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Abstract—This paper presents the high frequency electromagnetic
field expressions for Perfect electromagnetic conductor (PEMC)
Gregorian system. In this Gregorian system both the reflectors
are PEMC and are embedded in the homogenous chiral medium.
Depending upon the values of chirality parameter (kβ) two cases are
analyzed. In the first case, chiral medium supports positive phase
velocity (PPV) for both the left circularly polarized (LCP) and right
circularly polarized (RCP) modes. In the second case, chiral medium
supporting PPV for one mode and negative phase velocity (NPV) for
the other mode is taken into account. Since Geometrical optics (GO)
fails at the focal point, so Maslov’s method is used to find the field
expressions at the point. Field plots for different values of admittance
(M ) of the PEMC and the chirality parameter (kβ) are given in the
paper.

1. INTRODUCTION

PEMC is a non-reciprocal generalization of both the perfect electric
conductor (PEC) and perfect magnetic conductor (PMC). Because
PEMC does not allow electromagnetic energy to enter, so it can serve
as boundary material. Possibilities for the realization of a PEMC
boundary has been suggested by [1]. The boundary conditions for
the PEC and PMC are given by following equations [2, 3]

n×E = 0, n ·B = 0 (PEC) (1a)
n×H = 0, n ·D = 0 (PEMC) (1b)
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where n denotes the unit vector normal to the boundary surface. The
PEMC boundary conditions are of more general form

n× (H + ME) = 0, n · (D−MB) = 0 (PEMC) (2)

where M denotes the admittance of the PEMC boundary. PMC
corresponds to M = 0, while PEC is obtained as the limit M → ±∞ [4].

Our interest is to find high frequency field expressions for the
PEMC Gregorian system when it is placed in chiral medium. Chiral
medium is a composite of uniformly distributed and randomly oriented
chiral objects [5]. This medium is homogeneous and supports both
LCP and RCP modes. It may supports NPV propagation for both
modes, or NPV for one mode and PPV for the other mode [6]. The
Constitutive parameters for chiral medium is as following [7]

D = ε (E + β∇×E) (3)
B = ε (H + β∇×H) (4)

where ε, µ and β is permittivity, permeability and chirality constant of
the medium. ε and µ has usual dimensions and β has the dimension of
length. Using Maxwell’s equations result we get the following equations(∇2 + k2n2

1

)
QL = 0 (5)(∇2 + k2n2

2

)
QR = 0 (6)

where QL and QR represents the LCP and RCP waves respectively.
n1 = 1

1−kβ and n2 = 1
1+kβ are equivalent refractive indices of the

medium seen by LCP and RCP waves respectively, and k = ω
√

εµ.
Different reflectors are placed in chiral medium due to its unique

characteristics over an ordinary medium like polarization control,
impedance matching and cross coupling of electric and magnetic fields.
By changing the chiral media parameters ε, µ and kβ the desirable
values of the wave impedance and propagation constants can be
achieved by which reflections can be adjusted (decreased or increased).
In this respect, the chiral medium can be controlled by variations of
three parameters ε, µ, kβ, whereas an achiral medium has only two
variable parameters, ε, µ [8]. Moreover, we can use it as a chiral
nihility media. Chiral nihility medium is one where both the relative
permittivity ε and the relative permeability µ are very small. This
type of medium favors the realization of a negative refraction and
the propagation of backward waves when the chirality parameter is
appropriately chosen [9, 10]. This backward propagation can give the
advantage of invisibility. Due to these characteristics of chiral medium,
we have embedded the PEMC Gregorian system in chiral medium in
this problem. Maslov’s method is used to study the fields at the focal
regions [11, 12].
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Figure 1. Reflection of RCP
wave from PEMC plane.

Figure 2. Reflection of LCP
wave from PEMC plane.

2. PLANE WAVE REFLECTION FROM PEMC PLANE
PLACED IN CHIRAL MEDIUM

Consider the reflection of plane wave from the PEMC plane placed in
chiral medium. When RCP wave traveling with phase velocity ω/kn2

and unit amplitude is incident on the PEMC plane making angle α with
z-axis. Two waves of opposite handedness are reflected as shown in
Figure 1. The RCP wave has amplitude (cosα−cosα1)/(cosα+cosα1)
and makes an angle α with z-axis and the LCP wave with am-
plitude [(Mη − j)/(Mη + j)] [2 cosα/(cosα + cosα1)] traveling with
phase velocity ω/kn1 and makes an angle α1 = [sin−1(n2/n1 sinα)]
with z-axis. If we take kβ < 1 then n1 > n2 and α1 < α, i.e.,
LCP wave bends towards normal, because it is traveling slower than
RCP wave. For kβ > 1, α1 is negative and the wave is reflected
in the wrong way, it may be called negative reflection (shown as
gray in Figure 1). This means that for kβ > 1, LCP reflected
wave sees the chiral medium as NPV medium. Similarly, when LCP
wave with unit amplitude and angle α with z-axis, is incident on
PEMC plane we get two reflected waves, the RCP wave with ampli-
tude [−(1− jMη)/(1 + jMη)] [2 cosα/(cosα + cosα2)] traveling with
phase velocity ω/kn2 and makes an angle α2 = [sin−1(n1/n2 sinα)]
with z-axis and the LCP wave with amplitude (cosα−cosα2)/(cosα+
cosα2) traveling with phase velocity ω/kn1 and makes an angle α with
z-axis. If we take kβ < 1, then n1 > n2 and α2 > α. If kβ = 0, then
only normal reflection take place, and if kβ increases the difference be-
tween the angle α and α1, α2 increases. For kβ > 1, we have negative
reflection for RCP reflected wave (shown as gray in Figure 2) [13].

3. GEOMETRICAL OPTICS FIELDS OF TWO
DIMENSIONAL PEMC GREGORIAN REFLECTOR
PLACED IN CHIRAL MEDIUM

Gregorian system placed in homogeneous and reciprocal chiral medium
is shown in Figure 3 (gray lines show the negative reflected waves).
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When both RCP and LCP waves will hit on main PEMC parabolic
reflector, it will cause four reflected waves designated as LL, RR,
LR and RL [14]. These four waves are then incident on the PEMC
elliptical subreflector and will cause eight reflected waves. These rays
are designated as LLL, RRR, LLR, RRL, RLR, RLL, LRR and LRL.
Only four of these rays (LLL, RRR, LLR, RRL) converge in the focal
region while other four rays (RLR, RLL, LRR, LRL) diverge. Only
converging rays are considered and shown in Figure 3. For, kβ > 1,
LCP wave travels with NPV and RCP wave with PPV. LLR wave
diverges out and do not form a real focus while RRL wave forms a focal
point which is much shifted towards the left as shown in Figure 3 by
gray lines. The GO fields of these reflected waves has been calculated
for PEC Gregorian system in [15]. For the case of PEMC, LLR and
RRL waves will have different initial amplitudes as compared with
PEC, while LLL and RRR waves have the same initial amplitudes.
These initial amplitudes can be found as in [16]. Final expressions
for the initial amplitudes of all the four converged rays are given as
following.

A0LLL =
[
cosα− cosα2

cosα + cosα2

] [
cos γ − cos γ2

cos γ + cos γ2

]
(7a)

A0RRR =
[
cosα− cosα1

cosα + cosα1

] [
cos γ − cos γ1

cos γ + cos γ1

]
(7b)

A0RRL =
[
cosα− cosα1

cosα + cosα1

] [
Mη − j

Mη + j

] [
2 cos γ

cos γ + cos γ1

]
(7c)

A0LLR =
[
cosα− cosα2

cosα + cosα2

] [
−1− jMη

1 + jMη

] [
2 cos γ

cos γ + cos γ2

]
(7d)

And the corresponding initial phases are

S0LLL = −n1ζ1 = n1

[
2f

cos 2α

1 + cos 2α
− c

]
(8a)

S0RRR = −n2ζ1 = n2

[
2f

cos 2α

1 + cos 2α
− c

]
(8b)

S0RRL = −n2ζ1 = n2

[
2f

cos 2α

1 + cos 2α
− c

]
(8c)

S0LLR = −n1ζ1 = n1

[
2f

cos 2α

1 + cos 2α
− c

]
(8d)

while the extra terms of the phase for all four rays are as following
SexLLL = −n1 [x sin(2α− 2ψ) + z cos(2α− 2ψ)]

+ n1 [ξ2 sin(2α− 2ψ) + ζ2 cos(2α− 2ψ)] (9a)
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SexRRR = −n2 [x sin(2α− 2ψ) + z cos(2α− 2ψ)]
+ n2 [ξ2 sin(2α− 2ψ) + ζ2 cos(2α− 2ψ)] (9b)

SexRRL = −n1 [x sin(γ1 − ψ) + z cos(γ1 − ψ)]
+ n1 [ξ2 sin(γ1 − ψ) + ζ2 cos(γ1 − ψ)] (9c)

SexLLR = −n2 [x sin(γ2 − ψ) + z cos(γ2 − ψ)]
+ n2 [ξ2 sin(γ2 − ψ) + ζ2 cos(γ2 − ψ)] (9d)

and

t1 =
√

(ξ2 − ξ1)2 + (ζ2 − ζ1)2, t =
√

(x− ξ2)2 + (z − ζ2)2 (10)

where (ξ1, ζ1) and (ξ2, ζ2) are the cartesian coordinates of the points
on the parabolic and elliptical reflectors. Finite GO fields of these
reflected rays around the focal point, not repeating the calculations,
are as following.

U(r)LLL =

√
k

2jπ

[∫ A2

A1

+
∫ −A2

−A1

]
A0LLL

√
R1

× exp[−jk{S0LLL + n1t1 + SexLLL}]d(2α) (11a)

U(r)RRR =

√
k

2jπ

[∫ A2

A1

+
∫ −A2

−A1

]
A0RRR

√
R1

× exp[−jk{S0RRR + n2t1 + SexRRR}]d(2α) (11b)

Figure 3. PEMC Gregorian reflector in chiral medium, kβ < 1 and
kβ > 1.
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U(r)RRL =

√
k

2jπ

[∫ A2

A1

+
∫ −A2

−A1

]
A0RRL(ξ)

1√
n2

1 − n2
2 sin2 γ

×

 R1R2bn2 cos γ1

abn2 + a
√

(R1R2)(n2
1 − n2

2 sin2 γ)− bn2R1



−1/2

× exp[−jk{S0RRL + n1t1 + SexRRL}]d(2α) (11c)

U(r)LLR =

√
k

2jπ

[∫ A2

A1

+
∫ −A2

−A1

]
A0LLR(ξ)

1√
n2

2 − n2
1 sin2 γ

×

 R1R2bn1 cos γ2

abn1 + a
√

(R1R2)(n2
2 − n2

1 sin2 γ)− bn1R1



−1/2

× exp[−jk{S0LLR + n2t1 + SexLLR}]d(2α) (11d)

while S0, Sex and t1 are given in Eqs. (8a)–(8d), Eqs. (9a)–(9d) and
Eq. (10) respectively.

(a) (b)

(c) (d)

Figure 4. |URRL| of PEMC Gregorian reflector at kx = 0 for
kβ = 0, 0.001, 0.005, 0.01 for: (a) Mη = 0,∞ (b) Mη = 1 (c) Mη = 5
(d) Mη = 10.
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(a) (b)

(c) (d)

Figure 5. |ULLR| PEMC Gregorian reflector at kx = 0 for kβ =
0, 0.001, 0.005, 0.01 for: (a) Mη = 0,∞ (b) Mη = 1 (c) Mη = 5 (d)
Mη = 10.

(a) (b)

(c) (d)

Figure 6. |URRL| of PEMC Gregorian reflector at kx = 0 for
kβ = 0, 0.001, 0.005, 0.01 for: (a) Mη = 0,∞ (b) Mη = 1 (c) Mη = 5
(d) Mη = 10.
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4. RESULTS AND DISCUSSIONS

Variations in magnitude of the fields are shown along kz in Figure 4 to
Figure 6. Values for different parameters of PEMC Gregorian reflector
are: kf = 170, ka = 40, kb = 60, kd = 50, kD = 150. The line
plots of ULLL and UPRR are exactly same as that of PEC Gregorian
system. Plots of URRL and ULLR for kβ = 0, 0.001, 0.005, 0.01 and
Mη = 0, ∞, 1, 5, 10 are given in Figure 6 and Figure 5 respectively.
These figures show that trends of the plot are same as in the case of
PEC Gregorian system, i.e., increase in the value of kβ shifts RRL
wave to the left and LLR wave to the right. For kβ > 1, LLL and
RRR rays are similar to that of PEC Gregorian system and RRL and
LLR rays diverge out and do not form a real focus.

5. CONCLUSION

GO fields focused by a PEMC Gregorian system placed in chiral
medium are studied in this paper. It is found that fields of LLL, RRR,
RRL and LLR rays are same as that of PEC Gregorian system [15].
However, RRL and LLR rays have different amplitude than PEC case
as given in Eq. (7c) and Eq. (7d). Both the cases of PPV and NPV
are considered. It is seen that for PPV case, as the chirality parameter
increases, gap between the focal points of LLR and RRL rays increases.
For NPV case, the caustic points for LLL and RRR rays does not
change, RRL has the focal point is shifted much towards the left while
LLR ray diverges and do not form a focal point.
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