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Abstract—In this paper, we propose a hybrid optimization approach
that combines the Efficient Global Optimization (EGO) algorithm
with Taguchi’s method. This hybrid optimized algorithm is suited
for problems with expensive cost functions. As a Bayesian analysis
optimization algorithm, EGO algorithm begins with fitting the Kriging
model with n sample points and finds the (n + 1)th point where
the expected improvement is maximized to update the model. We
employ Taguchi’s method in EGO to obtain the (n + 1)th point in
this paper. A numerical simulation demonstrates that our algorithm
has advantage over the original EGO. Finally, we apply this hybrid
optimized algorithm to optimize an ultra-wide band (UWB) transverse
electromagnetic (TEM) horn antenna and a linear antenna array.
Compared to Taguchi’s method and the Integer Coded Differential
Evolution Strategy, our algorithm converges to the global optimal value
more efficiently.

1. INTRODUCTION

Many different optimization algorithms have been applied to antenna
design [1–5]. Most of them require a large number of evaluations of the
objective function. We propose a hybrid optimization approach that
is suited for solving this problem. As a Bayesian analysis optimization
algorithm, Efficient Global Optimization (EGO) converges to the
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global optimal value efficiently. The reason is that only one best point
is evaluated using the objective function during each iteration, and
EGO can automatically balance local and global search. In order
to find the best point during each iteration, the branch and bound
method [6] and genetic algorithm [7] are used in EGO.

In this paper, we employ Taguchi’s method [8] in EGO to obtain
the best point. Taguchi’s method is based on the concept of the
orthogonal array (OA), which can effectively reduce the number of
tests required in a design process [9]. Compared with the branch and
bound method and genetic algorithm, Taguchi’s method is easier to
implement and more efficient in reaching the optimum solution.

This paper is organized as follows. In Section 2, the EGO
algorithm is described in detail, and Taguchi’s method is introduced
briefly. A test function is used to demonstrate the global optimization
performance of the hybrid optimized algorithm in Section 3. Section 4
presents two examples to prove that the hybrid optimized algorithm
works efficiently. The conclusion is given in Section 5.

2. EFFICIENT GLOBAL OPTIMIZATION

We sample n points by the Latin Hypercube Sampling [10] and
evaluate their fitness using the objective function. The fitness y is
a n-dimensional vector, and each component is a function of the k
independent variables x. For the initial n samples, the vectors y and
x are

y = [y(1), y(2), y(3), . . . , y(n)]n×1 (1)

x = [x(i)
1 , x

(i)
2 , x

(i)
3 , . . . , x

(i)
k ]k×1 i = 1, 2, . . . , n (2)

The initial number of n is usually chosen as 11k − 1 in order to
ensure a robust search of the model space.

2.1. Kriging Model

The Kriging model is used in EGO, which can be written as [11]
y(x(i)) = µ + ε(x(i))i = 1, 2, . . . , n (3)

Here, µ is a constant term, and ε(x(i)) represents a deviation for
Gaussian stochastic process. The correlation between ε(x(i)) and
ε(x(j)) is strong when the two corresponding points x(i) and x(j) are
close. In EGO, a special weighted distance function between the points
x(i) and x(j) is defined as

d(x(i),x(j)) =
k∑

h=1

θh

∣∣∣x(i)
h − x

(j)
h

∣∣∣
ph

(4)
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where θh(0 ≤ θh ≤ ∞) are the unknown correlation parameters
representing the activity of the variable xh. The ph(1 ≤ ph ≤ 2) is
related to the smoothness of the function in coordinate direction h.
The function is smooth with ph = 2 and less smooth when ph is near
1. The correlation between the point ε(x(i)) and ε(x(j)) is defined as

corr
[
ε(x(i)), ε(x(j))

]
= exp

[
−d(x(i),x(j))

]
(5)

The Kriging predictor, which is the best linear unbiased predictor
(BLUP) of y(x∗) can be written as [12]

ŷ(x∗) = ŷ(∗) = µ̂ + rTR−1(y − 1µ̂) (6)

where x∗ is an arbitrary point in the function space. R is a n × n
matrix whose (i, j) entry is corr

[
ε(x(i)), ε(x(j))

]
, and I denotes an

n-dimensional unit vector. r is the vector whose ith element is

ri = corr
[
ε(x∗), ε(x(i))

]
(7)

The mean of this model is

µ̂ =
(ITR−1y)
(ITR−1I)

(8)

The unknown parameters, θh and ph, can be determined by
maximizing the following likelihood function

L(µ, σ2) =
1

(2π)
n
2 (σ2)

n
2 |det(R)| 12

exp
[
−(y − Iµ)TR−1(y − Iµ)

2σ2

]

(9)
where

σ̂2 =
(y − Iµ̂)TR−1(y − Iµ̂)

n
(10)

The Nelder-Mead algorithm [13] is used to obtain θh and ph. With
the parameters, we can obtain the Kriging model using (6)–(8).

2.2. Update the Model

The key point of the EGO algorithm is how to select the next data
point for the evaluation of the objective function to update the Kriging
model.

The mean squared error of the model predictor can be estimated
as follow:

s2(x∗) = σ2

[
1− (rTR−1r) +

(I− ITR−1r)2

(ITR−1I)

]
(11)
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Notice that when x∗ = x(i) with i ≤ n, we have rTR−1r = 1,
ITR−1r = 1, and s2(x(i)) = 0. This means that the uncertainty of a
known point is zero.

Let fmin = min[y(1), y(2), y(3), . . . , y(n)], the improvement at the
point x∗ is

I(x∗) = max(fmin − ŷ, 0) (12)

The expected improvement can be expressed as

E [I(x∗)] =

{
(fmin − ŷ)φ

[
fmin−ŷ

s

]
+ sϕ

[
fmin−ŷ

s

]
s > 0

0 s = 0
(13)

where φ(x) and ϕ(x) are the normal probability distribution function
and normal probability density function, respectively.

We evaluate E [I(x∗)] for a large number of points and find the
(n + 1)th point x where the expected improvement is maximized, and
evaluate the fitness of the x. If the convergence criterion is not met,
the Kriging model is updated with this new sample point, and the
searching for the next point is repeated until the convergence criterion
is satisfied.

We use Taguchi’s method to find the new x. Compared to the
branch and bound method and the genetic algorithm it is easier to
implement and more efficient to obtain the optimum solution.

2.3. Taguchi’s Method

Taguchi’s method begins with selecting the orthogonal array (N, k, s, t)
which is a N × k matrix with s levels and t strength. The strength t
usually is 2 [14]. The values of N and k are determined as

N = sp (14)

k =
N − 1
s− 1

(15)

where p is a positive integer starting with 2. The number of levels
typically is 3. And in the first iteration, the values of parameters for
level 2 are selected at the center of the optimization range. The values
of levels 1 and 3 are defined as

Level1/Level3 = Level2 + /− LD1 (16)

where
LD1 =

max−min
numble of levels + 1

(17)

The input parameters are designed using the orthogonal array. A
response table can be built with the parameters. Based on the response
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table, the optimal level for these parameters is used as the values of
the level 2 for the next iteration. But for the (i + 1)th iteration

LDi+1 = rr × LDi (18)
where rr is reduced rate the value of which can be set between 0.7
and1. In this paper rr is set to 0.9.

When the optimal level is identified, a confirmation experiment
is performed. The following equation may be used as a termination
criterion for the optimization procedure

LDi

LD1
< convergent value (19)

The convergent value is set as 0.0001. After the optimization
parameters are set, the step of Taguchi’s method is constant. Here, the
objective function of Taguchi’s method is the expected improvement.
Compared to a large number of electromagnetics evaluations this
evaluation is ignore. So there is almost no effect when optimization
parameters are varied.

2.4. Termination Criteria

The EGO algorithm has two convergence criterions. One is that the
absolute value of the expected improvement E [I(x∗)] at the new point

Selection of n sample points

Evaluate the fitness

Construction of
kriging Model with n

sample points

Selection or new x
using Taguchi's Method

n=n+1;
Evaluate
fitness of
the new x

No
Termination

criteria
met?

Yes

END

Figure 1. The flowchart of EGO.
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x is less than 1% of the minimum value of the function at the known
points. We take 0.1% instead of 1% to obtain better accuracy. One
could choose a factor less than 0.1%; however, the smaller number,
the more expensive function calls. The other stopping rule is the total
number of iterations of the algorithm. This prevents the algorithm
from running extensively.

The flowchart of the hybrid optimized algorithm is shown in
Figure 1.

3. A TEST FUNCTION

We take log 10 of The Goldstein-Price function as the test function:
f(x1, x2)=log10

([
1+(x1+x2+1)2(19−14x1+3x2

1−14x2+6x1x2+3x2
2)
]

×[
30+(2x1−3x2)2(18−32x1+12x2

1+48x2−36x1x2+27x2
2)

])

(−2≤x1, x2≤2) (20)
It has two independent variables and one global minimum that is
equal to 0.477 at (0, 1). A average value of ten results of the hybrid
optimized algorithm is 0.488. The comparison of four methods is shown
in Table 1. Compared with the original EGO, the hybrid optimized
algorithm works more efficiently and has a smaller convergence value.

Table 1. Comparison of four methods.

Methods

The hybrid

optimized

algorithm

EGO [6]
Zilinskas’

algorithm [15]

Mockus’

Bayesian

algorithm [15]

Stopping

Criteria
0.001 0.01 0.001 0.001

Numbers of

calculating

objective

function

20 32 153 362

4. NUMERICAL EXAMPLES

4.1. Application on the Design of the Ultra-wide Band
(UWB) TEM Horn Antenna

As a high-power and ultra-wide band (UWB) antenna transverse
electromagnetic (TEM) horn antenna can effectively radiate time-
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domain short pulse signal. It has a very broad application in military
area, such as radar systems, high-power microwave weapons and so
on. The geometry of a TEM horn antenna is shown in Figure 2. The
parameters of the TEM horn antenna are shown in Table 2 [16].

The structural parameters apical angle (α) and included angle (β)
are set to be the optimized variables. The optimization range is

5◦ ≤ α/2 ≤ 60◦, 5◦ ≤ β/2 ≤ 60◦

The fitness function is set as,

f = max {V SWR0.6–3 GHz} (21)

the value is as smaller as possible. In order to fit the Kriging model
well, the fitness function is transforming with the log transformation,
ln(f).

The hybrid optimized algorithm stops after a total of 66 iterations
and converges at the point x, (13.866, 45.5214). The result is shown
in Figure 3.

The comparison of the hybrid optimized algorithm with Taguchi’s
method and the Integer Coded Differential Evolution Strategy [16] is
shown in Table 3 and Figure 4.

S
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β

h

X

Z

Y

O

Figure 2. TEM horn antenna.

Table 2. Parameters of the TEM horn antenna.

Quantity Value
hypotenuse length of the trapezoidal plate 0.35 m
parallel-plate length 0.03 m
parallel-plate width 0.05 m
parallel-plate height 0.01 m
thickness of metal plates 0.01 m
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It can be seen that all of the three algorithms obtain good fitness
values. However, the numbers of calculating fitness function of the
hybrid optimized algorithm is only 87 which is about 10.98 percent
of that in Taguchi’s method and about 4.35 percent of that in the
Integer Coded Differential Evolution Strategy. This proves the hybrid
optimized algorithm works efficiently as mentioned above.

4.2. Optimize Element Amplitudes of a Linear Antenna
Array

Figure 5 shows a 2N-element symmetrical array placed on the x-axis.
The phase ϕn is taken as zero, and the spacing between adjacent
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Figure 3. The results of the hybrid optimized algorithm.

Table 3. Comparison of the optimal results.

α/2 β/2 VSWR

Numbers of

Calculating

Fitness

Function

The hybrid optimized

algorithm
13.866 45.5214 2.2985 87

Taguchi’s method 10.49 39.66 2.30743 792

Integer Coded

Differential Evolution

Strategy

17.94 42.62 2.27935 2000
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Figure 4. Comparison of VSWR.

elements is taken as λ/2. The first element is placed at x=λ/4, so
the array factor (AF) can be written as:

AF (θ) = 2
N∑

n=1

In cos[(n− 0.5)π sin θ] (22)

where In(n = 1, 2, . . . , N) are the excitation amplitudes which will be
optimized in the range [0, 1]. The fitness function for maximum side
lobe level (SLL) minimization is expressed as:

Minimize fitt = max{20 log |AF (θ)|}
θ = [14, 90] (23)

... ...

1 2 n   N

θ

Figure 5. 2N-element symmetrical array placed on the x-axis.

A linear array with 10 elements is optimized using the hybrid
optimized algorithm. The maximum SLL is −24.30 dB which is not
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better than result of Taguchi’s method in [14]. While the hybrid
optimized algorithm stops after 14 iterations which means it calculates
object function only 68 times. The optimum amplitude values of two
methods are given in Table 4. Figure 6 shows the radiation patterns.
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Figure 6. The radiation patterns.

Table 4. The optimum amplitude values.

n

The hybrid
optimized
algorithm

Taguchi’s
method

1 0.9473 1.0000
2 0.8573 0.8999
3 0.6837 0.7228
4 0.4949 0.5077
5 0.3876 0.3994

5. CONCLUSION

In this paper, we propose a hybrid optimized algorithm based on
EGO algorithm and the Taguchi’s method. A numerical simulation
example demonstrates that our algorithm works more efficiently than
the original EGO. Then we applied it to optimize the ultra-wide
band (UWB) transverse electromagnetic (TEM) horn antenna and a
linear antenna array. The results prove that the hybrid optimized
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algorithm has advantages over Taguchi’s method and the Integer
Coded Differential Evolution Strategy and that it is suited for problems
with expensive cost functions. It will be applied to more antenna design
problems. And we will optimize, build and measure a new antenna in
future.
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