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Abstract—An accurate and flexible three-dimensional Volterra Time
Domain Integral Equation (TDIE) algorithm is presented and
implemented here to model the time-dependent electromagnetic field of
arbitrarily shaped dielectric bodies. This development is motivated by
the need for a modern high-resolution numerical tool that is capable of
providing a full and comprehensive investigation of devices containing
a diverse range of feature sizes or boundaries, in all three space
dimensions plus time. Stability, accuracy and convergence of the
algorithm are discussed and verified by means of canonical working
examples.

1. INTRODUCTION

This paper presents a volume time domain integral equation based
technique for studying the transient time-dependent electric field of
three-dimensional dielectric bodies having arbitrary shapes. The
ability to accurately and cost-effectively simulate electromagnetic
wave interactions with penetrable bodies containing a diverse
range of feature sizes having boundaries that are curved or
non-tangential to the coordinate axes of complex and/or time
varying material response is of significant practical interest for
many applications in photonics and optoelectronics [1, 2]. Other
important areas of interest including broadband response, optical
behaviour, identification, bioelectromagnetic applications [3], imaging
and chemical identification processes [4].
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To this effect, and over the recent years, corresponding electromag-
netic investigations have drawn increasing attention in the scientific
community due to continuing theoretical and technological develop-
ments in this discipline. Simultaneously, a similar advancement, with
the wide availability of high speed computers, has provided reliable
design and analysis tools for their examination. Typically, these inter-
actions can be analyzed using methods that are based on the differ-
ential or integral form of the Maxwell equations. Common volumetric
differential equations techniques include finite difference time domain
(FDTD) [5], transmission line modelling (TLM) [6], and finite volume
time domain (FVTD) [7]. The primary drawback of these methods is
i) they require discretization of the full problem space and ii) the need
to artificially impose radiation conditions. In contrast, solutions to
electromagnetic problems obtained using time domain integral equa-
tions (TDIE) schemes only i) require the direct discretization of regions
whose material properties differ from a background material and ii) in-
herently satisfy radiation conditions; therefore eliminating this poten-
tial source of error when explicitly constructing absorbing or perfectly
matched boundary conditions. However, in the past, time domain in-
tegral equation based methods were often found to be computationally
expensive compared to their differential equation based counterparts,
and suffer from late time instability in the form of high frequency oscil-
lation [8–10]. Recently the efficiency of TDIE techniques has increased
dramatically with the advent of acceleration schemes such as the plane
wave time domain algorithm [11] and the fast Fourier transform accel-
erated schemes [12]. Furthermore, the marching-on-in-time methods
for solving TDIE, that have been shown prone to late time instabili-
ties, have also been successfully treated for various scenarios through
the use of spatial and/or temporal filtering techniques [13–16], and the
implementation of accurate spatial interpolation rules with implicit
time-stepping schemes [17–20]. In addition, a backward finite differ-
ence approximation, resulting in an implicit technique, to minimise
these late-time oscillations has also been proposed [21, 22]. However,
evidently this should be used with care, due to the damping properties
of the backward Euler which can affect the solution accuracy.

It is also noted that the choice of a particular TDIE method
depends on the nature of the problem under consideration. Whereas for
penetrable homogeneous media, surface integral equation schemes [23–
25] are the most appropriate; volume integral equation methods are
more suitable when the structure is inhomogeneous [26]. While
continuous effort has been employed to further advance numerical
techniques involving volume integral equations in the frequency domain
for various applications [27–32], to our knowledge, limited progress
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has been reported in the time domain [26, 33]. In these schemes, the
solution of the problem is often based on employing well established
techniques such as the finite element (FE) method [28] and method
of moment (MoM) [34]. For such scenarios, the integral equation
is discretized and represented by a set of basis functions that leads
to systems with fully populated matrices, which is found to impose
large memory requirement [31]. Numerical methods are then employed
to solve these matrices, where they are often required to undergo
additional mathematical conditioning or specific numerical treatment
in order to obtain the solution successfully [28, 34]. Commonly applied
algorithms for this purpose are either based on conjugate gradient
type methods [35] which search for the solution iteratively and/or
error minimization of the formulation, formally known as Galerkin
testing, [27].

Alternatively, the nodal field sample values can be evaluated
in an evolutionary manner, first pioneered by Nerukh et al. [36–
38], and also reported in our previous work for the one-dimensional
(1D) [39–42] and three-dimensional (3D) [43, 44] cases. To date,
successful investigation of the Volterra TDIE has been demonstrated
for the 1D case for various scenarios; illustrating their ability to
consider nonlinear, dispersive and plasma-like materials as well as to
deal with problems in which the material properties are varying in
time [40, 41]. Furthermore, their solution has also been demonstrated
on modified rectangular space-time meshes [40], and on unstructured
triangular space-time meshes [42]. These simple modifications
were found to radically increase the flexibility of the computer
implementations of the algorithm, allowing numerical solutions that
are both stable and accurate for various media without any reservation
on the structure geometry, meshing requirements or permittivity
contrast between the discontinuity region and background media.
Nevertheless, the 3D scenarios have not been thoroughly studied.
In this work we progress on such a scheme; providing a detailed
investigation of their algorithmic development, and in particular, for
the specific case where the geometrical description of the problem
under investigation is approximated using cubical building blocks for
their simulation. Nevertheless, a Volterra TDIE scheme capable of
running on unstructured tetrahedral meshes has already been reported
by the authors in [43, 44]; where a full and complete characterization
of their algorithmic implementation, along the lines presented in this
work, is to appear in a subsequent publication.

As aforementioned, almost all marching-on-in-time numerical
solutions for the time domain integral equations based schemes suffer
from late time instabilities [13–20]. This is also reported for some
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of the differential based methods, such as the FDTD [45]. While
in the cases of MoM and FE approaches, compensatory numerical
treatment has focused on a combination of careful design and choice of
spatial and temporal basis functions and the use of filtering techniques,
nevertheless, complete removal of these late time oscillations has met
with limited success in the general case. Consequently, it is still often
required that special attention must be given to the geometry of the
structure, its physical parameters and the mesh used. It is no exception
that this phenomenon is also observed when using the Volterra TDIE
based schemes, as reported in our previous work [40, 44]. While in
the 1D case, numerical instabilities were completely eliminated from
their earlier implementations [39] by means of both a semi-implicit
formulation and a central difference Crank-Nicholson technique [40];
for the 3D case, a more general treatment of such phenomena is
needed. This is shown here to be achieved by employing a low
pass digital filtering technique [15], also known as an averaging
scheme. In this approach, the values of a small number of previous
field values are required at any given moment in time in order
to stabilize the computations; therefore incurring an additional but
limited computational effort for a successful and complete elimination
of the instabilities as illustrated in Section 3.

The development of a novel 3D Volterra time domain integral
equation algorithm capable of running on arbitrarily shaped volumetric
meshes is presented here. In section 2, the general algorithmic
formulation is derived for their solution. In Section 3, we apply this
general formalism to model the more specific structures in order to
assess stability, accuracy and convergence of the proposed scheme.

2. THEORY

In general, the electric field for a 3D volumetric structure satisfies a
Volterra integral equation [36–38],

E(t, r) = Eo(t, r)+
1

εbεo

t∫

0

dt′
∫

V

dr′
[

1
4π

(
∇∇ · − ∂2

v2∂t2

)
δ (R/v−(t−t′))

R

]

× [
P(t′, r′)− (εb − 1)εoE(t′, r′)

]
(1)

where εb and v are the relative permittivity and speed of light in
the background medium. P is the polarisation of the media, Eo is
the excitation field, t and r = (x, y, z) denote the time and space
coordinates, r is the observation point and r′ is a source point,
R = |r − r′| denotes distance from the source location to the observer
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location and t′, the temporal integral parameter, runs over the time
history, i.e., 0 ≤ t′ ≤ t.

It is noted that the domain of the spatial integration only
encompasses the discontinuity, i.e., the region whose properties differ
from the background medium, here taken to lie r ∈ V , re-iterates
a significant advantage of this approach compared to the differential
equations based numerical methods where full discretization of the
problem space is required. Similarly, there is no need to terminate the
calculation window with artificial absorbers as the kernel of the integral
equation intrinsically contains the correct asymptotic behaviour at
infinity.

The equations are based upon generalized functions and are
convenient for investigating electromagnetic transients, especially
those with moving wave fronts and involving an arbitrary time-
spatial dependence of the medium parameters, such as plasmas,
semiconductors, non-linear dielectrics and dissipative media. In
principle these modifications can be implemented by merely
redefining the functions describing the incident field or the medium
polarization [36–41]. At each instant of time, the present electric field
in (1) is determined via a four-dimensional integral over the space-
time history of the field. However, this is immediately reduced to
a 3D integral due to the properties of the delta function. Namely,
the integral in (1) exists when the argument of the delta function is
zero, i.e., t′ = t−R/v, as illustrated in (2), yielding a process which is
visualized as integrating over the surface of spheres of the time-retarded
field values.

E(t, r) = Eo(t, r)

+
(
∇∇ · − ∂2

v2∂t2

)
1

εbεo

1
4π

∫

V

dr′
[
[P(t′, r′)−(εb−1)εoE(t′, r′)]

R

]
(2)

At each instant in time and space the integrand in (2) is evaluated
first before applying the Green’s tensor ∇∇ · −∂2

/
v2∂t2. In the

development of TDIE approach, structures are subdivided into an
adequate number of small sub-volume elements e. The sampling
3D field points are then specified to fall at the centre of mass of
each element, where the corresponding nodal field values are assumed
constant. These elemental sub-volumes then evolve in time with a fixed
time step size allowing for signal propagation in time. For simplicity
let

F(t, r) =
1

εbεo

1
4π

∫

V

dr′
[
[P(t′, r′)− (εb − 1)εoE(t′, r′)]

|r − r′|
]

. (3)
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The integration in (3) runs over the entire discontinuity scatterer
volume V , and algorithmically reduces to a simple and straightforward
summation given by

F(Nt∆t, ri) =
1

εbεo

1
4π

Ne∑

i6=j

Vj

[
[P(T ′, rj)− (εb − 1)εoE(T ′, rj)]

|ri − rj |
]

+
1

εbεo

1
4π

[P(Nt∆t, ri)− (εb − 1)εoE(Nt∆t, ri)]
∫

1
RSingi=j

, (4)

where Ne is the number of elements e within the scatterer V , Vj

is the element volume, Nt is the number of time steps, ∆t is the
time step size, ri = (xj , yj , zj) and rj = (xj , yj , zj) are the
location of observation and source points respectively. The retarded
time T = Nt∆t − |ri − rj |/v, such that 0 ≤ i, j ≤ Ne. It is
observed that the expression in (4) diverges for i = j. Therefore
whenever both the observation point, ri, and source point, rj , are
inside the scatterer V , the principal value must be taken for the
integral in (3) and the singularity of the Green’s tensor treated
analytically. Algorithmically, the corresponding value of this singular
region coincide with, E(Nt∆t, ri), the unknown nodal field value
currently being evaluated and therefore is transformed to the left hand
side of (2). For an arbitrary volumetric region containing RSingi=j

the corresponding analytical solution is obtained using the analysis
described in [46], for a polyhedron, whereas for the specific rectangular
case, the more simplified approach for a cube is detailed in [47].
Note that only one singular point is associated with each sub-volume,
element, within the scatterer region, V , and therefore needs only be
calculated once for the entire problem, as a pre-processing step.

It is important to note that the numerical advantages in evaluating
the summation in (4) prior to the application of the Green tensor;
not only does it reduce the computational expense significantly,
but it also enforces the correct algorithmic interpretation of the
mathematical formulations in (1) and therefore satisfies the precise
physical behaviour of the problem under investigation. In addition,
while evaluating (4); an interpolating technique is performed in order
to obtain the time retarded field values that fall in between the
surfaces of the spheres of integration from the already calculated nodal
field values on the uniform time mesh. Therefore, a simple linear
interpolation scheme, in time, is adopted here, such that whenever
the value of T ′ = Nt∆t − |ri − rj |/v is not an integer multiple of ∆t,
the corresponding value of E(T ′, rj) is obtained by applying

E(Nt∆t + α, ri) = (1− α)E(Nt∆t, ri) + αE(Nt∆t + ∆t, ri), (5)
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where 0 ≤ α ≤ 1. Substituting for (4) into (2) gives

E(Nt∆t, ri) = Eo(Nt∆t, ri) +
(
∇∇ · − ∂2

v2∂t2

)
F(Nt∆t, ri) (6)

The Green’s tensor, involving the time and space derivative operators
in (6) is discretized using simple and straightforward finite difference
techniques. From first inspection, the term involving the second-order
time derivatives can be approximated using central difference formula
such that

∂2F
∂t2

≈ F+(Nt∆t+∆t, ri)− 2Fo(Nt∆t, ri)+F−(Nt∆t−∆t, ri)
∆t2

. (7a)

Three consecutive values of F are therefore required at a given
moment in time, i.e., at F+, Fo and F−. However, in order to
satisfy causality condition, special attention must be given whenever
the distance between the observer and a source region does not satisfy
the relation T

′ ≤ Nt∆t − 2∆t. In this case, the central difference
approximation for the time derivative in (7a) is replaced by a backward
difference scheme given by (7b); therefore ensuring an overall implicit
scheme.

∂2F
∂t2

≈ F+(Nt∆t, ri)−2Fo(Nt∆t−∆t, ri)+F−(Nt∆t−2∆t, ri)
∆t2

(7b)

The spatial derivatives involving the ∇∇· term are then evaluated
in a straightforward manner; such that, for example an un-mixed
second order derivative is approximated using

∂2F
∂y2

≈ Fo(xi, yi + ∆y, ri)− 2Fo(xi, yi, ri) + Fo(xi, yi −∆y, ri)
∆y2

, (8a)

and for a mixed second order derivative it is approximated as

∂2F
∂x∂y

≈

[
Fo(xi+∆x, yi+∆y, zi)−Fo(xi+∆x, yi−∆y, zi)

−Fo(xi−∆x, yi+∆y, zi)+Fo(xi−∆x, yi−∆y, zi)

]

4∆x∆y
. (8b)

In this work, the generality of the algorithm is demonstrated by
evaluating the discretized field values on a rectangular volumetric grid
for the Volterra TDIE algorithm. The choice of spatial mesh size is
dictated by the need to sufficiently and accurately sample the field
behaviour in the structure; and as a result, the choice of the time step
size, ∆t, is dictated by the Courant condition, ∆t <= rmin/v, of the
underlying mesh. Here, rmin denotes the shortest distance between any
two centroids of all elements populating the scatterer region, V .

Stability, accuracy and convergence of the algorithm are discussed
and verified by means of canonical working examples as illustrated
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in Section 3. In all cases a changed dielectric media is introduced
in an otherwise uniform background medium at zero moment in
time. In theory, the background medium can be of any homogeneous
linear non-dissipative material and is chosen here to be free space for
convenience. The material considered within the discontinuity region
can also be linear, non-linear, dissipative, frequency dependent and/or
a combination of them [36–40], however, for simplicity it is considered
here to be linear, isotropic and nondissipative of relative permittivity
ε1. For this case, the associated polarization function is defined by

P(t′, r′) = (ε1 − 1)εoE(t′, r′). (9)

where ε1 is the relative permittivity constant within the scatterer
region, V .

3. NUMERICAL RESULTS

In this section, the Volterra TDIE scheme is applied to several
penetrable bodies in order to assess the stability, accuracy and
convergence of the algorithm outlined in Section 2. This is verified
in three steps. First, a dielectric cube is considered where the
generality of the algorithm is tested. The simulated results are
compared with those obtained from a differential equation based
scheme; with focus on drawing the necessary guidelines required in
order to ensure stability of the Volterra TDIE algorithm. In this case,
the comparison is carried out with results generated from simulating
identical structures using our in house built TLM solver [48]. Second,
the accuracy of the proposed Volterra TDIE scheme is verified on
three-dimensional structures where analytic solution of the transient
time-dependent electric field is available. A dielectric microsphere is
therefore considered next, where the time-dependent response of the
input signal is compared with the analytically obtained solution using
Mie series [49]. Third, more general cases are considered; including a
cylinder and a cone. Although unstructured meshes are more suited
for modelling the latter scenarios, for apparent reasons [43, 44]; here
the rectangular structured grids are considered in order to demonstrate
the validity of the proposed scheme against the TLM scheme, which
uses cubical building blocks.

The incident field used in all examples that follow is chosen to
be a pulse that is a Gaussian function in space and time. The field
propagates in the x-direction and the pulsed plane wave is polarized
in the normal y-direction, ŷ, such that

Eo(Nt∆t, ri) = ŷ exp
[
ln(s) (Nt∆t− to − xi/v)2/h2

]
. (10)
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In (10), s = 0.001 is the truncation amplitude, h is the temporal
pulse half width and to is the time delay. In each example, the relative
permittivity constant, ε1, of the scatterer is chosen to be 1.96εb, with
guidance to define the mesh within the scatterer so that there are
approximately 10 spatial unknowns per wavelength at the maximum
frequency, fmax, of the input signal within the dielectric medium.

3.1. Stability

In the first example, a plane wave is normally incident on a face of
a dielectric cube having a side length of 0.55µm, as shown in Fig. 1.
The parameters chosen for the incident pulse in (10) are to = 2.0 fs
and h = 2.0 fs. A structured rectangular grid description of the
cubic geometry is used in this example, testing for the stability of the
proposed algorithm, given by (6). A spatial step size of ∆x = 0.025µm
is used for validation, yielding a discretized mesh of Ne = 10648
elements within the dielectric cube.

Figure 1 shows a typical result which was obtained by direct
application of (6). The transient time-dependent electric field at
the centre of the dielectric cube is plotted. Two illuminations are
considered; the solid line is that of the above Gaussian pulse and the
broken line is when this excitation is applied only for the first time step.
The objective is to demonstrate the exponentially growing behaviour
of the late time response and also to show that these instabilities are
in fact present from the beginning of the solution as it is stepping in
time. It is observed that these instabilities are usually small compared
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Figure 1. Electric field at the centre of a dielectric cube of side length
0.55µm. Gaussian pulse excitation, in solid line, and excitation only
for one time step, in dotted line. Note that instabilities are present
almost from the beginning of the simulation.
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to the true solution until later times, when they form the dominant
part of the solution. It is reiterated that these instabilities are also
observed and treated for most of the time-domain integral methods, as
discussed in. In order to eliminate this source of numerical instability,
a finite impulse response low pass digital filtering technique, FIR-
LPF, [15], also known as an averaging scheme is implemented here;
where the underlying concept is simply a de-correlation of accumulated
computational noise. The filter is designed and numerically
implemented in such a way to eliminate the chances of parasitic
sinusoids, whose frequencies are outside the spectrum of excitation
and have the potential to grow exponentially [50]. Following the
steps outlined in [45], the Kaiser window filter design method results
in [−0.00921971,−0.0466512, 0.257662, 0.600069, 0.257662, 0.0466512,
−0.00921971] as the impulse response for the seven-element FIR-LPF
used for this example.

Figure 2 shows the normalized DFT of the excitation Gaussian
pulse used in the example of Fig. 1, in dotted line, and the
corresponding normalized DFT response of the FIR-LPF used here,
in solid line. It is observed that the bandwidth of the excitation (and
therefore the response) is much less than the bandwidth of the filter.
Hence we expect that application of this filtering technique will not
have a noticeable effect on the computed electric field. The reader
is referred to [15] for a detailed analysis of the filter implementation
within the numerical algorithm. The proposed method is referred to
as the Volterra time domain integral equation, VTDIE, in Figs. 3–
6. Fig. 3 demonstrates the results of applying the above filter to the
problem of Fig. 1.
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Figure 2. Normalized Discrete Fourier Transform (DFT) of the
excitation Gaussian pulse used in the example of Fig. 1, in dotted
line, and normalized frequency response of the seven-element digital
filter, in solid line.
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Figure 3. Electric field at the centre of the dielectric cube considered
in problem Fig. 1. Proposed method using the finite impulse response
lowpass filter, in circles, and the corresponding TLM results generated
form simulating an identical input, in solid line. In both methods, a
spatial step size ∆x = 0.025µm, yielding a total number of elements
(cells) Ne = 10648 are used. (a) Linear scale. (b) Logarithmic scale.
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Figure 4. Electric field at the centre of the dielectric microsphere.
VTDIE method for various step sizes demonstrating convergence of the
proposed algorithm and the corresponding analytic Mie series solution,
in dotted line. (a) Linear scale. (b) Logarithmic scale.

It is observed that the instabilities are completely eliminated
and they do not show a tendency of appearing in the late times.
Also shown in Fig. 3, the transmission line modelling, TLM, method
results for an identical problem with the same number of elements
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Figure 5. Electric field at the centre of the dielectric cylinder with
base radius a = 0.25 µm and a height h = 1.0µm. VTDIE, in
circles, and the corresponding TLM results generated form simulating
an identical structure and input, in solid line. In both methods, a
spatial step size ∆x = 0.025, yielding a total number of elements (cells)
Ne=12200 is used. (a) Linear scale. (b) Logarithmic scale.
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Figure 6. Electric field at the centre of the dielectric cone with base
radius a = 0.25 µm and a height h = 1.0µm. VTDIE, in circles, and
the corresponding TLM results generated form simulating an identical
structure and input, in solid line. In both methods, a spatial step size
∆x = 0.025, yielding a total number of elements (cells) Ne = 4328 is
used. (a) Linear scale. (b) Logarithmic scale.

(cells), Ne = 10648, used to populate the dielectric cube. The two
sets of results show an excellent agreement. The minor discrepancy
between the differential equations based scheme results, in this case
TLM, and the Volterra TDIE scheme may be attributed to the
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artificial termination of the simulation window with absorbing and/or
matching boundary conditions. It is therefore noted that for the TLM
scheme and for the specified propagation time in Fig. 3, a simulation
window of at least a factor of four of the actual scatterer, V , size is
required in order to eliminate any unwanted contribution from reflected
signals upon hitting the artificially truncated boundaries, which are
unphysical. This dictates the need for additional computational
resources; highlighting a significant advantage of the proposed scheme
in comparison to differential equations based scheme, and in particular
when considering this type of problems where a relatively small
discontinuity region is situated in an otherwise uniform background.

For comparison, with emphasis on illustrating the computational
resources required for this particular case, when both algorithms are
run on the same machine, a PC with an AMD Athlon 2.00 GHz
processor; the Volterra TDIE scheme was found to require a 25% less in
run-time than that of the TLM method. In addition, the total RAM
required for the Volterra TDIE and TLM are 249 MB and 900 MB,
respectively. Notwithstanding this, there is a significant scope for
increasing the efficiency of the algorithmic development of the TDIE
code, which is currently being optimized for this purpose; as well as
being extended to operate on parallel computing environments with
ease. This promises to offer a further substantial reduction in the
computational resources required for the TDIE model when correctly
exploited as shall be presented in a separate publication. In addition,
exploitation of the already tested fast Fourier transform acceleration
technique [12] is currently being considered for this scheme. Next, the
transient time-dependent electric field of a dielectric microsphere is
considered.

3.2. Accuracy

For further validation of the accuracy and convergence of the
proposed Volterra TDIE method; a three-dimensional dielectric
problem is considered, where the transient time-dependent field can be
analytically determined. A dielectric microsphere of radius a = 0.5µm
situated at the centre ro = (0µm, 0µm, 0µm) of a right-handed
Cartesian coordinate system is therefore studied here, as shown in
Fig. 4. The parameters chosen for the incident pulse are to = 2.0 fs
and h = 1.85 fs. Four spatial step size, ∆x(µm), values of (0.05,
0.04, 0.03, 0.025) are used to generate the results, yielding a total
number of elements, Ne = (4139, 8217, 19304, 33371) to discretize
the microsphere, respectively, as demonstrated in Fig. 4. It is clear
that the smaller the step size; and therefore the more elements used
to populate the problem under investigation, the more accurate the
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solution obtained. Here, the reference result taken for comparison is
that which is analytically generated using the Mie series solution, in
dotted line.

Figure 4(a) shows the transient time-dependent response for
various ∆x, and Fig. 4(b) shows the same set of results on a logarithmic
scale, but for a selected duration of time, with emphasis to demonstrate
convergence of the algorithm. While a relatively large step size is found
to be adequate enough to predict the general response of the problem
under investigation, a smaller step size is required for higher accuracy.
This is emphasized at the peak amplitude values. Next, the more
general cases including a cylinder and a cone are considered.

3.3. General Cases

In this section, dielectric structures whose boundaries are not only
curved, for example a cylinder, but also non-tangential to the
coordinate axis, such as a cone, are now considered for further
validation of the proposed method.

A dielectric cylinder and a cone of base radius a = 0.25µm and
height h = 1.0µm, situated at the centre ro=(0µm, 0µm, 0µm) of a
right-handed Cartesian coordinate system is studied, as illustrated in
Fig. 5 and Fig. 6, respectively. An identical input signal to the example
considered in Fig. 3 is used as the incident field with a spatial step size
∆x = 0.025µm. This results in a discretized rectangular mesh within
the scatterer, V , of Ne = 12200 and Ne = 4328 elements, respectively.
Again, the two sets of results show excellent agreement. However,
the Volterra TDIE scheme seems to better approximate the solution
than the TLM counterpart for the case of a cone. This is illustrated in
Fig. 6(b), and in particular for the late time response. Discrepancies in
this case may be attributed to interaction of the reflected signals from
the artificially terminated boundaries with the solution of propagating
signal; hence it requires a larger simulation window and therefore more
computational resources in order to obtain a cleaner response when
using the TLM model.

4. CONCLUSION

A volume time domain integral equation based scheme to analyze
the transient time-dependent electric field of dielectric objects has
been described. The scheme is demonstrated for the case where
rectangular volume elemental building blocks are used to model the
geometry of the problem under investigation. This technique has
been verified for representative geometries against analytical and time
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domain differential equation based scheme solutions illustrating its
accuracy and stability. Stability of the proposed scheme is achieved
by the application of a low pass FIR filter with constant group delay
to the temporal variation of the electric field during the computations,
and is implemented at the core of the algorithm. Dielectric bodies
only have been studied in this paper, but the method can be readily
extended to include other materials with ease. Future work includes
generalizing the scheme for plasmas, semiconductors, non-linear and
dispersive media with losses. The scheme will also be used to study
waveguides containing nanoparticles and structures involving surface
plasmonics.
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