefore causal and meaningful. Our
results in Figs. 1 and 2 do not have the problem of causality, either,
as the fish-eye lens is analyzed here in its steady state by the FEM
method. To verify that our analytical solution is causal, we made
the following FDTD simulation: We set a line source with a single
frequency (λ0 = 0.2m) at position (−0.5 m, 0) to produce a continuous
wave (excitation field, but not the total field) in a 2D fish eye bounded
with PEC at a radius of 1m. The simulation result is shown in Fig. 3.
The electric field propagates from the source to the image point and

(a) (b)

Figure 3. The normalized integration of the absolute value of the
electric field over one time-harmonic period. The results are calculated
with the FDTD method in 2D Maxwell’s fish eye bounded with the
PEC at the radius of 1 m, and plotted along the straight line passing
both the source and image points. We set a line source at position
(−0.5m, 0) to produce a single frequency wave with λ0 = 0.2m. (a)
During one period t = 41.6667 ns ∼ 42.3333 ns. The spotsize around
the image is FWHM = 0.464λ, which is larger than the spotsize
around the object FWHM = 0.4060λ. (b) During another period
t = 333.3333 ns ∼ 334.0000 ns. The object and image have a large
crosstalk (adjacent peaks).
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starts to form a good image at time t = 10.3333 ns. Then the field
forming the sharp image will behave like a new source and propagate
back to the source point forming a new source due to the “confocus”
property of the lens bounded with PEC. This process repeats again
and again. After about 42 ns, we find the field in Maxwell’s fish eye
keeps the harmonic oscillation for quite a long time. The normalized
integration of the absolute value of the electric field over one time-
harmonic period (indicating the local magnitude of the field) is shown
in Fig. 3(a). From this field distribution one sees that the spotsize
around the image is FWHM = 0.464λ (consistent with our earlier
analysis in frequency domain), which is bigger than the spotsize around
the object FWHM = 0.4060λ. We note that the spotsize around
the object is bigger than our earlier analysis in frequency domain.
The reason for this is that the source in our FDTD simulation is not
strictly monochromatic due to the turn-on process of the source (even
we have used a hypertangential envelope with a temporal width of
10 time units). Consequently, a beat effect is introduced. As we can
see at the time around the beat nodes, there is no image [e.g., at
t = 333.3333 ns the object and its image are submerged by adjacent
peaks; see Fig. 3(b)]. At a time around a peak of the beat, it can
form a good image [e.g., at t = 41.6667 ns; see Fig. 3(a)]. As time
alternates from node to peak of the beat, the field distribution in the
fish eye lens will alternate from a situation of an image to a situation
that no image can be formed. After a very long time, the source will
be quite close to a monochromatic one, and thus the field distribution
will finally converge to our FEM results.

To shed more light on the imaging performance of Maxwell’s
fish eye bounded with PEC, we make some additional numerical
simulations in time domain with the FDTD method. We set a line
source at position (−0.5m, 0) to produce a narrowly localized Gaussian

(a) t = 0.2833 ns (b) t = 0.3333 ns
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(c) t = 3.3333 ns (d) t = 6.2917 ns

(e) t = 10.9250 ns (f) t =  22.0580 ns

Figure 4. Electrical field distribution (along the straight line passing
both the source and image points) calculated with the FDTD method
at different times in 2D Maxwell’s fish eye bounded with the PEC
at the radius of 1 m. We set a line source at position (−0.5m, 0)
to produce a Gaussian wavepacket with time-varying function J(t) =
exp[−(t − t0)2/∆2] cos[ω(t − t0)], where t0 = 0.3333 ns, ∆ = 0.0167 ns
and λ0 = 2πc/ω = 0.2m. (a) At time t = 0.2833 ns the electric field
starts to appear around the source location. (b) At t = 0.3333 ns the
pulse field reaches its maximum around the source location with spatial
spot size FWHM = 0.0496λc. (c) At t = 3.3333 ns: the electric field
propagates from the source toward the image. (d) At t = 6.2917 ns,
the electric field just reaches the image location. (e) t = 10.9250 ns:
a good image is formed and the electrical field at the image location
reaches its maximum with a spatial spot size FWHM = 0.2408λc. (f)
t = 22.0580 ns: the electrical field around the image location decreases
as it propagates back to the source location forming a new peak there
with FWHM = 0.1328λc due to the confocus property.
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wavepacket with pulse function J(t) = exp[−(t−t0)2/∆2] cos[ω(t−t0)]
in the 2D fish eye bounded with the PEC at the radius of 1 m. We
choose pulse width ∆ = 0.0167 ns, t0 = 0.3333 ns and λ0 = 2πc/ω =
0.2m. The simulation results are shown in Fig. 4, from which we
can see that a wavepacket can be formed around the image point
(0.5m, 0). When the pulse field reaches its maximum at the image
point, the spot size is FWHM = 0.1505λ0 = 0.2408λc (see Fig. 4(e);
this indicates temporary subwavelength imaging (at some early time),
which will disappear eventually when the field becomes stable), which
is much larger than the initial spot size FWHM = 0.0310λ0 = 0.0496λc

around the source point (see Fig. 4(b)). Here λc = λ0/n is the “local”
central wavelength at point z0 (±0.5m, 0) in Maxwell’s fish eye lens.
Thus, a narrow wavepacket cannot give an equally narrow focus at
the image point in a 2D Maxwell’s fish eye lens. Then the electrical
field around the image location starts to decreases as it propagates
back to the source location forming a new peak there with FWHM
= 0.0830λ0 = 0.1328λc (at time t = 22.0580 ns, see Fig. 4(f)) due to
the confocus property of the lens bounded with PEC. The smearing
effect may be due to the tail of the free-space 2D Green function.

According to our earlier analysis, even for a time-harmonic line
current which can only produce single-frequency zeroth order mode
field in the 2D fish eye bounded with PEC, we cannot obtain an
equally sharp field spot at the image point (see Fig. 1) as compared
to the initial source field. Since a pulse wavepacket of source field
contains many frequency components, different frequency components
form image spots of different sizes (as we have explained earlier,
see Fig. 2). Consequently, the superposition of different frequency
components at the image point will form a wavepacket of larger spot
size as compared to the spot size of the initial source field (a narrowly
localized wavepacket).

This time-domain simulation result, which is obviously causal, is
consistent with our earlier frequency-domain analysis in the present
paper: When one sets only a line current without any drain in 2D
Maxwell’s fish eye with PEC boundary, one can still obtain a good
image spot which, however, is wider than the initial sharp spot size
around the source point.

4. CASE FOR OBJECT FIELDS WITH HIGH ORDER
MODES

In this section, we study numerically (instead of analytically) the
propagation of high order modes in Maxwell’s fish eye. First we show
that if we put at the center of the original Maxwell’s fish eye (without



Progress In Electromagnetics Research, Vol. 108, 2010 317

PEC) a source (e.g., δ(r)f(θ)) that can produce high order mode of
angular momentum, we cannot get an image spot for those high order
modes. The dispersion relationship in a cylindrical coordinate system
whose origin is located at the center of Maxwell’s fish eye can be written
as [8]:

k2
r + k2

θ = n2k2 (13)

where kr is the radial component of the wave vector, and kθ is the
tangential component of the wave vector. Considering the conservation
of angular momentum for the m-th order mode, we have

rkθ = m (14)

When m 6= 0, from Eq. (14) we can see that kθ increases toward the
center. Consequently, we can see from Eq. (13) that radial component
kr varies from a real value to an imaginary value as r → 0. The
turning point of kr = 0 is the radius of the caustic. Inside the
caustic, kr is an imaginary number and the angular momentum state
becomes evanescent (i.e., decays quickly) along the radial direction.
The detailed information carried by the high order modes can hardly
propagate to the far field without great damping. Only the zeroth
order mode (m = 0), which does not have the caustic, can propagate
to the far field in Maxwell’s fish eye. Thus, if we put at the center
of Maxwell’s fish eye a special source that can excite only (or mainly)
high order mode, the field cannot go to the far field, and consequently
a subwavelength image can not be formed. If we transform this source
position to another point of Maxwell’s fish eye or add PEC boundary
to Maxwell’s fish eye, the situation remains the same: subwavelength
image can not be achieved.

We can use FEM simulation to verify this in Maxwell’s fish eye
with PEC boundary at R0 = 10λ0 and n0 = 1. Our simulation is
for TE wave in 2D space with λ0 = 0.2m. We set a small circle
(with radius r0) located at z0 (−0.5, 0) with boundary condition
E = 3 exp(iγθ′)V/m to introduce some high order mode. We first
choose r0 = 10−3λ0 and γ = 0 and the simulation result is shown in
Fig. 5. Note that the field generated by boundary condition E = 3 V/m
on this small circle will contain some high order mode (and thus the
object field is quite sharp as compared to Fig. 1(a)), as the zeroth
order mode produced by a line current at (−0.5m, 0) is not a circle
(see Appendix). Since it also contains some zeroth order mode, a good
image spot can still be formed. However, if we change γ = 0 to γ = 5,
the situation will be completely different. The simulation result is
shown in Fig. 6. Boundary condition E = 3 exp(i5θ′) V/m on a small
circle gives more energy to high order modes (the object field is very
sharp in Fig. 6(a)). These high order modes cannot propagate to the
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far field (the ratio of the field magnitude around the object to that
around the image position is about Eo/Ei ∼ 105). Consequently, good
image can not be achieved, as shown in Fig. 6(b).

(a) (b)

Figure 5. EM simulation results for the absolute value of the field
distribution around the object (a) and its image (b) along x direction
for Maxwell’s fish eye lens with R0 = 5λ0 and n0 = 1. The object field
is excited with boundary condition E = 3 exp(iγθ′)V/m at a small
circle located at (−0.5 m, 0) with γ = 0 and r0 = 10−3λ0. Here we
choose λ0 = 0.2m.

(a) (b)

Figure 6. FEM simulation results for the absolute value of the field
distribution around the object (a) and its image position (b) along x
direction for the same Maxwell’s fish eye lens. We have set γ = 5
(while keeping the other parameters the same as those for Fig. 5 to
excite more energy to high order modes.
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(a) (b)

Figure 7. FEM simulation results for the absolute value of the field
distribution in the modified fish eye with R = 10λ0, R0 = 5λ0,
λ0 = 0.2m, and n0 = 1 (a) when we set a line current at z0

(−1.85m, 0); (b) when we set a line currents at z0 (−1.75m, 0).

5. MULTI-POINT IMAGES IN MAXWELL’S FISH EYE
LENS

We find that if the radius of PEC boundary R does not equate to the
radius of the reference sphere R0, some interesting phenomenon may
happen. Fig. 7 shows that multi-point images can be formed when we
set a line current in a special structure of Maxwell’s fish eye lens with
radius of PEC boundary R = 10λ0 and the radius of the reference
sphere R0 = 5λ0. This phenomenon may have some other applications
such as multi-point laser direct writing in parallel.

6. CONCLUSIONS

Maxwell’s fish eye lens of some special structures can give a good
image for a line current (without any drain) that excites only zeroth
order mode. However, as we have shown in the present paper, such
a Maxwell’s fish eye lens cannot give perfect imaging since high order
modes of the object field are evanescent modes and can hardly reach
the far-field image point. Good image can not be achieved when the
object field contains mainly high order modes. The image resolution
is determined by the field spot size of the image corresponding to the
zeroth order component of the object field. Both explicit analysis and
FEM numerical simulation have been performed and they agree very
well with each other. The dependence of the spot size of the image on
the position of the line current and the lens size has also been given.
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Time-domain simulation has also been carried out and the numerical
results are consistent with our analysis. The present 2D results can be
generalized to the 3D case.

ACKNOWLEDGMENT

An earlier version of this work can be found on ArXix:
http://arxiv.org/abs/1005.4119, which was submitted on May 22,
2010. After the present work was completed, we noticed several other
comments on [4] have appeared [9, 10]. The authors are grateful to
Prof. Vladimir Romanov for many valuable discussions and Xiaocheng
Ge for great help in numerical simulation. We also thank Dr. Yi Jin,
Pu Zhang, Yuqian Ye, Yingran He, and Jianwei Tang for some helps.
The work is partly supported by the National Basic Research Program,
the National Natural Science Foundations of China, and the Swedish
Research Council (VR) and AOARD.

APPENDIX A.

This appendix is used to explain the shape of zeroth order mode in
Maxwell’s fish eye lens and help understand the results in Figs. 2 and 5.
From the viewpoint of transformation optics [4], we know if we set a line
current at the North Pole N on a spherical surface an image spot can be
formed at the South Pole S on the spherical surface. According to the
symmetry, the field produced by a line current and its image should be
the zeroth order mode of circular symmetry on the spherical surface.
When we make a transformation from a spherical surface to a plane,
the electric field distribution will also be transformed. The zeroth order
mode on the spherical surface is also transformed into the zeroth order
mode in Maxwell’s fish eye. We can use a stereographic projection [4]
to transform a spherical surface to a plane. However, when the zeroth
order mode is centered at different positions on the spherical surface,
we have different projection shapes on the plane. That is the reason
why we have different shapes of the zeroth order mode at different
places of Maxwell’s fish eye and the modified one bounded with the
PEC. A circle on a spherical surface may be transformed to an ellipse on
the plane. We assume the radius of the zeroth order mode around the
line current or its image on the spherical surface is Rzero. Considering
the symmetry of a spherical surface, we can assume the center of this
zeroth order mode is on the x-z plane. If we make a stereographic
projection of this circle on the spherical surface to the plane, we will
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Figure A1. Stereographic projection. The zero order mode with
circular symmetry on the spherical surface will be projected into a
modal field of ellipse shape on the 2D plane.

obtain an ellipse function:

(x− x0)2

a2
+

y2

b2
= 1 (A1)

where

a =

√(
D +

C2

4B

)
/B, b =

√(
D +

C2

4B

)
/A, x0 = − C

2B
(A2)

and where

A=
(
cos θ0+

√
R2

0−R2
zero

)2

, B=
(
1+cos θ0

√
R2

0−R2
zero

)2

−R2
zero sin2 θ0,

C =2R2
0 sin θ0 cos θ0 + 2 sin θ0

√
R2

0 −R2
zero, D = R2

zero −R2
0 sin2 θ0.

Here R0 is the radius of the reference sphere, Rzero is the radius of the
zeroth order mode around the line current or its image on the reference
sphere, (x0, 0) is the center of the projected elliptic disk on the plane
around the line current or its image. θ0 is the angle between the z axis
and the line connecting the center of the zeroth order mode and the
origin (see Fig. A1).

If we know the radius of the zeroth order mode on the spherical
surface (denoted by Rzero), we can use Eq. (A2) to calculate the size
of the zeroth order mode in 2D Maxwell’s fish eye. Let a and b denote
the half widths along the x and y directions, respectively. According
to Eqs. (A1) and (A2), we can see if the object is near the original
point (i.e., θ0 is small) and Rzero ¿ R0, the zeroth order mode is of
circular shape (a ∼ b). If the object is far from the origin (i.e., θ0 is
large), the zeroth order mode will become an ellipse (a 6= b). Note that
the projected spot on the plane will be inside the circle with radius R0
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when the original field spot is on the lower surface of the sphere. For
Maxwell’s fish eye lens of a specific size, R0 and Rzero are fixed. From
(A2) we can see when we change θ0, both a and b will change, and may
reach maximum at some special θ0m. For Maxwell’s fish eye lenses of
different sizes, θ0m also differs as one can see from Eq. (A2).

If we add a PEC boundary at the equator of the sphere, the
symmetry (about angle θ0) of the spherical surface has been broken.
Thus, image field spot size Rzero (produced by a line source) should
also depend on the position angle θ0. Consequently, the projected
elliptic disk on the plane will also have different size. This explains the
small oscillating behavior in Fig. 2.
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