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Abstract—When employing computational methods for solving
problems in electromagnetic scattering the resulting solutions are
strongly determined by the geometry of the scatterer. Careful
consideration must therefore be given to the computational geometry
used in representing the scatterer. Here we show that the solution for a
problem as simple as plane wave scattering off a PEC sphere is sensitive
to the computational geometry used to represent the sphere. We show
this by implementing 4 higher-order computational geometry schemes
over 3 different tessellations resulting in 45 different representations
of the sphere. Two methods for solving the scattering problem are
implemented: the boundary-element method (BEM) based on the
MFIE, and the physical optics (PO) method. Results are compared
and insights are obtained into the performance of the various schemes
to model surfaces accurately and efficiently. The comparison of the
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different schemes takes into consideration the required computational
resources in implementing the schemes. Some unexpected results are
discovered and explanations given.

1. INTRODUCTION

Computational electromagnetism (CEM) involves geometric modelling
of objects which interact with an electromagnetic field. To represent
arbitrary shapes, mesh discretization is commonly used to decompose
the domain of the problem into discrete sub-domains, either volume
elements as in the finite-element method (FEM) or finite volume
method, or surface patches as in the boundary-element method (BEM),
the method of moments or the physical optics (PO) method. This
approach allows the use of higher-order computational geometric
schemes to represent the shapes of objects, but these schemes carry
the penalty of additional computational effort, and so the relative
computational efficiency of higher-order schemes over simple schemes
is a matter of practical interest. In this paper we will consider the
solution of the electromagnetic scattering problem using BEM and
PO, where computational geometry is used to represent the surface
of a scatterer, and compare the efficiency of a number of different
schemes.

A number of geometric representations have been employed in
solving scattering problems. Rao et al. [1] implemented basis functions
on a flat-facetted representation of the scatterer. Wandzura [2]
implemented basis functions on curvilinear patches. Graglia et al. [3]
developed higher-order bases and Wang and Webb [4] developed
adaptive bases, both on curvilinear patches. Second-order polynomial
patch representations were commonly employed in these papers and
the wider literature. In [5], a double higher order method is introduced
which allows the order of the geometry surface currents representations
to be independently increased. [5] showed that both higher-order
geometries and currents are required to take advantage of improved
convergence.

NURBS surfaces, which are higher-order and rational patch
representations, have also been employed in solving scattering
problems using the BEM [6] and PO [7]. Exact spherical
representations have also been used in solving scattering problems.
For example [8] projects a cubic tessellation onto the sphere.

This paper examines the effect of the geometric representation
upon solution accuracy by implementing a number of geometric
representations from computer aided graphics design (CAGD). These
representations include interpolatory, Bezier and Rational Bezier



Progress In Electromagnetics Research, Vol. 110, 2010 127

expressions from flat facetted first-order through to fourth-order
curvilinear patches. These geometric representations have been
implemented using a common basis that allows a direct comparison
of the efficiency of the various representations. Also, by using rational
geometrical representations, the test problem analysed is solved with
a method that exactly represents the problem’s geometry, and allows
the geometric errors incurred in the remaining representations to be
separated from the solution method errors.

This paper differs from the work in [5] in that the spherical
geometry considered there inscribe the sphere and contain creases; here
a case of a geometry which eliminates the creases is included along
with further cases which span the spheres surface. [8] implements
an exact representation of the sphere by projecting a cube onto the
sphere. This results in a formulation that is not rational polynomial
due to a square root in the expression for the surface. Here an exact
representation of the sphere is implemented in a rational polynomial
form. Computational geometry based on rational polynomials are of
interest because they are used in NURBS for describing a wide class
of surfaces. Here, the exact representation of a sphere is a special case
of a general computational geometry.

The geometric model used affects the accuracy of the solution
in two ways: firstly how closely the computational model represents
the actual surface of the object directly affects the solution; and
secondly, because the basis used to approximate the unknown surface
currents is supported on the surface patches, the differential geometry
of the surface patch affects the accuracy of the interpolation used
to represent the currents. A simple example of the latter effect is
the reduction in accuracy caused in the FEM by so-called slivers, or
elements with very small internal angles [9]. In [10], we have compared
the performance of different higher-order bases in the BEM using an
exact geometrical representation of the surface of the scatterer. Here,
we examine the more general case where both surface geometry and
surface current are approximated at different orders. The surface
current is approximated using the interpolatory vector basis introduced
in [11], which is convenient for both the BEM and PO methods.

Finally, we would like to emphasise that geometrical representa-
tions can be improved by a procedure of mesh or h-refinement, thereby
reducing the total curvature in a patch thus reducing the influence of
the geometry representation on the solution. However, the authors
have focussed on highly curved patches to highlight the issues when
dealing with cases where curvature cannot be reduced, or is unavoid-
able due to the use of large patches with higher-order basis functions.
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2. SCHEMES FOR REPRESENTING SURFACES

Both the BEM and PO techniques require a computational
representation of the scatterer’s surface. The surface is represented by
a tessellation of T patches that partition the scatterer’s surface. Here
triangular patches are employed, and each patch is parameterised by
homogeneous ζ coordinates such that ~ζ = (ζ1, ζ2, ζ3), ζ1 + ζ2 + ζ3 = 1
and 0 ≤ ζi ≤ 1 where i = 1, 2, 3. These ζ coordinates then
form a parameterisation of the triangular region of the plane in the
positive octant of three dimensional ζ space with vertices ~ζ = (1, 0, 0),
~ζ = (0, 1, 0), ~ζ = (0, 0, 1). The position vector on the tth surface patch
is then ~rt(~ζ), t ∈ {1 · · ·T}, see Fig. 1. The Jacobian J of the mapping
is J = |( ∂~r

∂ζi+1
− ∂~r

∂ζi
)×( ∂~r

∂ζi+2
− ∂~r

∂ζi
)|, where index arithmetic is modulo 3.

The common method for representing patches is to employ a set
of points whose locations completely control the patch location and
curvature. Each of these control points has a scalar basis function
associated with it. The basis functions are parameterised in terms of
~ζ which then forms a parameterisation of the position vector over the
patch. Higher-order representations require a larger number of basis
functions and associated control points. The expression for the position
vector over an order p polynomial patch is then:

~rt

(
~ζ
)

=
∑

|I|=p

B[I]

(
~ζ
)

~Pt,[I] (1)

where B[I](~ζ) are basis functions attached to each control point ~Pt,[I],
associated with patch t. For triangular patches [I] = [I1, I2, I3] is a
multi-index such that |I| = I1 + I2 + I3 and 0 ≤ Ij ≤ p, j = 1, 2, 3.
In the CAGD community, Bézier patches are often employed as the
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Figure 1. Mapping from homogeneous ζ coordinates onto curvilinear
~rt patch.
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choice of geometric basis function.
The Bézier patch basis functions are of the form:

B[I]

(
~ζ
)

=
(I1 + I2 + I3)!

I1!I2!I3!
ζI1
1 ζI2

2 ζI3
3 . (2)

Alternatively Lagrange interpolation basis functions can be used which
are of the form

B[I]

(
~ζ
)

= Π3
j=1

[
1
Ij !

ΠIj−1
k=0

(
pζj − k

)]
. (3)

It should be noted that both Bézier and Lagrange basis functions form
polynomial geometric representations complete to order p, and hence
there is a one to one mapping of any pth order geometry generated by
Bézier patches to any interpolated geometry. The difference between
these representations is the locations of the respective control points.
Bézier control points allow for easy control of a patch’s location and
boundary tangent planes, whereas interpolatory control points force
the patch location to match the spatial location of the control points
at associated values of the parameterisation.

Further to the polynomial representation given in Eq. (1), rational
representations are often used in CAGD to achieve more refined control
over surface positioning. The expression for a pth order rational
representation is:

~rt

(
~ζ
)

=

∑
|I|=p B[I]

(
~ζ
)

~P x
t,[I]

∑
|I|=p B[I]

(
~ζ
)

Pw
t,[I]

(4)

where the control points for patch t are now represented in terms of
a spatial vector part ~P x

t,[I] and a scalar weight Pw
t,[I]. An advantage

of rational Bézier patches is that they allow exact representation
of quadric surfaces [12], which form a particularly important class
of surfaces in electromagnetic scattering. For any given order p,
polynomial and rational representations have an identical number of
control points and basis functions defining the surface; however, the
polynomial control points have three components in comparison to the
rational control point’s four components.

Here, four different schemes for generating patch approximations
are employed. The notation σpah is used to define the structure of
the tessellation representing the surface geometry. σ refers to the
form of the surface representation. The surface analysed in this paper
is restricted to a spherical PEC. Three (parent) tessellations were
employed for representing the spherical surface. These tessellations
are unique: a single curvilinear equilateral patch may be rotated and
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translated to generate all patches within a tessellation. This allows
the effect of increasing the number of patches to be studied without
reducing the quality (increase in variation of angles) of the patches,
which is the case for curvilinear h-refined tessellations containing
non-equilateral patches. The three parent tessellations are based on
the three triangular Platonic solids, the tetrahedron, octahedron and
icosahedron. In referring to a specific tessellation the σ is replaced by
tet, oct or ico depending on the parent tessellation.

p indicates the order of the representation (notwithstanding the
special case of σ3th discussed later), a can take on values i, t, o, r and
refers to which scheme is used to generate the patch, and h is the level
of h-refinement used. The various schemes are outlined below.

2.1. Interpolatory-σpih

The interpolatory scheme uses simple Lagrange interpolation to
approximate the surface at a set of points ~rt(~ζ [I]), where, for a pth
order representation

~ζ [I] =
{

I1

p
,
I2

p
,
I3

p

}

Geometries of up to fourth-order are implemented. The four
approximations can be seen on the left side of Fig. 2.

2.2. Vertex Tangent Approximation-σpth

The vertex tangent approximation represents surfaces at the patch
vertices. The first-order version (σ1th) interpolates the surface at the
patch vertices, and hence is identical to the first-order interpolatory
scheme.

The second-order version (σ2th) exactly matches the vertex
locations and the vertex tangent planes. This can be seen in the top
left plot in Fig. 3 where the surface normal vectors (which are plotted
on both sides of one edge) are identical at both ends of the edge.

Finally a third representation (σ3th) exactly represents the vertex
location, vertex tangent plane and all vertex tangent plane derivatives
along the patch edges, such that the generated patch exactly matches
that of the desired surface along the three edges. This can be seen in
the top right of Fig. 3 where the oct3t1 surface normals match at the
vertices and the patch boundaries are exact circular arcs.

It should be noted that σ3th is the only geometry where p does not
correspond to the order of the representation. Although p = 3, a second
order rational representation is used to enforce the high-order tangent
plane derivatives at the patch vertices. Note that the control points
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Figure 2. Bézier control points for a patch, two adjacent generated
patches and surface normal vectors on each side of the patch’s shared
edge for various geometries. Left: octpi1 scheme. Right: octpo1 scheme.

required to generate the vertex tangent plane behave differently from
those used in the second order optimised rational expression discussed
below in σprh.

2.3. Optimised Polynomial-σpoh

The optimised polynomial representation uses control points that
minimise the error in approximating the surface in terms of the position
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Figure 3. Bézier control points for a patch, two adjacent generated
patches and surface normal vectors on each side of the patches’ shared
edge for various geometries. Top left: oct2t1. Top right: oct3t1.
Bottom: oct4r1.

vector. Because the test problem solved employs a unit spherical
scatterer, the optimisation minimizes the following cost function:

f =
∫

S2

||~rt(ζ)| − 1| d~ζ (5)

The optimised scheme’s control points and patches are shown on the
right of Fig. 2. Whereas the first-order interpolatory scheme generates
an octahedron inscribed within the sphere, the optimised scheme
increases the octahedron outside the structure the minimise the error.
Similarly it is noted that optimisation of the surface generates surface
normals that more closely match across the edges as seen by comparing
the fourth-order schemes at the bottom of Fig. 2.

2.4. Optimised Rational-σprh

The optimised rational representation minimizes the same cost
function above, but employs a rational representation for ~rt. The
fourth-order optimised rational scheme is shown at the bottom of
Fig. 3. The oct4r1 patch is an exact representation of a spherical patch.
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3. TEST PROBLEM

The problem selected for comparing the geometries is the case of a
PEC sphere of radius a illuminated by an incident linearly polarised
time-harmonic plane wave of wavenumber k (Fig. 4).

Initially the ability of the various geometric representations at
approximating the scatterer geometry was examined. Two measures
of each scheme’s ability to model the surface were calculated by
integrating both the error in surface position, and the error in tangent
plane orientation, across the entire surface. The position error Er and
tangent plane error En are given by:

Er =

√∫

σ

(|~r| − 1)2

4π
dσ (6)

En =

√∫

σ

|~r × ~n(~r )|2
4π

dσ (7)

where ~n(~r ) is the normal vector generated by the computational
geometry.

Having calculated the geometric errors due to the various
representations, the next step was to calculate the errors that the
schemes introduced into a CEM solution.
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Figure 4. Problem geometry with PEC sphere of radius a illuminated
by incident time harmonic plane wave with electric field polarised in x
direction.
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Figure 5. Er and En against FLOPS for octpa1 schemes.

A PO solution and a BEM solution of the MFIE were employed in
calculating the equivalent surface currents produced by the scattering
problem.

4. THE PHYSICAL OPTICS METHOD

The method of Physical Optics defines the equivalent surface currents
as those currents satisfying an approximate boundary condition at
each point on the surface. The boundary condition is approximate
in the sense that the surface at the point is assumed to be infinite
and planar at each point, and thus the planar boundary conditions
are used. In general an analytic or numerical representation of the
geometry may be used, the only requirement being that an integration
rule can be constructed for allowing integration of the equivalent
currents in calculating the scattered field. Here, standard cubature
rules on triangular patches are implemented [13]. The tessellations
of triangular patches employed in representing the scatterer in the
BEM solution are also employed in representing the scattering the
PO solution. This allows the sensitivity of the two algorithms to the
various representations to be compared.

For a PEC scatterer the PO solution involves calculating the
surface currents directly as:

~Js(~r ) =
{

2~n(~r )× ~H inc(~r ) ~r ∈ σi

0 ~r ∈ σs
(8)

where σi is the region directly illuminated by the incident planewave,
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and σs is the shadow region. The error in the RCS is calculated as:

ẼPO =


 ∑

~s∈{v,e,c}

∫ k2

k1

(RCSPO −RCScalc)2

3(k2 − k1)
dk




1
2

(9)

where ~s ∈ {v, e, c} refers to the direction of propagation that is incident
on a patch vertex, edge midpoint, or centre respectively. RCSPO

results when calculating the Radar Cross Section by the Physical
Optics method using an analytic formulation of the currents in (9)
over a sphere. The reason for averaging over the three rotations can
be seen in Figs. 6 and 7. Fig. 6 shows the oct2i1 tessellation from the
three directions of propagation ~s ∈ {v, e, c}. Fig. 7 shows the resulting
RCS dependancy on the direction of propagation.

The limits of integration in (9) are k1 = 0.04π, k2 = 3π. It should
be noted that normally the Physical Optics solution would not be

Figure 6. Three oct2i1 orientations. Left: face centered. Center:
Edge centered and Right: Vertex centered.
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Figure 7. Physical optics normalised monostatic RCS for oct2i1 for
face centered, edge centered and vertex centered orientations.
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applied in the low frequency regime; however, from the perspective
of examining the accuracy of the geometric representations, it is
informative to study a wider frequency range. This is motivated by the
fact that in the full BEM solution (which applies in the lower frequency
regime, described in the following Section) the surface current can be
expressed in terms of the PO current plus a correction term derived
from the MFIE (10).

5. THE BOUNDARY ELEMENT METHOD

The BEM involves solving a boundary integral equation (BIE) which
relates the incident field to the equivalent currents defined over the
surface of the scatterer. The BEM is typically solved by partitioning
the scatterer’s surface geometry into a tessellation of patches. A set of
vector basis functions are then deployed over these patches. The BIE
solved here is the Magnetic Field Integral Equation (MFIE) which is
suitable for solving scattering by closed PEC objects. The MFIE over
a PEC surface σ [14] is of the form:

~n(~r )× ~H inc(~r ) =
1
2

~Js(~r )+~n(~r )×−
∫

σ(~r ′)
~Js(~r ′)×∇′φ(~r, ~r ′)dσ(~r ′), (10)

where ~n is the surface normal, ~H inc the known incident magnetic field,
~Js the unknown equivalent surface current,−∫ corresponds to a Cauchy
principal value integral and φ is the scalar Helmholtz Green’s function
in free space:

φ(~r, ~r′) =
e−jkr

4πr
, (11)

where r = |~r − ~r′| is the separation between field point ~r and source
point ~r′. In solving the MFIE the unknown currents are expanded in
a set of basis functions [11] of the form:

~f i
[I]

(
~r

(
~ζ
))

= B[I]

(
~ζ
)

~n
(
~r

(
~ζ
))

× ~ai
[I] (12)

where ~f i
[I](~r ) is one of two basis functions (i = 1, 2) associated with

an interpolating node [I]. B[I](~ζ) are the Lagrange interpolatory
basis functions, and ~ai

[I] is one of two (i = 1, 2) orthonormal vectors
perpendicular to the average surface normal at node [I]. This results
in a set of vector basis functions ~fj , j ∈ 1 · · ·N , where N = 2G and
G is the total number of interpolating nodes over the tessellation. It
should be noted that the surface current expressions for the BEM and
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PO solutions is a point of difference. The BEM currents are expanded
over a basis in (12), whereas the PO currents are defined directly in (8).

Solution proceeds by expanding the surface current ~Js over the set
of vector basis functions ~fj such that

~Js(~r ) =
N∑

j=1

F j ~fj(~r ). (13)

A point matching technique is employed where the MFIE (10) is
enforced at a set of field points ~ri, and the resulting system of equations:

~n(~ri)× ~H inc(~ri)

=
N∑

j=1

F j

[
1
2

~fj(~ri) + ~n(~ri)×−
∫

σ(~r′)

~fj(~r ′)×∇′φ(~ri, ~r
′)dσ(~r ′)

]
. (14)

is solved for the unknown coefficients F j .
The integrand in 14 is singular for the case of the field point

~ri existing within the support of the basis function ~fj(~r ′). For
singular cases numerical evaluation proceeds by applying Duffy’s
transformation [15] and then standard Gauss-Legendre cubature rules.
For non-singular cases standard triangular numerical cubature rules
are employed [13].

The calculated surface currents ~Js are compared with the analytic
Mie series solution ~JMie [16]. The Mie series solution was calculated
using software [17]. Two error values are calculated:

(i) ERMS

The surface current RMS error is calculated by integration over
the entire spherical surface.

ERMS =

√√√√√√
∫
σ

∣∣∣ ~Js − ~JMie

∣∣∣
2

dσ

∫
σ

∣∣∣ ~JMie

∣∣∣
2

dσ
(15)

(ii) ERCS

The numerical normalised RCS (RCSJ) is calculated from the
computed surface currents ( ~Js) and compared with the analytic
normalised Mie series RCS (RCSMie):

ERCS =
|RCSJ −RCSMie|

RCSMie
. (16)
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Both ERMS and ERCS are calculated at a single frequency.
To eliminate the possibility of uncharacteristically low errors in the
RCS caused by cross overs at various frequencies in the numerical
and analytic plots, averaged values of these measures are generated.
Frequency averaged results ẼRMS and ẼRCS are calculated across a
range of frequencies 0.1 < ka < 2.5 from ERMS , ERCS respectively.
Sample frequencies over which ERMS and ERCS are averaged are
logarithmically distributed throughout the frequency range.

6. RESULTS

Each of the schemes outlined in Section 2 were applied to the three
problems described in Sections 3, 4 and 5.

Initially each scheme was tested for its accuracy at representing
the spherical scatterer. Fig. 5 plots Er (6) and En (7) errors for
the octpa1 schemes against the number of floating point operations
(FLOPS). All plots against FLOPS in this paper are plotted against
the number of FLOPS each scheme requires to calculate a surface point,
with the exception of the En plot in Fig. 5 which is plotted against
FLOPS to calculate a tangent vector. The values are shown in Table 1,
where multiplication and addition type operations use 1 FLOPS and
division 3 FLOPS.

The PO technique was then applied to each scheme. Fig. 7 plots
the RCS for three different orientations of the geometry which are

Table 1. Total number of flops and storage bytes required to
compute operations used by the various computational geometric
representations. Pflops: flops to calculate position vector, Vflops: flops
to calculate tangent vector.

Computational Metrics across Geometric Representations
ID p Pflops Vflops Memory (bytes)

σ1ih, σ1oh, σ1th 1 18 33 72
σ2ih, σ2oh, σ2th 2 45 75 144

σ3ih, σ3oh 3 87 143 240
σ4ih, σ4oh 4 147 243 360

σ1rh 1 32 61 96
σ2rh, σ3th 2 65 115 192

σ3rh 3 115 199 320
σ4rh 4 185 319 480
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shown in Fig. 6. Fig. 8 plots the rotation and frequency averaged RCS
errors ẼPO (9) against FLOPS.

Finally the schemes were employed in a BEM solution. Figs. 9
and 10 show the average RMS error in surface currents ẼRMS and
the average error in the RCS ẼRCS respectively. Both plots give the
result against FLOPS where a fourth-order representation is employed
for the surface currents. Fig. 11 compares the order of the surface
current bases. ERMS is plotted for both first-order and fourth-order
surface current representations on all three parent tessellations against
FLOPS. Fig. 12 illustrates the variation of the surface current RMS
error against frequency for fourth-order currents on oct4a1 tessellations.
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Ẽ
P

O

FLOPS

octpi1
octpt1
octpo1

octpr1
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7. DISCUSSION OF RESULTS

The results shown in Section 6 give a number of insights into the factors
affecting the accuracy of the methods used.

The spherical approximation problem results illustrate that
position vector and tangent plane error distributions are similar.
Both these characteristics (plotted in Fig. 5) are of interest in CEM
as they specify the allowable distributions of the surface current.
Not surprisingly higher-order representations yield more accurate
approximations of both the position vector and tangent plane, with
rational representations outperforming the polynomial schemes.

The Physical Optics results in Fig. 8 show a similar behaviour to
those of the geometry approximation results. Interestingly the exact
spherical scheme (oct4r1) yields an error of the order 10−5. It should
be noted that this error should be zero, and this defines the error floor
for the PO solution due to limitations in the accuracy of the numerical
cubature employed to calculate the Radar Cross Section.

The BEM is solved using the geometries from the various schemes
and results for the errors in equivalent surface currents and RCS were
given in Figs. 9 and 10. The surface current errors are similar to those
of the errors in the RCS, although the interpolation scheme’s error
is relatively larger in the RCS calculation. It should be noted from
Fig. 5 that the interpolation scheme approximation contains tangent
planes which are relatively close to those of the optimised and rational
schemes, whereas the interpolation approximation generates surfaces
with relatively larger position errors than the optimised or polynomial
and rational schemes. It seems that the surface current error in Fig. 9
is closely related to the tangent plane error whereas the RCS error
is closely related to the position errors. This is not surprising, as in
calculating the error in surface currents the orientation of the currents
is compared, whereas in calculating the RCS any change in the cross
sectional area produced by the intersection of the scatterer and the
plane orthogonal to the direction of propagation produces a change in
the high frequency RCS limit.

To compare the utility of the various higher-order geometries for
both low and high order surface current representations, the BEM
was solved for first and fourth-order basis functions. These results are
plotted in Fig. 10. These results clearly indicate that the benefits of
higher-order geometrical approximations are only realized for higher-
order currents. There is minimal benefit in increasing the order of the
geometry beyond second-order for first-order currents.

The interpolation scheme along with the optimised polynomial
and rational schemes are compared in the frequency domain in Fig. 12.
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Resonant error behaviour is noted for ka value around 2.744 which
corresponds to the first of the spurious cavity solutions [18].

Of interest is the relative ability of the various schemes to
approximate the geometry and solve the BEM and PO problems.
Of the interpolatory, optimised polynomial and rational schemes, the
interpolatory scheme always generates the larger errors. The optimised
rational scheme is more accurate for the geometry approximation and
PO problems, whereas the optimised polynomial scheme is better at
solving the BEM. In particular the question arises as to why the fourth-
order rational scheme, which exactly represents the sphere, incurs
larger errors than the approximate representation produced by the
fourth-order optimised polynomial scheme (10−4 RMS position error).
It would be expected that the optimised rational representation BEM
solution error has no component due to the error in representing
the scattering geometry, and hence would yield solutions with lower
errors than the optimised polynomial scheme; however, this is clearly
not the case as can be seen in Fig. 12 across the entire frequency
range in question. The reason for this result lies in the quality of
the parameterisation of the surface, not the surface accuracy itself.
The variation in the Jacobian of the optimised polynomial patch
over the patch is much less than the variation of the generated
optimised rational patch. This is seen in Table 2, where the ratio
of maximum to minimum Jacobian values are given for the three
fourth-order schemes. The ordering of the schemes in terms of
variation in the Jacobian corresponds to the ordering of the schemes
in terms of accuracy of the solution. This is not surprising, given
that completeness of the surface current representation to a given
order for the Bézier and Lagrange interpolating polynomials holds
on the parameterisation domain (~ζ). When these polynomials are
mapped onto the problem domain a distorted mapping will yield more
accurate representations in regions where the mapping is compressed,
and less accurate representations where the mapping is stretched.
Completeness in the problem domain holds only where the Jacobian
is constant across the patch. Therefore the more regular mapping of

Table 2. Ratio of maximum to minimum Jacobian values on σra1

patches.

tet4a1 oct4a1 ico4a1

σ4i1 3.4902 1.7964 1.2470
σ4r1 3.5710 1.7489 1.2357
σ4o1 1.6366 1.2375 1.0614
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the optimised polynomial scheme generates a more evenly distributed
set of basis functions which are more able to represent the solution
currents.

8. CONCLUSION

This paper has presented a number of schemes for approximating
geometries in computational electromagnetics. Three test problems
were introduced to analyse the capability of the schemes, a geometric
approximation, and BEM and PO solutions. For the presented schemes
approximating spheres of size ka < 5 it appears that the geometrical
errors are highly correlated with the PO and BEM errors. As expected
geometric errors do have an effect on the solution accuracy for these
computational electromagnetic methods.

For the patch curvatures considered in this paper and first-order
currents, low order geometries (p = 2) are adequate for representing the
geometry. For higher-order currents, benefits are realised by increasing
the geometrical representation beyond p = 2.

For geometry approximation and PO problems the interpolatory
scheme is worse than the optimised polynomial scheme which in turn
is worse than the optimised rational scheme as might be expected.

For the BEM the optimised rational scheme was worse than the
optimised polynomial scheme and this was not expected. It was shown
that the variation in the Jacobian causes the worse performance of
the exact optimised rational approximation, whereby the effect of
the polynomial in the denominator of the expression in Eq. (4) is
to cause excessive distortion of the mappings leading to non-uniform
distribution of the vector basis functions in the problem domain.

Tolerance theory [19] predicts errors in the RCS of a scatterer due
to errors in the scatterer’s geometrical representation. RCS errors are
calculated from phase errors introduced by shifting the geometry from
the exact scatterer surface. Here it has been shown that a tolerance
theory applied to the BEM based on curvilinear patches would need to
be extended to include the distortion of the surface parameterisation.
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