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CLASS OF ELECTROMAGNETIC SQ-MEDIA

I. V. Lindell

Department of Radio Science and Engineering
School of Science and Technology, Aalto University
P. O. Box 13000, Espoo 00076 AALTO, Finland

Abstract—A novel class of electromagnetic media called that of SQ-
media is defined in terms of compact four-dimensional differential-form
formalism. The medium class lies between two known classes, that of
Q-media and SD-media (also called self-dual media). Eigenfields for
the defined medium dyadic are derived and shown to be uncoupled
in a homogeneous medium. However, energy transport requires
their interaction. The medium shares the nonbirefringence property
of the Q-media (not shared by the SD media) and the eigenfield
decomposition property of the SD media (not shared by the Q-media).
Comparison of the three medium classes is made in terms of their
three-dimensional medium dyadics.

1. INTRODUCTION

The most general linear electromagnetic medium (bi-anisotropic
medium) can be expressed in terms of four medium dyadics in the
three-dimensional Gibbsian vector representation as [1, 2]

(
D
B

)
=

(
¯̄ε ¯̄ξ
¯̄ζ ¯̄µ

)
·
(

E
H

)
, (1)

and the maximum number of free parameters is 4× 9 = 36. The four-
dimensional differential-form representation of electromagnetic fields
as two-forms [3–5], elements of the space F2

Φ = B + E ∧ dτ, Ψ = D−H ∧ dτ, (2)

allows one to write the constitutive Equation (1) in the more compact
form [5]

Ψ = ¯̄M|Φ, (3)
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or
eNbΨ = ¯̄Mg|Φ. (4)

Here, eN = e1234 ∈ E4 denotes the quadrivector in the basis of vectors
ei ∈ E1 and b denotes the contraction operation. The reciprocal basis
one-forms εj ∈ F1 satisfy ei|εj = δij and εN = ε1234, where ε4 = dτ

corresponds to the temporal one-form. The medium dyadic ¯̄M ∈
F2E2 maps two-forms to two-forms and the modified medium dyadic
¯̄Mg = eNb ¯̄M ∈ E2E2 maps two-forms to bivectors. Basis expansions
of both dyadics correspond to the same 6 × 6 matrix. Definitions
and operational rules for differential forms, multivectors and dyadics
applied in this study have been summarized in the Appendices of [6, 7]
and, more extensively, in the book [5].

The most general medium dyadic can be uniquely decomposed in
three components as introduced by Hehl and Obukhov [4],

¯̄M = ¯̄M1 + ¯̄M2 + ¯̄M3, (5)

called principal (1), skewon (2) and axion (3) parts of ¯̄M. The axion
part ¯̄M3 is a multiple of the unit dyadic ¯̄I(2)T mapping any two-form to
itself and the other parts are trace free. The skewon part is defined so
that the corresponding modified medium dyadic ¯̄Mg2 is antisymmetric,
while the principal part ¯̄M1 is trace free and ¯̄Mg1 is symmetric. Media
with vanishing components can be called accordingly, e.g., a medium
defined by ¯̄M = ¯̄M1 is called a principal medium and one with
¯̄M = ¯̄M2 + ¯̄M3 is called a skewon-axion medium.

Four-dimensional formalism allows simple definition of important
classes of electromagnetic media. For example, if the modified medium
dyadic can be expressed in terms of some dyadic ¯̄Q ∈ E1E1 mapping
one-forms to vectors as

¯̄Mg =
1
2

¯̄Q∧∧ ¯̄Q = ¯̄Q(2), (6)

it is called a Q-medium, which has the property of being non-
birefringent to propagating waves [5, 8]. Thus, media in this class can
be conceived as generalizations of isotropic media. A more general
medium class was called that of generalized Q-media and defined by
medium dyadics of the form [14]

¯̄Mg = ¯̄Q(2) + AB, (7)

where A,B ∈ E2 are two bivectors. Such media were shown to coincide
with the class of decomposable media, defined in terms of Gibbsian
three-dimensional dyadics [2, 9] in a more complicated way [10]. In
such a medium any field can be decomposed in two noncoupling parts,
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which is a generalization of the well-known TE/TM decomposition of
fields in simpler media.

Other important classes of media arise from simple conditions
satisfied by the medium condition. It is known that any medium
dyadic ¯̄M like any 6 × 6 matrix satisfies an algebraic equation of the
sixth order. Medium dyadics satisfying equations of lower order define
certain classes of media. First-order equations,

¯̄M + A¯̄I(2)T = 0, (8)

obviously define axion media. Axion media were also called by the
name perfect electromagnetic conductor (PEMC), because they unify
and generalize the concepts of perfect electric and magnetic conductor
(PEC and PMC). Another interesting class of media is defined by
medium dyadics satisfying the second-order equation,

¯̄M2 + A ¯̄M + B¯̄I(2)T = 0, (9)

for some parameters A and B. Excluding the axion media, such a class
was called that of SD-media, or self-dual media [12, 13], because one
can define a linear (duality) transformation of electromagnetic fields in
which the medium appears invariant.

It is the purpose of the present paper to introduce a class of media
which appears to be in between those of Q-media and SD-media in
sharing properties of both of these medium classes.

2. SQ-MEDIA

2.1. Properties of Some Dyadics

The contraction dyadic transforming two-forms to bivectors

eN

⌊
¯̄I(2)T = eN

⌊ (
4∑

i

eiεi

)(2)T

= eN

⌊∑

i<j

εijeij = ¯̄I(2)
⌋
eN

= e12e34 + e23e14 + e31e24 + e14e23 + e24e31 + e34e12 (10)

is symmetric:
(
eN

⌊
¯̄I(2)T

)T
= eN

⌊
¯̄I(2)T = ¯̄I(2)

⌋
eN , (11)

and its inverse can be expressed as
(
eN

⌊
¯̄I(2)T

)−1
= ¯̄I(2)T

⌋
εN = εN

⌊
¯̄I(2) = εN

⌊ ∑

i<j

eijεij . (12)
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The inverse ¯̄Q−1 ∈ F1F1 of a dyadic ¯̄Q ∈ E1E1 can be expressed as [5]

¯̄Q−1 =
1

∆Q
εNεN

⌊⌊
¯̄Q(3)T . (13)

This rule requires that the determinant-like quantity

∆Q = εNεN || ¯̄Q(4) (14)

be nonzero. In the following we assume that the ¯̄Q dyadic is normalized
by assuming

∆Q = 1. (15)

The inverse of the double-wedge square dyadic ¯̄Q(2) ∈ E2E2, denoted
by (

¯̄Q(2)
)−1

=
(

¯̄Q−1
)(2)

= ¯̄Q(−2), (16)

can then be obtained through the rule [5]

¯̄Q(−2) =
1

∆Q
εNεN

⌊⌊
¯̄Q(2)T = εNεN

⌊⌊
¯̄Q(2)T . (17)

The converse rule is
¯̄Q(2) = eNeN

⌊⌊
¯̄Q(−2)T . (18)

Introducing a dyadic ¯̄K ∈ F2E2 mapping two-forms to two-forms by
¯̄K = εN

⌊
¯̄Q(2) =

(
εN

⌊
¯̄I(2)

) ∣∣∣ ¯̄Q(2). (19)

we have
¯̄K−1 = ¯̄Q(−2)

∣∣∣
(
εN

⌊
¯̄I(2)

)−1
= ¯̄Q(−2)

⌋
eN = εN

⌊(
eNeN

⌊⌊
¯̄Q(−2)

)

= εN

⌊
¯̄Q(2)T = εNeN

⌊⌊
¯̄KT , (20)

which gives rise to the rule
¯̄KT

∣∣∣
(
eN

⌊
¯̄K
)

=
(

¯̄KT
⌋
eN

) ∣∣∣ ¯̄K =
(
eN

⌊
¯̄K−1

) ∣∣∣ ¯̄K = eN

⌊
¯̄I(2)T . (21)

A natural dot product of two-forms Γ1 and Γ2 yielding a scalar, defined
as

Γ1 · Γ2 = eN

∣∣ (Γ1 ∧ Γ2) = Γ1

∣∣ (
eN

⌊
Γ2

)
= Γ2 · Γ1, (22)

satisfies(
¯̄K
∣∣∣Γ1

) ∣∣∣eN

⌊(
¯̄K
∣∣∣Γ2

)
= Γ1

∣∣∣ ¯̄KT
∣∣∣
(
eN

⌊
¯̄K
) ∣∣Γ2 = Γ1

∣∣ (
eN

⌊
Γ2

)
, (23)

or (
¯̄K
∣∣∣Γ1

)
·
(

¯̄K
∣∣∣Γ2

)
= Γ1 · Γ2. (24)
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Thus, mapping by the dyadic ¯̄K does not change the dot product of
two-forms. In this, it resembles a rotation or reflection operation. In
particular, a simple two-form Γ satisfying Γ · Γ = 0, is mapped to a
simple two-form ¯̄K

∣∣Γ.

2.2. Definition of SQ-media

Let us now assume that ¯̄Q(2) is a symmetric dyadic. In terms of
symmetric and antisymmetric parts, ¯̄Q = ¯̄Qs + ¯̄Qa, this requires that
the condition ¯̄Qs

∧∧ ¯̄Qa = 0 be satisfied. For symmetric ¯̄Q(2) we have

εNeN

⌊⌊
¯̄KT = εNeN

⌊⌊
(εN

⌊
¯̄Q(2))T = εN

⌊
¯̄Q(2) = ¯̄K, (25)

whence (20) becomes
¯̄K−1 = ¯̄K, ⇒ ¯̄K2 = ¯̄I(2)T . (26)

Thus, the dyadic ¯̄K acts as a square root of the unit dyadic. Of course,
there are other square roots as well, like the unit dyadic itself.

Let us consider an extension to Q-media with symmetric ¯̄Q(2) by
adding a multiple of the unit dyadic in the medium dyadic, i.e., defining

¯̄M = α¯̄I(2)T + β ¯̄K. (27)

Here, we exclude the axion medium special case by assuming β 6= 0.
Any medium defined by a medium dyadic of the form (27), based
by symmetric ¯̄Q(2), will now called an SQ-medium for brevity. The
product of two SQ-medium dyadics satisfies

¯̄M1| ¯̄M2 =
(
α1

¯̄I(2)T + β1
¯̄K
) ∣∣∣

(
α2

¯̄I(2)T + β2
¯̄K
)

= (α1α2 + β1β2) ¯̄I(2)T + (α1β2 + α2β1) ¯̄K = ¯̄M2| ¯̄M1. (28)

Defining

αi = Mi cosh θi, βi = Mi sinh θi, i = 1, 2, (29)

the rule can be cast in the more suggestive form

¯̄M1| ¯̄M2 = M1M2

(
cosh(θ1 + θ2 )̄̄I(2)T + sinh(θ1 + θ2) ¯̄K

)
. (30)

Thus, the medium dyadic of any SQ-medium acts as a hyperbolic
rotation dyadic multiplied by a magnitude coefficient. Actually, we
can write more compactly

¯̄M = Meθ ¯̄K, (31)
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when the expotential function of a dyadic is understood in terms of its
power series. The multiplication rule now appears as

¯̄M1| ¯̄M2 = M1e
θ1

¯̄K|M2e
θ2

¯̄K = M1M2e
(θ1+θ2) ¯̄K, (32)

and the inverse of the medium dyadic can be expressed as

¯̄M−1 = Me−θ ¯̄K =
1
M

(
cosh θ¯̄I(2)T − sinh θ ¯̄K

)
=

1
α2 − β2

(
α¯̄I(2) − β ¯̄K

)
.

(33)
Because there is no antisymmetric part in ¯̄Q(2), there is no skewon
component in the medium dyadic ¯̄M, whence it consists of principal and
axion parts, only [4]. Such medium dyadics are defined by 36−15 = 21
parameters. For a given ¯̄Q dyadic the present medium dyadics ¯̄M define
a two-dimensional subspace in the 21 dimensional space of principal-
axion medium dyadics.

2.3. Relation to Q-media and SD-media

From
¯̄M2 =

(
α2 + β2

) ¯̄I(2) + 2αβ ¯̄K =
(
α2 + β2

) ¯̄I(2) + 2α
(

¯̄M− α¯̄I(2)T
)

(34)

we see that the SQ-medium dyadic satisfies
¯̄M2 − 2α ¯̄M +

(
α2 − β2

) ¯̄I(2)T = 0, (35)

or
¯̄M2 − 2M cosh θ ¯̄M + M2¯̄I(2)T = 0, (36)

which is an algebraic dyadic equation of the second order. Since the
pure axion medium corresponding to β = 0 or θ = 0 was excluded, the
medium is seen to belong to the class of SD media, defined by (9), as
a special case.

Let us compare the general SQ-medium, Q-medium and SD-
medium in terms of their three-dimensional (spatial) medium-dyadics
in the representation (1) where we must now replace the Gibbsian dot
product by the multivector product |.
• The three-dimensional medium dyadics of the Q-medium have the

general form [5, 8]

¯̄ε = ε ¯̄D, ¯̄µ = µ ¯̄DT , ¯̄ξ = X
⌊
¯̄IT , ¯̄ζ = Z

⌊
¯̄IT , (37)

where ¯̄D ∈ E1E1 is any spatial dyadic and X, Z are any spatial
bivectors. Thus, ¯̄ξ and ¯̄ζ may be any antisymmetric dyadics and
¯̄ε and ¯̄µ satisfy a relation of the form µ¯̄ε− ε¯̄µT = 0.



Progress In Electromagnetics Research, Vol. 110, 2010 377

• The three-dimensional medium dyadics of the SD-medium dyadics
have the general form [12, 13]

¯̄ε = ε ¯̄D, ¯̄µ = µ ¯̄D, ¯̄ξ = ξ ¯̄D + ξ′ ¯̄B, ¯̄ζ = ζ ¯̄D + ζ ′ ¯̄B, (38)

where ¯̄D and ¯̄B are any two spatial dyadics. Thus, ¯̄ε, ¯̄µ and ¯̄ξ + ¯̄ζ
are multiples of the same dyadic ¯̄D while ¯̄ξ − ¯̄ζ may be any other
dyadic.

• The three-dimensional medium dyadics of the SQ-medium
dyadic (27) can be found along the procedure given for the Q-
medium in [5, 8]. Omitting the details, the result can be expressed
in the form

¯̄ε = ε¯̄S, ¯̄µ = µ¯̄S, ¯̄ξ = ξ¯̄S + A
⌊
¯̄IT , ¯̄ζ = ζ ¯̄S−A

⌊
¯̄IT , (39)

where ¯̄S ∈ E1E1 is a symmetric spatial dyadic and A ∈ E2 is a
spatial bivector. Thus, the dyadics ¯̄ε, ¯̄µ and ¯̄ξ + ¯̄ζ are multiples
of the same symmetric dyadic ¯̄S while ¯̄ξ − ¯̄ζ = 2Ab̄̄IT is any
antisymmetric spatial dyadic.

When comparing (39) with the conditions of the Q-medium (37),
those of the SQ-medium are more restricted in requiring that ¯̄D be
a symmetric dyadic and more general in allowing ¯̄ξ and ¯̄ζ to possess
symmetric components in addition to the antisymmetric components,
related by X = −Z. On the other hand, the SQ-medium appears
as a special case of the SD medium (38) with symmetric dyadic ¯̄D,
antisymmetric dyadic ¯̄B and with ξ′ = −ζ ′.

3. FIELDS IN SQ-MEDIA

3.1. Eigenfield Decomposition

The dyadic second-order Equation (36) can be written factorized form
as (

¯̄M−Meθ¯̄I(2)T
) ∣∣∣

(
¯̄M−Me−θ¯̄I(2)T

)

=
(

¯̄M−Me−θ¯̄I(2)T
) ∣∣∣

(
¯̄M−Meθ¯̄I(2)T

)
= 0. (40)

Multiplying by an arbitrary two-form |Φ yields
(

¯̄M−Me±θ¯̄I(2)T
) ∣∣∣

[(
¯̄M−Me∓θ¯̄I(2)T

) ∣∣∣Φ
]

= 0, (41)

whence there are two solutions for the eigenproblem
¯̄M|Φ± = M±Φ±, M± = Me±θ. (42)
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The eigen-two-forms can be expressed in the form

Φ± = ¯̄P±|Φ, (43)

for any two-form Φ yielding nonzero results. The two normalized
dyadics

¯̄P± = ± 1
2M sinh θ

(
¯̄M−Me∓θ¯̄I(2)T

)
=

1
2

(
¯̄I(2)T ± ¯̄K

)
(44)

serve as orthogonal projection dyadics because they satisfy

¯̄P2
± =

1
4

(
¯̄I(2)T ± ¯̄K

)2
=

1
4

(
2¯̄I(2)T ± 2 ¯̄K

)
= ¯̄P±, (45)

¯̄P+| ¯̄P− = ¯̄P−| ¯̄P+ = 0, ¯̄P+ + ¯̄P− = ¯̄I(2)T , (46)

and the symmetry conditions

eN

⌊
¯̄P± =

1
2

(
eN

⌊
¯̄I(2)T ± ¯̄Q(2)

)
=

(
eN

⌊
¯̄P±

)T
. (47)

Thus, any two-form Φ can be uniquely split in two two-form
components Φ± as

Φ =
(

¯̄P+ + ¯̄P−
)
|Φ = Φ+ + Φ−, (48)

defined by
Φ± = ¯̄P±|Φ, ¯̄P∓|Φ± = 0. (49)

Existence of the projection dyadics requires θ 6= 0, i.e., that the
medium is not a pure axion medium, which was assumed above.

The dot product of two eigen-two-forms yields

Φ+ ·Φ− = eN

∣∣ (Φ+ ∧Φ−) = Φ
∣∣
(

¯̄PT
+

∣∣eN

⌊
¯̄P−

) ∣∣Φ

=
1
4
Φ

∣∣
(
eN

⌊
¯̄I(2)T − ¯̄KT

∣∣eN

⌊
¯̄K
) ∣∣Φ

=
1
4
Φ

∣∣
(
eN

⌊
¯̄I(2)T − ¯̄Q(2)

∣∣εN

⌊
¯̄Q(2)

) ∣∣Φ = 0, (50)

where at the last step we have applied the inverse rule (17). This
implies a set of orthogonality relations for the eigenfields,

Φ+ ·Φ− = 0, Φ+ ·Ψ− = Ψ+ ·Φ− = 0, Ψ+ ·Ψ− = 0, (51)

whence
Φ ·Φ = Φ+ ·Φ+ + Φ− ·Φ−. (52)

As a summary one can state that, for an SQ-medium, and unlike for
the Q-medium in general, the fields can be decomposed in two simple
eigenfields. Actually, the eigenfields are similar to those in the so-called
Bohren decomposition [15], valid for isotropic chiral media.
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3.2. Eigenfield Equations

Electromagnetic fields in a homogeneous SQ-medium defined by the
medium dyadic (27) satisfy the two Maxwell equations,

d ∧
(

¯̄M|Φ
)

= γe, d ∧Φ = γm, (53)

where γe and γm denote electric and magnetic source three-forms

γe = %e − Je ∧ ε4, γm = %m − Jm ∧ ε4. (54)

Substituting the decomposition (49) in terms of the eigenfields (43),
the equations

M+d ∧Φ+ + M−d ∧Φ− = γe, (55)
d ∧Φ+ + d ∧Φ− = γm (56)

can be split in two uncoupled equations

d ∧Φ+ = γ+, d ∧Φ− = γ− (57)

where the decomposed sources are

γ∓ =
±1

M+ −M−
(M±γm − γe). (58)

Thus, the eigenfields see the medium as an axion or PEMC medium
with effective PEMC admittance values M± [11]. However, the pure
axion medium corresponding to M+−M− = 0 was originally excluded
from our analysis.

Because the stress-energy dyadic ¯̄T(Ψ,Φ) ∈ F3F1 [5],

¯̄T(Ψ,Φ) =
1
2

(
Ψ ∧ ¯̄IT

⌋
Φ−Φ ∧ ¯̄IT

⌋
Ψ

)
= − ¯̄T(Φ,Ψ), (59)

is obtained by the operation 1
2()∧¯̄IT c() from the antisymmetric dyadic

¯̄A(Ψ,Φ) ∈ F2F2

¯̄A(Ψ,Φ) = ΨΦ−ΦΨ = − ¯̄A(Φ,Ψ) = − ¯̄AT (Ψ,Φ), (60)

it obviously vanishes for each eigenfield:
¯̄T(Ψ±,Φ±) = M± ¯̄T(Φ±,Φ±) = 0. (61)

Thus, the eigenfields alone do not carry any energy. For total fields
the energy transportation is possible through the interaction of both
eigenfields:
¯̄T(Ψ,Φ)= ¯̄T(Ψ+,Φ−) + ¯̄T(Ψ−,Φ+)=M+

¯̄T(Φ+,Φ−)+M− ¯̄T(Φ−,Φ+)

= (M+−M−) ¯̄T(Φ+,Φ−), (62)

recalling, again, the non-axion assumption M+ 6 M−.
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3.3. Potential Equation

For no magnetic sources the Maxwell equation

d ∧Φ(x) = 0, (63)

is satisfied when the field two-form is expressed in terms of a potential
one-form φ as

Φ(x) = d ∧ φ(x). (64)

The equation for φ is obtained from the other Maxwell equation as

d ∧Ψ (x) = d ∧
(

¯̄M
∣∣ (d ∧ φ (x))

)
= βd ∧

(
¯̄K
∣∣ (d ∧ φ (x))

)
= γe (x) ,

(65)
because the axion term falls off. Operating by eN

⌊
yields

βdc
(
eN

⌊
¯̄K
∣∣ (d ∧ φ (x))

)
= βdc

(
¯̄Q(2)

∣∣ (d ∧ φ (x))
)

= β
(

¯̄Q
∣∣d

)(
d
∣∣ ¯̄Q∣∣φ (x)

)
− β

(
d
∣∣ ¯̄Q∣∣d

) (
¯̄Q
∣∣φ (x)

)
= eN

⌊
γe (x) . (66)

Since the potential is not unique, we can assume the Lorenz condition
for the potential in the form

d
∣∣ ¯̄Q∣∣φ (x) = 0, (67)

whence the equation is reduced to
(
d
∣∣ ¯̄Q∣∣d

)(
¯̄Q
∣∣φ (x)

)
=

1
β
eNbγe (x) . (68)

Applying (13) this finally becomes
(
d
∣∣ ¯̄Q∣∣d

)
φ (x) =

1
β

εN

⌊
¯̄Q(3)

∣∣γe (x) , (69)

which is a second-order differential equation for the one-form potential
φ. Its nature depends on the signature of the metric dyadic ¯̄Q.

As an example we can consider the plane-wave field in the SQ-
medium,

Φ(x) = Φeν |x, (70)

where ν ∈ F1 is the wave one-form. Representing the field in terms of
the potential one-form as

Φ(x) = ν ∧ φ(x) = ν ∧ φeν |x, (71)

and since the sources of the plane wave are outside the finite region,
from (69) the wave one-form ν must satisfy the dispersion equation

ν
∣∣∣ ¯̄Q

∣∣∣ν = 0. (72)
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This coincides with that of the general Q-medium [5, 8]. Thus, we see
that the extension by the axion term and the restriction by symmetry
of the dyadic ¯̄Q(2) do not change form of the dispersion equation of
the Q-medium. In particular, this means that there is no birefringence
in the SQ-medium and both eigenfields obey the same equation. It is
known that there is no birefringence in any Q-medium, either, while
the general SD medium is birefringent.

4. SUMMARY

In the present study, we have defined a class of media with properties
somewhat between the previously known classes of Q-media and SD-
media. The novel class was dubbed that of SQ-media. Since the
medium dyadic of any SQ-medium satisfies a dyadic equation of
the second order, it belongs as a special case to the class of SD-
media by definition. However, SQ-media share the property of no
birefringence of the Q-media which is not shared by the general SD-
media. SQ-medium dyadic has certain interesting properties. It acts
as a hyperbolic rotation multiplied by a magnitude coefficient for
the electromagnetic two-form Φ. On the other hand, any field two-
form can be decomposed in two eigencomponents Finally, comparisons
between the three-dimensional (spatial) medium-dyadic definitions are
given for the three medium classes which show their difference.
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