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Abstract—Filter prototypes derived from Gegenbauer polynomials
can represent a useful trade-off between amplitude and phase behavior.
This paper discusses the main features of this prototype through
a comparison with the more classical Chebyshev and Butterworth
solutions; it shows, in the case of an X-band waveguide realization,
how its intermediate characteristics, with respect to both amplitude
and phase responses, can be very useful in satisfying particular filter
performance requirements without increasing filter order.

1. INTRODUCTION

Modern modulation techniques require more and more demanding
phase characteristics of the filters employed, which often cannot be
met by classical Chebyshev prototypes. As a consequence, an effort
has been recently made to develop new prototypes with a prescribed
group delay. In a large part of these solutions [1], the equalization is
obtained by creating multipath between input and output, in such
a way that signals flowing within different paths combine together
and give the desired phase response in the pass band. The intrinsic
deterioration of the out of band filter performance, due to the presence
of multipaths, is usually acceptable; this is because the use of high order
filters is made necessary only by the need of increasing the roll-off in
the neighborhood of the pass-band, while the attenuation is typically
much larger than that required in the out-band. On the other hand,
non-minimum phase filters are more expensive than classical single-
path solutions because of their higher complexity. The main drawback
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concerns tuning, which is more involved; this is due to the presence
of additional coupling elements [2, 3]. In addition, in high power
applications, despite the fact that often tight specifications on group
delay must be accomplished, multipaths are not well suited. This is
because of the presence of the small cross-coupling elements, which
may originate breakdown. In minimum phase filters, it is well known
that phase and amplitude behaviors are not independent of each other.
They are, in fact, linked together via a Hilbert’s transform [4], which
states that the better the amplitude response, the worst the phase
behavior. The physical explanation is quite evident when considering
the time domain response of a single resonator. Multiple reflections
combine in phase only at the center frequency, where the length of
the cavity is exactly a multiple of λg/2. As much as the frequency
moves away from the centre band, as the electrical path covered by
each partial wave deviates from a multiple of λg/2, thus producing
an undesired group delay. Of course, the effect is stronger close
to band edges and as filter selectivity increases. For this reason,
prototypes such as Bessel and Butterworth are often preferred to
classical Chebyshev in those applications where phase linearity and
high power capability are required. Therefore, it can be useful to have
a variety of minimum phase filter prototypes, other than Chebyshev,
Butterworth and Bessel [5]; this could provide the best trade-off
between amplitude and group delay response. The idea of using
prototypes deriving from Gegenbauer polynomials simply originates
from the consideration that they have a intermediate behavior between
Chebyshev prototypes and Butterworth prototypes.

2. GEGENBAUER POLYNOMIALS

Gegenbauer polynomials Cα
n (ω), depending on the degree n and order

α, belong to the class of orthogonal polynomials. They are defined by
the explicit expression [6]:

Cα
n (ω) = dn

N∑

m=0

cmgm (x) (1)

where:

dn =
1

Γ (α)
cm = (−1)m Γ (α + n−m)

m! (n− 2m)!

gm(x) = (2x)n−2m N =
[n

2

]
(2)

for α > −1
2 .



Progress In Electromagnetics Research C, Vol. 18, 2011 187

They also could be defined by the Rodriguez formula:
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(3)
or by the recurrence formula:

(n + 1)Cα
n+1(ω) = 2(n + α)ωCα

n (ω)− (n + 2α− 1)Cα
n−1(ω) (4)

Furthermore, Cα
n (ω) is even in ω for even n, and odd in ω for odd

n. It also has n single zero locations in ω ∈ (−1, 1), as shown in Fig. 1.
For α = 0 the relationship between Gegenbauer polynomials and

Chebyshev polynomials of first type is

Tn (ω) =
n

2
C0

n (ω) (5)

instead for α = 1 Gegenbauer polynomials are equal to Chebyshev
polynomials of second type:

Un (ω) = C1
n (ω) . (6)

3. PROTOTYPE SYNTHESIS

The transmission of a Gegenbauer low-pass filter prototype is given by

|s21 (jω)|2 =
1

1 + ε2
[

Cα
n (jω)

Cα
n (1)

]2 (7)

where Cα
n (jω) is a Gegenbaeur polynomial of order α and degree n,

where α is a real number. As usual, ε represents the maximum ripple in

Figure 1. Gegenbauer polynomials, n = 6.
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band-pass, which is the interval [0, 1]. The derivation of the parameters
of a lumped low-pass prototype is divided into the following steps.

(i) From the expression (7) of |s21|2 in the complex S-plane,

|s21 (s)|2 = s21 (s) s21 (−s) (8)

s21 (s) is derived in such a way that is a bounded real function
or, in other words, its poles lie on the left part of the complex
Gaussian plane.

(ii) Then, from the bounded real function s11 (s), a positive real input
impedance is built by the well known formula

Z (s) =
1 + s11 (s)
1− s11 (s)

(9)

Since s11 (s) is a bounded real function, Z (s) is a positive real
function, and it is physically realizable.

(iii) Now, by following Cauer’s synthesis method [7], a ladder network
as in Fig. 2 having Z (s) as input impedance can be obtained.

Tables A1–A3, reported in the Appendix A, give the values of the
immittances gk for the prototypes up to degree 10 and order 0.4, 5, 20
respectively.

4. PROPERTIES OF THE GEGENBAUER FILTERS

Through direct inspection of Figs. 3 and 4, respectively, showing
the reflection in pass-band and the attenuation in stop-band of some
prototypes of degree n = 6, it is shown that the Gegenbauer responses
span between Butterworth to Chebyshev, as the order α goes from
infinity to 0.

For all prototypes, the Return Loss at the band edge (ω = 1)
has been set equal to 20 dB: unlike the Chebyshev case, where the
response is equiripple, in the other cases the return loss in the pass-
band is higher. This corresponds to a deterioration of the attenuation
in the stop-band, as can be realized by examining Fig. 4. This shows

Figure 2. Lumped ladder network (n = 6) prototype.
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Figure 3. Comparison between the
Return Loss responses of Butter-
worth, Chebyshev and Gegenbauer
prototypes of degree 6. The lat-
ter spans between Butterworth and
Chebyshev as α runs from infinity to
0.

Figure 4. Comparison be-
tween the stop-band Insertion
Loss of Butterworth, Cheby-
shev and Gegenbauer proto-
types of degree 6. The attenu-
ation decreases as the order in-
creases.

that the better the return loss in pass-band the worse the attenuation
in stop-band. Through inspection of the immittances gk’s of the
tables reported in Appendix A, it is also shown that reflections, due
to each immittance, increase as the order α decreases. Considering
that pass-band matching depends on the combination of the partial
waves bouncing at each immittance, it is realized that the number of
reflections necessary to get the stationary situation increase as gk’s
do. Since both losses and maximum field increase with the number of
partial reflections, it shows that a proper choice of the order α gives to
the designer an extra degree of freedom; this applies to selecting the
best trade-off between pass-band return loss, stop-band attenuation,
losses and power handling capability. It is not surprising that a
similar feature is also seen with respect to the group delay; this also
depends on the number of partial waves bouncing back and forth (i.e.,
resonance) between the immittances, as can be immediately observed
by examining Figs. 5 and 6.

Even in this case, group delays are related to the order α of
Gegenbauer polynomials. The larger the order, the smaller the group
delay. In addition, even the variation of the group delay significantly
reduces as the order α.

It must be noted that the main feature of the proposed prototype
is the extra flexibility; this given by the choice of the order α, which
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Figure 5. Comparison between the group delays of Butterworth,
Chebyshev and Gegenbauer prototypes of degree 6. The latter is
characterized by an intermediate behaviour between Butterworth and
Chebyshev responses as α runs from infiity to 0.

Figure 6. Group delay behaviour respect to the order α fixed the filter
degrees at 4, 6 and 8, calculated at the band edge frequency (ω = 1).

allows the designer to get the best trade-off between Chebyshev and
Butterworth.

For instance, for a given degree n, if the specifications on group
delay are not satisfied, it is possible to continuously increase the order
α in order to reduce the group delay and stopping exactly when
the specifications are accomplished. Of course, since the stop-band
attenuation slightly deteriorates, it could be required an increasing of
the filter degree. However, it must be stressed that every adjustment
is continuous and limited to what really necessary. Finally, as typically
occurs in filter design, the response obtained by the synthesized circuit
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is ‘scaled’ by a factor K and the r : 1 transformer at the end of the
network is inserted in order to restore the desired response.

5. X-BAND WAVEGUIDE REALIZATION

As an interesting application of the present prototype, we have
considered an X band filter whose midband frequency is 9.220GHz,
a bandwidth of 160 MHz having 20 dB of minimum return loss in
passband, an attenuation at 9.415GHz greater than 45 dB and a
maximum delay time variation lower than 5.5 ns. The specifications
on amplitude are accomplished by a Chebyshev prototype of order
6 [8]. Unfortunately, this solution does not satisfy the group delay
requirements. On the other hand, both specifications can be met
by using a Butterworth polynomial of a much higher degree. We
have designed two alternative filters satisfying the same pass-band
requirements by using Gegenbauer prototypes of degree 6 and orders
0.4 and 5 respectively. All filters of inductive iris type, as the one
drawn in Fig. 7, were designed according to our home-made software.
In Table 1, their geometrical dimensions are reported.

Table 1. Dimensions of the designed filters (Wi, width of the i)-th
window, Ci, length of the i)-th cavity. All dimensions are in mm,
a = 22.86, b = 10.16, window thickness = 1, edge roundness = 3.

Chebyshev Gegenbauer 0.4 Gegenbauer 5

W1 10.089 10.566 11.605

C1 20.957 20.306 19.528

W2 5.726 6.005 6.833

C2 22.230 22.150 21.866

W3 5.127 5.229 5.61

C3 22.364 22.33 22.21

W4 5.054 5.123 5.38

C4 22.362 22.329 22.209

W5 5.127 5.228 5.610

C5 22.228 22.15 21.87

W6 5.724 6.002 6.833

C6 20.604 20.313 19.527

W7 10.087 10.563 11.605

Transmission, Return Loss and time-delay of the three filters
simulated by HFSS [9] are shown in Figs. 8, 9 and 10. As can
be seen, the attenuation in stop-band of both Gegenbauer solutions
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Figure 7. Sketch of the inductive iris filters designed. All filters are
of degree 6.

Figure 8. Comparison between the transmissions of the three filters
designed. Of course, for a given degree, the best selectivity occurs in
the Chebyshev case.

Figure 9. Comparison between the Return Loss of the three lters
designed.
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Figure 10. Comparison between the group delays in the pass-band
of the Chebyshev and Gegenbauer filters designed. As predicted, the
time-delay variation within the pass-band decreases as the order of the
Gegenbauer polynomial increases.

are worse than the Chebyshev solution and degrade as the order
increases. On the other hand, time-delay variation in pass band
improves considerably (Chebyshev: 6.8 ns, Gegenbauer 0.4: 5.05 ns,
Gegenbauer 5: 2.2 ns). It is immediately to see that the order 0.4 is an
acceptable trade-off between selectivity and time delay response. This
proves the usefulness of this class of prototype.

6. CONCLUSION

It has been shown that prototypes, based on Gegenbauer polynomials
offer an additional degree of flexibility with respect to classical
solutions. This feature can be exploited when designing filters that
have to combine unusual specifications on group delay and amplitude
response. With this prototype, it is then possible to tailor a solution
which is intermediate between Butterworth and Chebyshev.

APPENDIX A. VALUES OF THE IMMITTANCES OF
THE GEGENBAUER PROTOTYPE UP TO ORDER 8
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Table A1. α = 0.4 — Among the case reported in the tables, this is
the one closer to the Chebyshev prototype.

n g1 g2 g3 g4 g5 g6 g7 g8 r

1 0.2010 1

2 0.5750 0.5143 0.9457

3 0.7057 1.0764 0.7057 1

4 0.7518 1.2743 1.3917 0.6884 1.0451

5 0.7685 1.3568 1.6173 1.3568 0.7685 1

6 0.7735 1.3968 1.7069 1.5820 1.5071 0.7169 0.9627

7 0.7734 1.4182 1.7487 1.6757 1.7487 1.4182 0.7734 1

8 0.7709 1.4302 1.7701 1.7228 1.8443 1.6534 1.5311 0.7201 1.0347

Table A2. α = 5.

n g1 g2 g3 g4 g5 g6 g7 g8 r

1 0.2010 1

2 0.4916 0.4420 0.9909

3 0.5132 0.9715 0.5132 1

4 0.5008 1.1194 1.1241 0.4897 1.0021

5 0.4771 1.1449 1.3568 1.1449 0.4771 1

6 0.4529 1.1302 1.4358 1.4338 1.1318 0.4523 0.9993

7 0.4308 1.1024 1.4543 1.5556 1.4543 1.1024 0.4308 1

8 0.4113 1.0713 1.4478 1.6044 1.6053 1.4470 1.0719 0.4111 1.0003

Table A3. α = 20 — Among the cases reported in the tables, this is
the closest to the Butterworth prototype.

n g1 g2 g3 g4 g5 g6 g7 g8 r

1 0.2010 1

2 0.4543 0.4521 0.9976

3 0.4785 0.9422 0.4785 1

4 0.4511 1.0649 1.0652 0.4509 1.0002

5 0.4159 1.0612 1.2924 1.0612 0.4159 1

6 0.3829 1.0184 1.3563 1.3563 1.0184 0.3829 1

7 0.3540 0.9656 1.3519 1.4803 1.3519 0.9656 0.3540 1

8 0.3292 0.9131 1.3192 1.5197 1.5197 1.3192 0.9131 0.3292 1
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